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Abstract—The lack of common standards in a fast emerging 

Cloud computing market over the last years resulted in 

“vendor lock in” and interoperability issues across 

heterogeneous Cloud platforms. Therefore, the Cloud user is 

facing now a challenging problem of selecting the Cloud 

provider that fits his needs. A new promising research 

approach is the use of intermediate broker services to assist the 

user in finding the appropriate Cloud resources that satisfy his 

requirements. In this paper, we present a generic simulation 

framework based on the CloudSim toolkit for the validation 

and evaluation of a Cloud service broker deployed on an 

Intercloud environment. A unique feature of the framework is 

the integration of several state of the art technologies and 

standards, which makes it easy to deploy on real production 

Clouds. After presenting the framework fundamental 

architecture, we discuss in detail the solved implementation 

challenges. Finally, we present some initial evaluation results. 

Keywords—Cloud Brokering, Intercloud Computing, 

Simulation Environment, Cloud Interoperability, ClouSim 

Toolkit. 

I.  INTRODUCTION 

The on-demand delivery of Cloud computing services 
over the Internet is now a needed reality rather than only a 
new marketing hype. Due to the fast emerging Cloud 
computing market over the last years, the number of Cloud 
service providers has significantly increased. On the other 
hand, “vendor lock in” issues and the lack of common Cloud 
standards hindered the interoperability across these 
providers. Thus, today the Cloud customer is facing a 
challenging problem of selecting the appropriate Cloud 
offers that fit his needs. Therefore, standardized interfaces 
and intermediate services are needed to prevent monopolies 
of single Cloud providers. 

One of the promising use cases of the Intercloud vision 
defined in [1] is market transactions via brokers. In such a 
use case, a broker entity acts as a mediator between the 
Cloud consumer and multiple interoperable Cloud providers 
to support the former in selecting the provider that better 
meets his requirements. Another value-added broker service 
is the easy deployment and management of the user’s service 
regardless of the selected provider through a uniform 
interface. 

The lack of standardization across Cloud providers 
makes the deployment of Cloud service brokers on real 

production Clouds a challenging task for Cloud developers 
and researchers. Amongst others, many vendor compatible 
adapters are needed by the broker to interface the 
heterogeneous Cloud platforms. Furthermore, the evaluation 
of the broker using a real testbed is usually cost- and time-
consuming, as a large number of Cloud resources is required 
to achieve realistic results. A more promising and cost-
saving approach for the broker evaluation is the use of 
simulation environments. 

Motivated by the above considerations, we present in this 
paper an extensible simulation-based framework to evaluate 
Cloud service brokers. The contribution from the developed 
framework is threefold: (1) It implements a Cloud service 
broker featuring automatic Service Level Agreement (SLA) 
negotiation and service deployment; (2) It enables through a 
standardized abstraction layer the monitoring and 
management of services deployed on heterogeneous Cloud 
providers while hiding their technical details; (3) It allows 
the easy integration and evaluation of custom resource 
matching policies.  

The remainder of the paper is organized as follows: In the 
next section, we discuss prior works related to Cloud service 
brokering frameworks. We also identify how our work 
differs from related work. This is followed by the framework 
fundamental architecture in Section III. The simulation 
environment details are discussed in Section IV. In Section V 
and VI, we present and discuss initial evaluation results, 
respectively. Finally, we conclude the paper in Section VII 
with a brief summary and describe our future research 
directions. 

II. RELATED WORK 

The idea of service brokering in Cloud is currently a 
subject for many research works. 

A well-known research project is the Cloudbus toolkit [2] 
that defines a complete architecture for market-oriented 
Cloud computing. The three key components of this 
architecture are a Cloud Broker, a Market Maker and an 
InterCloud [3]. The Cloud Broker schedules applications on 
behalf of the user by specifying the desired Quality of 
Service (QoS) requirements, whereas the Market-Maker acts 
as a mediator bringing together Cloud providers and 
customers. It aggregates infrastructure demands from the 
Cloud Broker and matches them against the available 
resources published by the Cloud providers. The InterCloud 
provides a scalable federated computing environment 
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composed of heterogeneous interconnected Clouds enabling 
the Intercloud resource sharing.  

The above envisioned architectural framework is still 
under development. However, first experimental results with 
Aneka [4] and Amazon EC2 [5] based Clouds demonstrated 
that the market-oriented Cloudbus architecture brings 
benefits to user’s application performance in optimizing the 
cost and execution time. 

CloudAnalyst [6] is a graphical simulation tool built on 
top of the CloudSim toolkit [7], developed by the Cloud 
Computing and Distributed Systems (CLOUDS) laboratory 
at university of Melbourne to model and analyze the 
behavior of large social network applications. The Internet 
traffic routing between the user bases located in different 
geographic locations and the datacenters, is controlled in 
CloudAnalyst by a service broker that decides which 
datacenter should serve the requests from each user base 
based on different routing policies. The current version of 
CloudAnalyst implements three different routing policies, 
which are network-latency-based routing, response-time-
based routing and dynamic-load-based routing. A 
CloudAnalyst simulation case study of the social network 
application Facebook [8] proved how load balancing 
managed by a service broker optimizes the performance and 
cost of large scale Cloud applications. 

The EU funded OPTIMIS [9] project drives the 
development of a toolkit to optimize the full service lifecycle 
in the Cloud. Its proposed flexible multi-Cloud architecture 
includes a service broker that allows a decision making 
taking into account of many business aspects like trust, cost 
and risk. Although the toolkit is still not implemented, the 
conducted simulation experiments with real workload traces 
prove the benefits from the use of cost and risk aspects as 
elasticity policies in the decision making. 

The work in [10] proposed an SLA-based Service 
Virtualization (SSV) architecture, which is built on three 
main components: a Meta-Negotiator responsible for 
agreement negotiations, a Meta-Broker for selecting the 
proper execution environment and an Automatic Service 
Deployer for service virtualization and on-demand 
deployment. The proposed service virtualization architecture 
has been validated in a simulation environment based on 
CloudSim using a real biochemical application as a case 
study. The simulation results showed the performance gains 
in terms of execution time from the SSV architecture 
compared to a less heterogeneous Grid meta-brokering 
solution. 

Comparing the previous mentioned service brokering 
approaches, their implementation on real production Clouds 
is still ongoing and their current validations and evaluations 
are mostly based on simulation methodologies. The 
presented Cloud service broker framework in this paper is 
also implemented based on a simulation approach. However, 
its high-level generic architecture combined with the 
integration of state of the art Cloud technologies and 
standards prepares a realistic testbed for developers and 
researchers to easily test and evaluate service brokers before 
their deployment on real production Clouds. Moreover, the 

framework implements all the value-added broker services 
included in previous solutions like SLA negotiation, match 
making, service deployment and monitoring. 

III. FRAMEWORK ARCHITECTURE 

As shown in Figure 1, the framework architecture is 
composed of three main parts: the Client, the Cloud Service 
Broker and the Cloud provider Intercloud Gateway. The 
internal components of every architecture part and their 
provided functionalities are discussed in the following 
subsections. 

A. Client 

The Client provides Cloud users with an interactive user 
interface to submit their service requests to the broker by 
describing the functional and non-functional service 
requirements. Moreover, the user is able to manage and 
monitor the service after its deployment through a single 
management console. If the requested service requires the 
involvement of other services, a workflow engine could be 
deployed to assist users in building and executing complex 
Cloud services. 

B. Cloud Service Broker 

The Cloud Service Broker builds the heart part of our 
implemented framework by offering attractive value-added 
services to users. Its main task is to find the most suitable 
Cloud provider while satisfying the users’ service 
requirements in terms of functional and non-functional 
Service Level Agreement parameters. Additionally, its high-
level architecture design allows the deployment and 
monitoring of services on top of heterogeneous Cloud 
providers. More detailed descriptions on the internal broker 
design can be read in [11]. 

Figure 1.  Framework architecture. 
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The different components of the broker and their roles 
are briefly described below: 

 Identity Manager: It handles the user authentication 
and admission control. 

 The SLA manager: It negotiates the SLA creation 
and handles the SLA provisioning. 

 Monitoring and Discovery Manager: It queries 
resource information and monitors the SLA metrics. 

 Match Maker: It selects the best Cloud providers for 
user requests using different matching algorithms. 

 Deployment Manager: It deploys the service on the 
selected provider. 

 Persistence: It stores broker specific data (e.g., 
monitoring, SLA templates and resources data). 

 Abstract Cloud API: A standard abstract API used to 
manage Cloud resources on different Cloud 
providers. 

C. Provider Intercloud Gateways 

The Intercloud Gateway is the key component of our 
framework hosted on the provider side to interface the 
vendor Cloud platform. It acts as a standardized service 
frontend for the Cloud provider and adds the needed 
abstraction layer to interact with the broker. Its main role is 
to provide the broker with common management and 
monitoring interfaces while hiding the internal provider 
policies. 

IV. SIMULATION-BASED IMPLEMENTATION 

We implemented a simulation environment for the 
framework presented in the previous section. This allows us 
to validate and evaluate a Cloud service broker without the 
setup of a testbed with real Cloud providers, which is 
extremely time- and cost-consuming. The implementation 
details and the simulation flow are described in the next 
subsections. 

A. Simulation Environment 

The simulation environment for the Cloud service broker 
framework built on top of the CloudSim 2.2.1 simulation 
toolkit is depicted in Figure 2. In the following subsections 
we go through all the implemented components by 
describing the used technologies and tools. 

1) CloudSim Toolkit 
CloudSim is a scalable open source simulation tool 

offering features like support for modeling and simulation of 
large scale Cloud computing infrastructures including 
datacenters, brokers, hosts and virtual machines (VMs) on a 
single host. In addition, the support for custom developed 
scheduling and allocation policies in the simulation made 
CloudSim an attractive tool for Cloud researchers. 
Additional information about CloudSim can be found in 
[12].  

In our simulation environment CloudSim is used to 
model large scale and heterogeneous Cloud providers. This 
allows us, for the purpose of evaluation, to easily configure 
the amount of Cloud provider resources accessible by the 
broker. However, some CloudSim extensions are needed to 

Figure 2.  Simulation environment. 

allow the dynamic creation, destroying and monitoring of the 
VMs during simulation runtime and therefore to enable the 
automatic service deployment in the broker. 

2) Cloud Service Broker Implementation 
Until the writing of this paper, most core broker services 

including the Deployment Manager, the Match Maker and 
the Monitoring Manager have been fully implemented. The 
SLA Manager is currently under development. Furthermore, 
two persistence classes named ServiceRegistry and 
ProviderRegistry are used to store and query all the service 
and provider data during the simulation.  

While looking for an abstract Cloud API to access 
different Cloud platforms, we found that the Open Cloud 
Computing Interface specification (OCCI) [13] is the most 
suitable for our framework. OCCI is an extensible 
specification for remote management of Cloud 
infrastructures, allowing the development of interoperable 
tasks over heterogeneous Clouds. The current OCCI 
specification, focusing on IaaS Cloud provisioning, defines 
three abstract resource types, which are compute, storage and 
network. All the operations on resources can be requested on 
a REST manner over HTTP methods (GET, POST, PUT and 
DELETE). The use of OCCI as abstract Cloud API allows 
the broker to act as OCCI client against the Intercloud 
Gateway, which runs as OCCI-server on the provider side. 

The implemented Match Maker functionality of the 
broker is extensible enough to permit the easy integration of 
custom resource matching policies. In order to demonstrate 
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this feature, we implemented the following primitive match 
making policies: 

 RandomCloudMatcher: It selects randomly a 
provider regardless of the users’ service 
requirements. 

 FunctinalSLACloudMatcher: It selects the provider 
that fits all the functional SLA service requirements. 

 LocationAwareCloudMatcher: It selects a provider 
located at the same region given in the service 
request. 

 CostAwareCloudMatcher: It selects the cheapest 
provider below a given cost limit. 

 HybridCloudMatcher: It combines both functional 
SLA and location-aware matching. 

3) OCCI-based Intercloud Gateway 
In order to simulate the Intercloud Gateway component 

serving as standard service frontend for Cloud providers, we 
implemented, based on the open source Java implementation 
for OCCI called OCCI4JAVA [14], an OCCI frontend for 
CloudSim. In this way, the entire communication between 
broker and providers is forwarded to the native CloudSim 
DatacenterBroker class through standard OCCI-interfaces. In 
contrast to the OCCI specification, as CloudSim simulations 
usually run on one host, the broker communicates with the 
Intercloud Gateway through simple Java object calls instead 
of using the defined REST-like methods. Furthermore, we 
extended OCCI4JAVA with an OCCI monitoring mixin to 
allow the broker to query resource properties like datacenter 
static information (e.g., location, supported OS, CPU 
architecture) and current monitoring metrics values from 
CloudSim. 

4) Request Generator 
The simulation-based evaluation of the broker requires 

the submission of real world service requests by the client to 
achieve valuable evaluation results. Thus, we implemented a 
service Request Generator helper class that continuously 
generates VM provisioning requests similar to real Amazon 
EC2 compute instances at a configurable rate. Some sample 
VM requests are provided in the next section. 

B. Simulation Flow 

The needed simulation flow to process the incoming 
client service requests to the service broker is illustrated by 
the flow diagram in Figure 3. 

The simulation is done as follows: In a first step, 
CloudSim is initialized according to the desired simulation 
scenario. Then, the Request Generator starts to generate 
continuously VM provisioning service requests with a 
variable request arrival rate. All the request and provider data 
are maintained in the corresponding ServiceRegistry and 
ProviderRegistry classes during the simulation. The broker, 
after receiving the request, asks the Match Maker, if the 
service can be deployed with the specified requirements. For 
this, the Match Maker starts a match making process to find 
the best suitable provider by matching the gathered resource 
information from the Monitoring Manager with the service 
requirements and by applying the pre-configured matching 
algorithms. Upon the existence of a match, the service is 

automatically deployed and the requested VM is created and 
started on the selected CloudSim datacenter with the 
modeled workload traffic (Cloudlet). During the execution 
time, the VM status is queried periodically by the Monitoring 
Manager until the VM is destroyed. If none of the providers 
can be matched, the request is discarded by the broker. 

All the aforementioned simulation steps are repeated 
until reaching the preset maximum number of requests or 
simulation time limit. In this case, the simulation is 
terminated and the output results are displayed in the Client. 

V. EVALUATION RESULTS 

In this section we discuss first evaluation results acquired 
using the previous implemented simulation framework. We 
describe in the following subsections the experimental setup 
and then present the evaluation results. 

A. Experiemental Setup 

In order to model heterogeneous Cloud providers, we 
configured six heterogeneous CloudSim datacenters. Each 
datacenter has a unique identifier (ID) and is located into a 
different geographical zone. As shown in Table I, we define 
six different compute zones presenting the six world 
continents. Each zone has been given a unique code. The 
detailed configuration for each datacenter is gathered in 
Table II. The six datacenters have different pricing policies 
and can support one of two defined operating systems 
(Linux or Windows) and CPU architectures (x86 or x64). 
Furthermore, each datacenter is made up of 50 hosts, which 
are equally divided between two different host types. As can 
be seen in Table III, the used hosts’ setup allows at least the 

TABLE I.  COMPUTE ZONES 

Zone 
North 

America 

South 

America 
Europe Asia Africa 

Austr-

alia 

Code 0 1 2 3 4 5 

TABLE II.  DATACENTERS CONFIGURATION 

Name 
Datacenter Configuration 

ID OS Arch 
Region 

Code 

Cost 

$/hour 

Provider_A 0 Linux x64 0 0.3 

Provider_B 1000 Linux x64 0 0.45 

Provider_C 2000 Windows x64 2 0.75 

Provider_D 3000 Linux x64 2 0.55 

Provider_E 4000 Linux x64 3 0.15 

Provider_F 5000 Windows x86 5 0.04 

TABLE III.  HOSTS SETUP 

Host Type 
Host Configuration 

CPU 

MHZ 

Cores 

number 

RAM   

GB 

Bandwidth 

Gbit/s 

Storage 

TB 

Xeon 3040 1860 2 4 1 1 

Xeon 3075 2260 2 8 1 1 
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Figure 3.  Simulation flow. 

deployment of one VM instance per host. 
All the experiments are done on a notebook with CPU 

Intel Core i5 560M 2.67 GHZ, RAM 4 GB and using 
Windows 7 operating system. The default CloudSim simple 
VM provisioning policy is used as internal datacenter 
scheduling policy. This policy allocates VMs to the host 
with most free cores. In order to permit the dynamic sharing 
of CPU cores among VMs, we configured CloudSim to use 
a time-shared VM scheduler policy. 

B. Initial Results 

We conducted a first experiment to evaluate the broker 
scalability. We continuously generate VM service requests 
(at a random rate varying from 0 to 60 seconds) and let the 
broker randomly select a provider from the six datacenters 

and then deploy the VM on it. The generated VM requests 
are equally distributed between four Amazon EC2 instance 
types and require Linux as operating system and x64 CPUs. 
Table IV gives the specific requirements of each VM type. 

TABLE IV.  VM REQUEST TYPES 

VM Type 
Host Configuration 

CPU 

GHZ 

Cores 

number 

RAM  

GB 

Region 

Code 

Cost 

$/hour 

CPU high 2.5 2 1.7 0 0.17 

large 2 2 7.5 2 0.34 

small 1 1 1.7 3 0.085 

micro 0.5 1 0.63 4 0.02 
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TABLE V.  BROKER DEPLOYMENT PERFORMANCE (%) 

Provider 

number 

Requests number 

50 250 500 1000 1500 2000 

1  98 78 44.4 28 22.1 17.8 

3 100 81.6 78.6 61,8 44 36.3 

6 100 98.3 82.8 78.6 77.2 62.1 

 
While maintaining the number of datacenters constant, 

we measured the deployment rate, which is defined as the 
percentage of successfully deployed VMs, by varying the 
request number from 50 to 2000. We repeated the same 
experiment by decreasing the number of datacenters from six 
to three and then to only one. The results presented in Table 
V after one day simulation time, show that the broker 
deployment rate scales well with the increasing number of 
service requests and Cloud providers.  

We conducted another experiment to evaluate the match 
performance of the four implemented primitive matching 
policies. We repeated the previous experiment using all six 
datacenters and by changing each time the matching policy 
and then we measured the match rate, defined as the 
percentage of successfully matched requests.  

As depicted in Figure 4, when using cost or location as 
matching policy the match rate remains constant at 75 %, as 
the requested cost limit and location for the micro VM 
instance type usually has no match. However, with the 
functional SLA and hybrid matching policies the match rate 
decreases continuously with the rising service demand due to 
the limited capacity of the provided datacenter resources. 

VI. DISCUSSION 

The previous experiments show that an increase of the 
number of concurrent providers results in more resource 
heterogeneity and therefore improves the broker match rate. 
Furthermore, the results prove that the accuracy of the 
queried monitoring information by the Monitoring Manager 
heavily impacts the performance of the matching policy, 
especially for the functional SLA matching.  

In fact, the support of more than one SLA parameter in 
the matching increases the customer satisfaction, but at the 
cost of a low match rate. Thus, the matching algorithm 
should optimize this trade-off by modeling the dependency 
between the customer utility function and his requested 
functional and non-functional SLA parameters, while 
considering the current provider monitoring information. 

 

 
Figure 4.  Broker matching performance. 

VII. CONCLUSIONS AND FUTURE WORKS 

The deployment and evaluation of intermediate broker 
services on production Clouds is today a challenging task 
due to the lack of interoperability and the heterogeneity in 
current Cloud platforms. 

In this paper, we described the fundamental architecture 
and the implementation details of a simulation-based 
framework used to evaluate a Cloud service broker. We 
presented also the first simulation results in evaluating the 
broker scalability and match making policies. 

In our future work, we will use the simulation framework 
to investigate and evaluate more complex SLA-aware match 
making algorithms to improve the broker matching 
performance. Furthermore, we will investigate the use of real 
workload traces instead of using generated requests to get 
more realistic results. 
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