
Simulation-based Evaluation of an Intercloud Service Broker

Foued Jrad, Jie Tao and Achim Streit

Steinbuch Centre for Computing, SCC

Karlsruhe Institute of Technology, KIT

Karlsruhe, Germany

{foued.jrad, jie.tao, achim.streit}@kit.edu

Abstract—The lack of common standards in a fast emerging

Cloud computing market over the last years resulted in

“vendor lock in” and interoperability issues across

heterogeneous Cloud platforms. Therefore, the Cloud user is

facing now a challenging problem of selecting the Cloud

provider that fits his needs. A new promising research

approach is the use of intermediate broker services to assist the

user in finding the appropriate Cloud resources that satisfy his

requirements. In this paper, we present a generic simulation

framework based on the CloudSim toolkit for the validation

and evaluation of a Cloud service broker deployed on an

Intercloud environment. A unique feature of the framework is

the integration of several state of the art technologies and

standards, which makes it easy to deploy on real production

Clouds. After presenting the framework fundamental

architecture, we discuss in detail the solved implementation

challenges. Finally, we present some initial evaluation results.

Keywords—Cloud Brokering, Intercloud Computing,

Simulation Environment, Cloud Interoperability, ClouSim

Toolkit.

I. INTRODUCTION

The on-demand delivery of Cloud computing services
over the Internet is now a needed reality rather than only a
new marketing hype. Due to the fast emerging Cloud
computing market over the last years, the number of Cloud
service providers has significantly increased. On the other
hand, “vendor lock in” issues and the lack of common Cloud
standards hindered the interoperability across these
providers. Thus, today the Cloud customer is facing a
challenging problem of selecting the appropriate Cloud
offers that fit his needs. Therefore, standardized interfaces
and intermediate services are needed to prevent monopolies
of single Cloud providers.

One of the promising use cases of the Intercloud vision
defined in [1] is market transactions via brokers. In such a
use case, a broker entity acts as a mediator between the
Cloud consumer and multiple interoperable Cloud providers
to support the former in selecting the provider that better
meets his requirements. Another value-added broker service
is the easy deployment and management of the user’s service
regardless of the selected provider through a uniform
interface.

The lack of standardization across Cloud providers
makes the deployment of Cloud service brokers on real

production Clouds a challenging task for Cloud developers
and researchers. Amongst others, many vendor compatible
adapters are needed by the broker to interface the
heterogeneous Cloud platforms. Furthermore, the evaluation
of the broker using a real testbed is usually cost- and time-
consuming, as a large number of Cloud resources is required
to achieve realistic results. A more promising and cost-
saving approach for the broker evaluation is the use of
simulation environments.

Motivated by the above considerations, we present in this
paper an extensible simulation-based framework to evaluate
Cloud service brokers. The contribution from the developed
framework is threefold: (1) It implements a Cloud service
broker featuring automatic Service Level Agreement (SLA)
negotiation and service deployment; (2) It enables through a
standardized abstraction layer the monitoring and
management of services deployed on heterogeneous Cloud
providers while hiding their technical details; (3) It allows
the easy integration and evaluation of custom resource
matching policies.

The remainder of the paper is organized as follows: In the
next section, we discuss prior works related to Cloud service
brokering frameworks. We also identify how our work
differs from related work. This is followed by the framework
fundamental architecture in Section III. The simulation
environment details are discussed in Section IV. In Section V
and VI, we present and discuss initial evaluation results,
respectively. Finally, we conclude the paper in Section VII
with a brief summary and describe our future research
directions.

II. RELATED WORK

The idea of service brokering in Cloud is currently a
subject for many research works.

A well-known research project is the Cloudbus toolkit [2]
that defines a complete architecture for market-oriented
Cloud computing. The three key components of this
architecture are a Cloud Broker, a Market Maker and an
InterCloud [3]. The Cloud Broker schedules applications on
behalf of the user by specifying the desired Quality of
Service (QoS) requirements, whereas the Market-Maker acts
as a mediator bringing together Cloud providers and
customers. It aggregates infrastructure demands from the
Cloud Broker and matches them against the available
resources published by the Cloud providers. The InterCloud
provides a scalable federated computing environment

140Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

composed of heterogeneous interconnected Clouds enabling
the Intercloud resource sharing.

The above envisioned architectural framework is still
under development. However, first experimental results with
Aneka [4] and Amazon EC2 [5] based Clouds demonstrated
that the market-oriented Cloudbus architecture brings
benefits to user’s application performance in optimizing the
cost and execution time.

CloudAnalyst [6] is a graphical simulation tool built on
top of the CloudSim toolkit [7], developed by the Cloud
Computing and Distributed Systems (CLOUDS) laboratory
at university of Melbourne to model and analyze the
behavior of large social network applications. The Internet
traffic routing between the user bases located in different
geographic locations and the datacenters, is controlled in
CloudAnalyst by a service broker that decides which
datacenter should serve the requests from each user base
based on different routing policies. The current version of
CloudAnalyst implements three different routing policies,
which are network-latency-based routing, response-time-
based routing and dynamic-load-based routing. A
CloudAnalyst simulation case study of the social network
application Facebook [8] proved how load balancing
managed by a service broker optimizes the performance and
cost of large scale Cloud applications.

The EU funded OPTIMIS [9] project drives the
development of a toolkit to optimize the full service lifecycle
in the Cloud. Its proposed flexible multi-Cloud architecture
includes a service broker that allows a decision making
taking into account of many business aspects like trust, cost
and risk. Although the toolkit is still not implemented, the
conducted simulation experiments with real workload traces
prove the benefits from the use of cost and risk aspects as
elasticity policies in the decision making.

The work in [10] proposed an SLA-based Service
Virtualization (SSV) architecture, which is built on three
main components: a Meta-Negotiator responsible for
agreement negotiations, a Meta-Broker for selecting the
proper execution environment and an Automatic Service
Deployer for service virtualization and on-demand
deployment. The proposed service virtualization architecture
has been validated in a simulation environment based on
CloudSim using a real biochemical application as a case
study. The simulation results showed the performance gains
in terms of execution time from the SSV architecture
compared to a less heterogeneous Grid meta-brokering
solution.

Comparing the previous mentioned service brokering
approaches, their implementation on real production Clouds
is still ongoing and their current validations and evaluations
are mostly based on simulation methodologies. The
presented Cloud service broker framework in this paper is
also implemented based on a simulation approach. However,
its high-level generic architecture combined with the
integration of state of the art Cloud technologies and
standards prepares a realistic testbed for developers and
researchers to easily test and evaluate service brokers before
their deployment on real production Clouds. Moreover, the

framework implements all the value-added broker services
included in previous solutions like SLA negotiation, match
making, service deployment and monitoring.

III. FRAMEWORK ARCHITECTURE

As shown in Figure 1, the framework architecture is
composed of three main parts: the Client, the Cloud Service
Broker and the Cloud provider Intercloud Gateway. The
internal components of every architecture part and their
provided functionalities are discussed in the following
subsections.

A. Client

The Client provides Cloud users with an interactive user
interface to submit their service requests to the broker by
describing the functional and non-functional service
requirements. Moreover, the user is able to manage and
monitor the service after its deployment through a single
management console. If the requested service requires the
involvement of other services, a workflow engine could be
deployed to assist users in building and executing complex
Cloud services.

B. Cloud Service Broker

The Cloud Service Broker builds the heart part of our
implemented framework by offering attractive value-added
services to users. Its main task is to find the most suitable
Cloud provider while satisfying the users’ service
requirements in terms of functional and non-functional
Service Level Agreement parameters. Additionally, its high-
level architecture design allows the deployment and
monitoring of services on top of heterogeneous Cloud
providers. More detailed descriptions on the internal broker
design can be read in [11].

Figure 1. Framework architecture.

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

The different components of the broker and their roles
are briefly described below:

 Identity Manager: It handles the user authentication
and admission control.

 The SLA manager: It negotiates the SLA creation
and handles the SLA provisioning.

 Monitoring and Discovery Manager: It queries
resource information and monitors the SLA metrics.

 Match Maker: It selects the best Cloud providers for
user requests using different matching algorithms.

 Deployment Manager: It deploys the service on the
selected provider.

 Persistence: It stores broker specific data (e.g.,
monitoring, SLA templates and resources data).

 Abstract Cloud API: A standard abstract API used to
manage Cloud resources on different Cloud
providers.

C. Provider Intercloud Gateways

The Intercloud Gateway is the key component of our
framework hosted on the provider side to interface the
vendor Cloud platform. It acts as a standardized service
frontend for the Cloud provider and adds the needed
abstraction layer to interact with the broker. Its main role is
to provide the broker with common management and
monitoring interfaces while hiding the internal provider
policies.

IV. SIMULATION-BASED IMPLEMENTATION

We implemented a simulation environment for the
framework presented in the previous section. This allows us
to validate and evaluate a Cloud service broker without the
setup of a testbed with real Cloud providers, which is
extremely time- and cost-consuming. The implementation
details and the simulation flow are described in the next
subsections.

A. Simulation Environment

The simulation environment for the Cloud service broker
framework built on top of the CloudSim 2.2.1 simulation
toolkit is depicted in Figure 2. In the following subsections
we go through all the implemented components by
describing the used technologies and tools.

1) CloudSim Toolkit
CloudSim is a scalable open source simulation tool

offering features like support for modeling and simulation of
large scale Cloud computing infrastructures including
datacenters, brokers, hosts and virtual machines (VMs) on a
single host. In addition, the support for custom developed
scheduling and allocation policies in the simulation made
CloudSim an attractive tool for Cloud researchers.
Additional information about CloudSim can be found in
[12].

In our simulation environment CloudSim is used to
model large scale and heterogeneous Cloud providers. This
allows us, for the purpose of evaluation, to easily configure
the amount of Cloud provider resources accessible by the
broker. However, some CloudSim extensions are needed to

Figure 2. Simulation environment.

allow the dynamic creation, destroying and monitoring of the
VMs during simulation runtime and therefore to enable the
automatic service deployment in the broker.

2) Cloud Service Broker Implementation
Until the writing of this paper, most core broker services

including the Deployment Manager, the Match Maker and
the Monitoring Manager have been fully implemented. The
SLA Manager is currently under development. Furthermore,
two persistence classes named ServiceRegistry and
ProviderRegistry are used to store and query all the service
and provider data during the simulation.

While looking for an abstract Cloud API to access
different Cloud platforms, we found that the Open Cloud
Computing Interface specification (OCCI) [13] is the most
suitable for our framework. OCCI is an extensible
specification for remote management of Cloud
infrastructures, allowing the development of interoperable
tasks over heterogeneous Clouds. The current OCCI
specification, focusing on IaaS Cloud provisioning, defines
three abstract resource types, which are compute, storage and
network. All the operations on resources can be requested on
a REST manner over HTTP methods (GET, POST, PUT and
DELETE). The use of OCCI as abstract Cloud API allows
the broker to act as OCCI client against the Intercloud
Gateway, which runs as OCCI-server on the provider side.

The implemented Match Maker functionality of the
broker is extensible enough to permit the easy integration of
custom resource matching policies. In order to demonstrate

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

this feature, we implemented the following primitive match
making policies:

 RandomCloudMatcher: It selects randomly a
provider regardless of the users’ service
requirements.

 FunctinalSLACloudMatcher: It selects the provider
that fits all the functional SLA service requirements.

 LocationAwareCloudMatcher: It selects a provider
located at the same region given in the service
request.

 CostAwareCloudMatcher: It selects the cheapest
provider below a given cost limit.

 HybridCloudMatcher: It combines both functional
SLA and location-aware matching.

3) OCCI-based Intercloud Gateway
In order to simulate the Intercloud Gateway component

serving as standard service frontend for Cloud providers, we
implemented, based on the open source Java implementation
for OCCI called OCCI4JAVA [14], an OCCI frontend for
CloudSim. In this way, the entire communication between
broker and providers is forwarded to the native CloudSim
DatacenterBroker class through standard OCCI-interfaces. In
contrast to the OCCI specification, as CloudSim simulations
usually run on one host, the broker communicates with the
Intercloud Gateway through simple Java object calls instead
of using the defined REST-like methods. Furthermore, we
extended OCCI4JAVA with an OCCI monitoring mixin to
allow the broker to query resource properties like datacenter
static information (e.g., location, supported OS, CPU
architecture) and current monitoring metrics values from
CloudSim.

4) Request Generator
The simulation-based evaluation of the broker requires

the submission of real world service requests by the client to
achieve valuable evaluation results. Thus, we implemented a
service Request Generator helper class that continuously
generates VM provisioning requests similar to real Amazon
EC2 compute instances at a configurable rate. Some sample
VM requests are provided in the next section.

B. Simulation Flow

The needed simulation flow to process the incoming
client service requests to the service broker is illustrated by
the flow diagram in Figure 3.

The simulation is done as follows: In a first step,
CloudSim is initialized according to the desired simulation
scenario. Then, the Request Generator starts to generate
continuously VM provisioning service requests with a
variable request arrival rate. All the request and provider data
are maintained in the corresponding ServiceRegistry and
ProviderRegistry classes during the simulation. The broker,
after receiving the request, asks the Match Maker, if the
service can be deployed with the specified requirements. For
this, the Match Maker starts a match making process to find
the best suitable provider by matching the gathered resource
information from the Monitoring Manager with the service
requirements and by applying the pre-configured matching
algorithms. Upon the existence of a match, the service is

automatically deployed and the requested VM is created and
started on the selected CloudSim datacenter with the
modeled workload traffic (Cloudlet). During the execution
time, the VM status is queried periodically by the Monitoring
Manager until the VM is destroyed. If none of the providers
can be matched, the request is discarded by the broker.

All the aforementioned simulation steps are repeated
until reaching the preset maximum number of requests or
simulation time limit. In this case, the simulation is
terminated and the output results are displayed in the Client.

V. EVALUATION RESULTS

In this section we discuss first evaluation results acquired
using the previous implemented simulation framework. We
describe in the following subsections the experimental setup
and then present the evaluation results.

A. Experiemental Setup

In order to model heterogeneous Cloud providers, we
configured six heterogeneous CloudSim datacenters. Each
datacenter has a unique identifier (ID) and is located into a
different geographical zone. As shown in Table I, we define
six different compute zones presenting the six world
continents. Each zone has been given a unique code. The
detailed configuration for each datacenter is gathered in
Table II. The six datacenters have different pricing policies
and can support one of two defined operating systems
(Linux or Windows) and CPU architectures (x86 or x64).
Furthermore, each datacenter is made up of 50 hosts, which
are equally divided between two different host types. As can
be seen in Table III, the used hosts’ setup allows at least the

TABLE I. COMPUTE ZONES

Zone
North

America

South

America
Europe Asia Africa

Austr-

alia

Code 0 1 2 3 4 5

TABLE II. DATACENTERS CONFIGURATION

Name
Datacenter Configuration

ID OS Arch
Region

Code

Cost

$/hour

Provider_A 0 Linux x64 0 0.3

Provider_B 1000 Linux x64 0 0.45

Provider_C 2000 Windows x64 2 0.75

Provider_D 3000 Linux x64 2 0.55

Provider_E 4000 Linux x64 3 0.15

Provider_F 5000 Windows x86 5 0.04

TABLE III. HOSTS SETUP

Host Type
Host Configuration

CPU

MHZ

Cores

number

RAM

GB

Bandwidth

Gbit/s

Storage

TB

Xeon 3040 1860 2 4 1 1

Xeon 3075 2260 2 8 1 1

143Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. Simulation flow.

deployment of one VM instance per host.
All the experiments are done on a notebook with CPU

Intel Core i5 560M 2.67 GHZ, RAM 4 GB and using
Windows 7 operating system. The default CloudSim simple
VM provisioning policy is used as internal datacenter
scheduling policy. This policy allocates VMs to the host
with most free cores. In order to permit the dynamic sharing
of CPU cores among VMs, we configured CloudSim to use
a time-shared VM scheduler policy.

B. Initial Results

We conducted a first experiment to evaluate the broker
scalability. We continuously generate VM service requests
(at a random rate varying from 0 to 60 seconds) and let the
broker randomly select a provider from the six datacenters

and then deploy the VM on it. The generated VM requests
are equally distributed between four Amazon EC2 instance
types and require Linux as operating system and x64 CPUs.
Table IV gives the specific requirements of each VM type.

TABLE IV. VM REQUEST TYPES

VM Type
Host Configuration

CPU

GHZ

Cores

number

RAM

GB

Region

Code

Cost

$/hour

CPU high 2.5 2 1.7 0 0.17

large 2 2 7.5 2 0.34

small 1 1 1.7 3 0.085

micro 0.5 1 0.63 4 0.02

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE V. BROKER DEPLOYMENT PERFORMANCE (%)

Provider

number

Requests number

50 250 500 1000 1500 2000

1 98 78 44.4 28 22.1 17.8

3 100 81.6 78.6 61,8 44 36.3

6 100 98.3 82.8 78.6 77.2 62.1

While maintaining the number of datacenters constant,

we measured the deployment rate, which is defined as the
percentage of successfully deployed VMs, by varying the
request number from 50 to 2000. We repeated the same
experiment by decreasing the number of datacenters from six
to three and then to only one. The results presented in Table
V after one day simulation time, show that the broker
deployment rate scales well with the increasing number of
service requests and Cloud providers.

We conducted another experiment to evaluate the match
performance of the four implemented primitive matching
policies. We repeated the previous experiment using all six
datacenters and by changing each time the matching policy
and then we measured the match rate, defined as the
percentage of successfully matched requests.

As depicted in Figure 4, when using cost or location as
matching policy the match rate remains constant at 75 %, as
the requested cost limit and location for the micro VM
instance type usually has no match. However, with the
functional SLA and hybrid matching policies the match rate
decreases continuously with the rising service demand due to
the limited capacity of the provided datacenter resources.

VI. DISCUSSION

The previous experiments show that an increase of the
number of concurrent providers results in more resource
heterogeneity and therefore improves the broker match rate.
Furthermore, the results prove that the accuracy of the
queried monitoring information by the Monitoring Manager
heavily impacts the performance of the matching policy,
especially for the functional SLA matching.

In fact, the support of more than one SLA parameter in
the matching increases the customer satisfaction, but at the
cost of a low match rate. Thus, the matching algorithm
should optimize this trade-off by modeling the dependency
between the customer utility function and his requested
functional and non-functional SLA parameters, while
considering the current provider monitoring information.

Figure 4. Broker matching performance.

VII. CONCLUSIONS AND FUTURE WORKS

The deployment and evaluation of intermediate broker
services on production Clouds is today a challenging task
due to the lack of interoperability and the heterogeneity in
current Cloud platforms.

In this paper, we described the fundamental architecture
and the implementation details of a simulation-based
framework used to evaluate a Cloud service broker. We
presented also the first simulation results in evaluating the
broker scalability and match making policies.

In our future work, we will use the simulation framework
to investigate and evaluate more complex SLA-aware match
making algorithms to improve the broker matching
performance. Furthermore, we will investigate the use of real
workload traces instead of using generated requests to get
more realistic results.

REFERENCES

[1] Golobal Intercloud Technology Forum GICTF, “Use Cases
and Functional Requirements for Inter-Cloud Computing,”
White paper, August 2010.

[2] R. Buyya, S. Pandey, and C. Vecchiola, “Market-Oriented
Cloud Computing and the Cloudbus Toolkit,” in Large Scale
Network-centric Computing Systems, March 2012, in press.

[3] R. Buyya, R. Ranjan, and R. N. Calheiros, “InterCloud:
Utility-Oriented Federation of Cloud Computing
Environments for Scaling of Application Services,” in
ICA3PP 2010, 10th International Conference on Algorithms
and Architectures for Parallel Processing, pp. 13–31, 2010.

[4] “Aneka enterprise Cloud platform,” [online], March 2012,
http://www.manjrasoft.com.

[5] “Amazon Elastic Compute cloud EC2,” [online], March 2012,
http://aws.amazon.com/ec2.

[6] B. Wickremasinghe, R. N. Calheiros and R. Buyya,
“CloudAnalyst: A CloudSim-based Visual Modeller for
Analysing Cloud Computing Environments and
Applications,” in AINA 2010, 24th IEEE International
Conference on Advanced Information Networking and
Applications, pp. 446–452, April 2010.

[7] “CloudSim Toolkit 2.1.1,” CLOUDS Lab, Unversity of
Melbourne, [online], http://www.cloudbus.org/cloudsim/.

[8] Facebook, [online], March 2012, http://www.facebook.com.

[9] A. J. Ferrer, et al., “OPTIMIS: A Holistic Approach to Cloud
Service Provisioning,” in Future Generation Computer
Systems, vol. 28, pp. 66–77, January 2012.

[10] A. Kertesz, G. Kecskemeti and I. Brandic, “Autonomic SLA-
aware Service Virtualization for Distributed Systems,” in
PDP2011, 19th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, pp. 503–
510, February 2011.

[11] F. Jrad, J. Tao and A. Streit, “SLA Based Service Brokering
in Intercloud Environments,” in CLOSER 2012, 2nd
International Conference on Cloud Computing and Services
Science., pp. 76–81, April 2012.

[12] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose and R.
Buyya, “CloudSim: a Toolkit for Modeling and Simulation of
Cloud Computing Environments and Evaluation of Resource
Provisioning Algorithms,” in Journal of Sotware: Practice in
Experience, vol. 41, pp. 23–50, January 2011.

[13] “Open Cloud Computing Interface specification OCCI,”
OCCI-WG, [online], March 2012, http://www.occi-wg.org.

[14] “OCCI4JAVA JAVA-based OCCI Implementation,” [online],
March 2012, https://github.com/occi4java.

145Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

