
A Fast Virtual Machine Storage Migration Technique Using Data Deduplication

Kazushi Takahashi and Koichi Sasada
Graduate School of Information Science and Technology

The University of Tokyo
Dai-building 1301, Sotokanda 1-18-13,

chiyoda-ku, Tokyo, Japan 101-0021
Email: {kazushi, ko1}@rvm.jp

Takahiro Hirofuchi
National Institute of Advanced Industrial

Science and Technology (AIST)
Central 2, Umezono 1-1-1, Tsukuba, Japan 305-8568

Email: t.hirofuchi@aist.go.jp

Abstract—In this paper, we proposed a fast virtual machine
(VM) storage migration technique. Virtual machine storage
migration can migrate entire VM states to other hosts, includ-
ing VM disk images. It is widely used for cross-data-center
load management. However, VM disk images generally have
large file sizes (typically 1-30GB). Thus, storage migration was
time-consuming. To address this problem, we introduce the
deduplication technique into traditional VM storage migration.
We focused on the fact that it is possible to return VMs from
the new VM hosts. For example, a VM first migrates from
host A to host B. Next, the VM returns from host B to host A.
There will then be additional reusable disk pages in host A.
Consequently, to expedite the operation, we only return to host
A the disk pages that have been updated while in host B. We
implement this idea to a QEMU/KVM (kernel virtual machine).
To track the reusable disk pages, we developed a DBT (Dirty
Block Tracking) mechanism and a new diff format to store
the tracking result. In this paper, we discuss the design and
implementation of our prototype. Our technique successfully
reduced the transfer time for storage migration from 10
minutes to about 10 seconds in some practical workloads.

Keywords- Virtual Machine Monitor; VMM; VM Live Migration;
VM Storage Migration

I. I NTRODUCTION

Live migration involves the migration of virtual machines
(VMs) from one physical host to another even while the
VM continues to execute. Live migration has become a key
ingredient for data center management activities such as load
balancing, failure recovery, and system maintenance.

Recently, a new live VM migration mechanism has been
developed. Live VM (virtual machine) storage migration
allows us to move entire VM states, including VM disk
images to another physical machine without stopping the
VM. Traditional VM live migration mechanisms transport
only machine states such as CPU registers and NIC registers,
and require file sharing systems such as NFS [1] and iSCSI,
to share VM disk images between the source and destination
hosts. However, VM storage migration achieves VM live
migration without the file sharing systems.

VM storage migration enables flexible VM deployment
across physical computers. First, VM storage migration is
widely used in many data centers because it does not require
file sharing systems. For example, cross-data-center load

management, and VMs can evacuate quickly to other data
centers in other regions when the data center is unavail-
able due to maintenance. Second, we believe that storage
migration will be used for personal computer environments
in future. Some researchers [2] have studied virtual machine
migration for personal computing. However, since they used
traditional virtual machine migration, as opposed to storage
migration, the system forces users to use file sharing systems
that have network connections. However, by introducing
VM storage migration, VMs become portable without the
need for file sharing systems. VM storage migration has
significant potential for future computing.

However, VM disk images are large (typically 1-30GB
in size) and VM storage migration is time-consuming. Even
when using fast gigabit network environments, the transfer
time was significant. For example, a VM which has a disk
size of 20 GB requires about 10 minutes in a 1Gbps LAN
environment. This is unacceptable by users because it is
inconvenient.

We proposed a fast VM storage migration mechanism
usingdata deduplicationto reduce the transfer time and to
reduce the volume of transferred data. Our fast VM storage
migration works as follows: assume that two physical hosts,
A and B, are located in different regions. Initially, a VM
is migrated from source hostA to destination hostB.
Thereafter, the VM returns toA from B. We can then
leverage disk pages which were not updated while in host
B to reduce the transfer time and the volume of transferred
data. Although the initial transfer cost fromA to B is
large, VM migration will be faster in the subsequent round.
Consequently, we can achieve faster VM storage migration
than traditional VM storage migration techniques.

We implemented this idea to a QEMU/KVM (kernel vir-
tual machine) to develop a prototype. QEMU/KVM already
has a storage migration mechanism. Thus, we improved the
storage migration mechanism to support data deduplication
by tracking all disk-writing operations on the disk by the
VM, and to identify the disk pages that are reusable. To
track the disk pages that are reusable, we developed aDBT
(Dirty Block Tracking)mechanism and new diff format to
store the tracking result.

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

We examined our prototype on several machines which
have difference workloads. After developing our prototype,
we compared our storage migration with traditional storage
migration to determine the difference in the volume of data
transferred and time taken are reduced. Our result shows
the effectiveness of our deduplication mechanism for fast
storage migration.

This paper is based on our previous work which has
been presented at a local symposium in Japan (written in
Japanese) [3] In this paper, we have substantially improved
our previous work by conducting further experiments and
making more detailed discussions which is mentioned in
Section V.

II. RELATED WORK

There have been related work that enables VM live-
migration with VM disk images. Studies by Luo et al. [4]
and Bradford et al. [5] enable VM storage migration in Xen
[6] using their special back-end drivers, and they achieve
VM live-migration without a file sharing system. However,
they did not discuss re-using disk pages, and if there are
reusable disk blocks in the destination host, the hypervisor
can perform data deduplication to reduce the volume of data
and time. Therefore, their research is somewhat different
from ours. Hirofuchi et al. [7] implemented a NBD (Network
Block Device) protocol server. In this system, a user use
/dev/nbd0 to enable VM storage migration without the
file sharing system. When the user wants to boot a VM,
he executes the VM with/dev/nbd0 instead of a nor-
mal VM storage file. When VM storage migration occurs,
/dev/nbd0 copies the disk image to the destination host.
This is also different from our approach since we focus on
the application of data deduplication to reduce transfer data
and time while Hirofuchi did not discuss data deduplication
for VM storage migration, as is the case with our approach.

VMFlocks Project [8] proposed a data deduplication
mechanism for VM storage migration between data centers.
This project was implemented as a user-level file system
on a host OS. This user-level file system inspects VM disk
images without hypervisors, and it deduplicates data disk
blocks of VM disk images using fingerprint algorithms such
as SHA-1 [9] Our research is different in that we implement
our deduplication mechanism by modifying a hypervisor. On
the other hand, VMFlocks is implemented as a user-level file
system on a host OS. Our approach using the DBT within
a hypervisor is beneficial since it can leverage raw level
hardware commands such as the ATA TRIM command to
optimize disk pages, For example, garbage collection for
disk pages.

Sapuntzakis et al. [10] proposed several techniques for
speeding up virtual machine migration in various user sce-
narios. More specifically, they proposed a tree structured
based VM disk management system as follows: First, a
user creates a root VM storage image in a destination host.

Second, the user checks out a VM image from the root VM
storage image on a source host. Finally, the approach reduces
the amount of data transferred by exploiting similarities
between the transferred image on the source host and the
root image on the destination host. Our proposal is different
since we use a simpler approach in which the DBT records
dirty block information into a simple dirty map in order to
reduce the amount of transferred data.

Intel Research proposed ISR (Internet Suspend/Resume)
techniques [11] [12] ISR is a cold VM migration technique
and is explained as follows: First, before a VM transfer
takes place, a user suspends the VM. Next, the suspended
VM image that includes a VM disk image migrates to a
destination host. Finally, after migrating the VM image, the
VM resumes in the destination host. Kozuch et al. [11]
and Tolia et al. [12] proposed a VM storage migration
technique using Coda [13], which is a traditional distribution
file system. To enable VM storage migration, they store the
entire VM status (including VM disk images) to Coda, and
frequently download the VM status on the destination host
on demand. In fact, this approach supports VM cold migra-
tion. Coda has an excellent caching and reading prediction
mechanism. Thus, a user can eventually obtain the entire
VM status without having a network connection to a Coda
server. However, a constant network connection is required
to access the Coda file system until file caching is filled.
On the other hand, our approach only requires a temporary
network connection while transferring the VM. Also, our
approach supports VM live-migration.

VMware’s VMware Storage VMotion [14][15] supports
VM migration including VM file images. Unlike our ap-
proach, they do not leverage re-usable disk pages on a
destination host to reduce transferred data or time.

The Shrinker project [16] focuses on reducing the trans-
ferred data to minimize transfer time. To reduce the transfer
time, they share VM memory pages between a destination
host and a source host using a distributed hash table (DHT).
They focus on using memory pages to reduce migration time
while we focus on disk pages.

III. M OTIVATION

In this paper, we proposed fast VM storage migration
using data deduplication. As mentioned above, our idea
would be effective if VMs are transferred between specific
physical hosts.

In this section, we discuss the kinds of scenarios in which
VMs can be transferred between specific physical hosts,
and the kinds of situations for which our deduplication
mechanism would be suitable.

In today’s cloud computing environments, we believe that
the transfer of VMs between specific physical hosts is very
likely. Two scenarios are as follows:

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

VM

Computer A Computer B

Home On the way to work Office

Computer C

migration migration

VM’ VM’’

Figure 1. Live-migration for personal use.

A. VM storage migration for personal computer environ-
ment

Recently, the use of computing systems that provide VMs
instead of physical computers has increased. In this case,
users cannot use physical computers directly, but can use
virtual machines that are isolated from each other. We refer
to such a system as apersonal virtual machine system.
Personal VM systems are more convenient than traditional
physical computers and have the following benefits: First,
we can easily store entire VMs on portable storage devices
such as USB memory, and it is therefore portable. Personal
computer environments can therefore be used at any loca-
tion. Secondly, Personal VM systems can provide highly
secure computing, because backups of personal computing
environments can easily be made as virtual machine images.
If a VM is contaminated by a malicious program, the
computing environment can be quickly recovered using a
backup VM image. As previously mentioned, personal VM
systems have many benefits. Moka Five [17] has developed a
personal VM system which is widely used, and it is believed
that personal VM system usage will rapidly spread.

We believe that by introducing storage migration tech-
nologies to personal VM systems, we can realize more
convenient computing environments. Figure 1 shows an
image of VM storage migration in a personal VM system.
This image was inspired by Shivani Sud et al. [2], whose
work we summarized as follows:

Jane uses her home computer to check her email
and reviews a presentation she needs to deliver
later that morning. As the day progresses, she
seamlessly migrates her work environment from
her home PC to her mobile device before leaving
home. While traveling she continues reviewing the
presentation, adding notes as she rides the subway
to work. Soon it is time for her to dial into a
teleconference. On reaching her desk, her work
environment seamlessly migrates from her mobile
device to the office PC, and she can now use the
office PC to continue reviewing the presentation,
while she continues her teleconference from her
mobile device.

However, as mentioned above, VM disk images are large
(typically 1-30GB in size). Consequently, VM storage mi-
gration is time-consuming. For example, a 20GB disk image,
requires about 10 minutes in a gigabit LAN environment.
Traditional VM live-migration including storage migration
focuses mainly on reducing the down-time in extreme cases.
In fact, pre-copy and post-copy live-migration algorithms
are designed in an effort to reduce the down time. However,
in the assumed personal VM, it is important to minimize
the entire migration time as opposed to the down-time.
This is because for personal VM live-migration, the most
important thing is that when a user wants to migrate a
VM to another device, the VM moves immediately to the
another device without subsequent network communication.
Our fast storage migration using data deduplication can
reduce the entire transfer time, and is therefore considered
to be effective.

B. Follow the “moon” data center access model

To reduce the electricity bill and cooling cost in data
centers, some companies have proposed a strategy to deploy
server computers to regions in the world which have night-
fall. Using this approach, it is possible to maximize the use
of inexpensive off-peak electricity and lower temperatures.
By taking this approach, VMs are frequently deployed in
the data centers which are located in nighttime regions.
In fact, a VM may be migrated to a host to which it has
previously been deployed. By introducing our fast storage
migration, we can reduce transfer time. Additionally, in
today’s multi-tenant cloud computing environments, many
customers’ VMs are consolidated into a single data centers.
If many VMs concurrently migrate to a night-time data
center with their large disk images, the bandwidth of the
data center may become saturated. However, our fast storage
migration approach can reduce the volume of transferred
data for VM migrations.

As previously mentioned, in today’s cloud computing
environments, VM would alternate between particular phys-
ical hosts. Thus, our fast storage migration using data
deduplication is an effective way of achieving this goal.

IV. SYSTEM OVERVIEW

We implement a simple prototype for VM storage migra-
tion mechanisms using data deduplication. More precisely,
we implement DBT (Dirty Block Tracking) on a hypervisor.
DBT is a tracking module for the writing of a guest OS
on a VM. In order to achieve fast storage migration, DBT
works as follows : First, a VM disk image is divided into
fixed chunks using DBT. Next, DBT tracks all written disk
page blocks. DBT leverages a bitmap to manage the disk
pages that have been updated by the guest OS. Then, when
VM live-migration from a hostA to a hostB occurs, the
hypervisor executes normal slow VM-live migration if there
are no available reusable disk page blocks in the destination

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8 9 10

D
ir

ty
 s

e
c
to

rs

Days

0

200000

400000

600000

800000

1000000

1200000

0 1 2 3 4 5 6 7 8

D
ir

ty
 s

e
c
to

rs

Days

0

2000000

4000000

6000000

8000000

0 1 2 3 4 5 6 7 8

D
ir

ty
 s

e
c
to

rs

Days

(a) kazushi (b) leela

(c) aist-test-1

Figure 2. Three machines and three different workloads.

hostB. Entire VM disk images are translated. On the other
hand, if there are reusable disk pages in the destination host
B, only dirty pages which have been updated on the source
hostA are transferred. With this mechanism, we can achieve
our fast VM storage migration using data deduplication.

V. PRE EXAMINATION

To examine the efficiency of deduplication transfer for
storage migration, we investigate for several days the number
of disk pages that are updated in the average daily operation
of a computing environment. We examined three computers
which have different workloads. Three computer setups are
shown in Table I. With the exception of aist-test-1, all of
the machines are physical machines. Kazushi consisted of a
hard disk drive that is 300GB in size, and which executes
Ubuntu 11.04 (32bit) with the ext4 file system format. Leela
consisted of a solid state drive that was 160GB in size, and
which executes Windows 7 (32bit) with the NTFS format.
Aist-test-1 consisted of a hard disk drive that was 60GB in
size, and which executes CentOS 6.2 (64 bit) with the ext4
file system format.

Aist-test-1 is a server which works as a web-based group-
ware. Kazushi is a laptop computer which executed web-
browsing operations including the playback of YouTube
videos and text editing. Leela is also a laptop computer

Table I. Pre examination environments

Name Type Size OS FS

(a) kazushi HDD 300GB Ubuntu 11.04 (32bit) ext4

(b) leela SSD 160GB Windows 7 (32bit) NTFS

(c) aist-test-1 HDD 60GB CentOS 6.2 (64bit) ext4

which executed only web-browsing operations, including the
playback of YouTube videos.

Our results are shown in Figure 2. For all of the test
machines, we find that changes were made to only a few
disk pages in the entire physical disks. First, in the case
of kazushi, a maximum of only 0.49 GB disk space was
updated, out of 300 GB. This accounts for only 0.16% of
the 300 GB disk. A minimum of, only 0.25 GB of the 300
GB disk space was updated. This accounts for only 0.08% of
the disk. Secondly, in the case of leela, a minimum of only
0.49 GB of the 160 GB disk space was updated, accounting
for only 0.33% of the disk, while a maximum of only 3.14
GB of the 160 GB disk space was updated, accounting for
only 2.11% of the disk. Thirdly, for aist-test-1, a minimum
of only 0.01 GB of the 60 GB disk space was updated,
accounting for only 0.07% of the disk, while a maximum of
0.04 GB of the 60 GB disk space was updated, accounting
for only 0.31% of the virtual disk.

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

DBT (Dirty Block Tracking)

DirtyPageMap

write()

Virtual Machine

(Running)

diff image

On memory

QEMU

Source

11 00 22 00 22

DirtyPageMap

11 00 33 00 22

DBT (Dirty Block Tracking)

write()

Virtual Machine

(Standby)

On memory

DirtyPageMap

00 00 00 00 00

DirtyPageMap

diff image

11 00 11 00 11

QEMU

Destination

Figure 3. Our prototype system overview.

This examination shows that our deduplication transfer
mechanism for virtual machine storage migration is efficient.

VI. D ESIGN

In the previous section, we showed the deduplication
system for storage migration is efficient. Thus, we designed
a system for the deduplication of storage migration. An
overview of our system is shown in Figure 3.

1) Dirty Block Tracking:DBT is a mechanism that traces
entire disk pages written by a guest OS, and records the
tracking result into the dirty map structure. DBT within a
hypervisor hooks the writing by a guest OS. DBT simply
divides entire disk images at block boundaries, and allocates
8 bits of space for each block. This 8 bit space is updated
by DBT with a generation number, which is an identifier
for VMs. When a VM moves to another host by storage
migration, this value is increased. Consequently, we can
identify the disk pages that should be transferred when
storage migration takes place.

2) Diff Image Structure:Diff image is a new VM image
format that supports deduplication for VM storage migration
by managing the structured dirty map with DBT. The diff
image structure is shown in Figure 4. The diff image
consisted of G, which is the generation number, S, which
is the seed number, and the freeze flag, which indicates
whether or not the VM image is able to boot, and the dirty
page map, which indicates which blocks have been updated
by the guest OS. The generation number is increased when
the VM migrates to another host, and this number is initially
one. The seed number is a unique number which is allocated
when the disk image is created.

3) Migration Algorithm: The migration procedures are as
follows:

(a) When a diff disk image is created, the diff structure is
initialized. The seed number is a unique number, the
generation number is 1, the freeze flag is 0, and the
dirty page map is all zeros.

SEED : S

Generation : G

Freezed : freeze

DirtyMap: map

Diff disk

Image header

010101010010111110

101010110101011101

01111101010011…..

Figure 4. The structure of diff disk image.

(b) A guest OS writes to the disk. Using DBT, all writings
by the guest are tracked and recorded. The blocks
updated by the guest are tracked and recorded. The
recording is conducted by writing the generation num-
ber into the dirty page map.

(c) The guest OS migrates to a hostA. This is a slow stor-
age migration process because it is an initial transfer.
The generation number G is incremented when this
migration is completed.

(d) A hostB, which is the destination, acquires ownership
of the guest OS. Thus, the VM image in the hostA
is frozen, and it is temporarily not bootable.

(e) The guest OS writes to the disk in the hostB.
DBT records the disk pages that are updated in the
generation number G.

(f) The guest OS migrates the hostB to hostA. Now,
fast deduplication storage migration is possible. DBT
compares the generation number in the hostA with
generation numbers in the dirty map in the hostB.
If a generation number in the dirty map in hostB
is greater than the generation number G in hostA,
the disk block which corresponds to the generation
number in the dirty map is transferred.

A. Discussion

We also considered another approach to achieve data
deduplication for storage migration. In our prototype, we
proposed a simple method to track disk block writing with
dirty maps using DBT. On the other hand, other methods
using fingerprints such as SHA-1 [9] and Rabin-fingerprint
[18] are available. In fact, as in rsync [19], we can use
the Compare-by-hash[20], [21] method to achieve data
deduplication.

According to Jacob et al. [22], hand-optimized SHA-1
implementation, running on a single Intel Core-2 CPU core
is able to hash more than 270 MB of data per second, which
is almost enough to saturate the full write bandwidth of three
SATA disk drives. Thus, although DBT calculates SHA-1
hash when disks are written to by a guest OS, the guest OS

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

does not incur loss of speed.
However, our goal in this paper is to show that our dedu-

plication VM storage migration method is practical. Thus,
in this paper, we adopt a more simple method which uses
the dirty page map with generation numbers. As described
later, we believe that the use of SHA-1 hash has some side
effects. We now plan to develop a deduplication VM transfer
mechanism using SHA-1

VII. I MPLEMENTATION

We implement the previously mentioned DBT and the diff
format to Linux/KVM (QEMU) [23], [24] We divide entire
VM image files into chunks. DBT constructs a dirty page
map using an 8-bit space for each of the chunks. Currently,
for the bitmap, one chunk is 2,048 sectors, where one sector
is 512 bytes. This is a constant value for QEMU. A bitmap
that is in 4 Kbytes is generated for 4 GB. VM disk images.
Although a VM image that is 20 GB is generated, a bitmap
that is about 20 KB is generated. Thus, the bitmaps do not
place additional stress on the physical hard disk drive. This
bitmap is deployed in memory when the guest OS executes
on the VM. When the guest OS exits, the bitmap is updated
on the diff image.

Additionally, we implement two APIs to communicate
the dirty block information between the disk driver layer
and the live migration mechanism layer in QEMU, and to
increment the generation number when storage migration is
completed. QEMU implementation is a structured design,
For example, vmdk, qcow, and qcow2, which are formats
of the QEMU’s disk images, are updated as device drivers
in QEMU. In order to develop new QEMU disk formats,
developers implement only the specific handlers in QEMU.
Developers, who are desirous of adding new QEMU disk
image formats, can implement a new QEMU format by im-
plementing only the specific callback handlers. BlockDriver
structure in blockint.h source header file of QEMU defines
the callback handlers to implement QEMU disk image in
QEMU. We add two callback handlers to QEMU because
there are no APIs to increment the generation number and,
to communicate the dirty map between the disk driver layer
and live-migration implementation layer.

VIII. E VALUATION

We evaluate and analyze the impact of our deduplication
migration mechanism. First, we examine whether or not
writing to the disk has slowed. Secondly, we conduct mea-
surements for the speed and efficiency of the data transfer
using several machines which have different workloads.

A. Evaluation for the DBT cost

In this subsection, we show that DBT does not incur a
loss of speed by tracking the disk writing operations. Our
setup consisted of a ThinkPad X220 laptop computer that
was booted up with an Intel Core i5-2430M @ 2.40GHz,

0

5

10

15

20

25

30

35

40

1 3 5 7 9 1113151719212325272931333537394143454749

W
ri

ti
n

g
 s

p
e

e
d

 [
M

B
y

te
s/

se
c]

(h
ig

h
e

r
is

 b
e

tt
e

r)

Count of writing

DirtyTracking enabled

DirtyTracking disabled

Figure 5. The result of writing benchmark.

and which has 4 GB of memory. This machine is attached to
a Seagate 7200rpm HDD with a cache memory of 16 MB.

To realize the impact of DBT on the performance, we
compare two benchmark results: First, the write speed of
the diff format with DBT. Secondly, the write speed for the
raw-format, which is the primitive VM format for QEMU.
We measure only the write cost and not the read cost because
DBT only works with guest disk writing. We use UNIX dd
commands to measure the disk write cost. Using dd, we
write 1 MB blocks 100 and 50 times.

The evaluation result is shown in Figure 5. The x-axis
indicates the write speed in Mbytes/sec, and The y-axis in-
dicates the writing count. We find that the hypervisor without
DBT achieved 32.304 Mbytes/sec, and the hypervisor with
DBT achieved 29.656 Mbytes/sec. Because DBT leads to a
decrease in the write speed of only 8%, it is not thought to
be significant.

B. Migration speed with different workloads

In this subsection, using a series of benchmarks, we show
the speed and the efficiency of data transfer for migration.

We assume practical workloads as follows: First, a user
downloads an MS Office power point file, views, edits,
and saves the file. Secondly, the user downloads from a
Japanese literary website a literary creation “Kokoro” by
Souseki Natume, who is a famous Japanese scholar in the
field of Literature. The user then views, edits, and saves the
information. Next, the user views the video on YouTube with
a Firefox web-browser. Fourthly, the user downloads a 3 MB
PDF file and views it. We run these practical workloads on
both Windows 7 (32bit) and Ubuntu 11.04 (32bit) operating
systems. After each user performs these actions for five min-
utes on both virtual machines, we conduct our deduplication
procedure for both VM storage migration and normal VM
storage migration. Finally, we compare the times taken for
our deduplication storage migration and normal VM storage
migration.

The source host consists of a ThinkPad X60 laptop
computer booted with an Intel Core Duo CPU T2400 @ 1.83
G Hz with 2 GB of memory. The destination host consists

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Table II. Storage migration measurement result on Ubuntu 11.04 desktop (32bit)

No deduplication PDF Presentation YouTube Kokoro
Whole Migration Time (sec) 919.358 29.139 30.141 28.720 25.900
Transferred size (MBytes) — 101 104 111 90

Table III. Storage migration measurement result on Windows 7 Professional (32bit)

No deduplication PDF Presentation YouTube Kokoro
Whole Migration Time (sec) 991.044 89.028 68.892 78.450 86.703
Transferred size (MBytes) — 933 613 927 907

of a DELL LATITUDE D630 laptop computer booted with
an Intel Core 2 Duo T7300 @ 2.0 GHz with 2 GB of
memory. Both computers are connected in a 1 Gbps LAN
environment.

The result for Ubuntu 11.04 (32 bit version) is shown in
Table II. The longest migration time was 30.141 seconds
for the presentation benchmark. On the other hand, the
best migration time was 25.900 seconds for the Kokoro
benchmark. We found that our approach was able to reduce
the migration time. All of the benchmark results lasted about
10 minutes. However, they lasted only about 10 seconds
after introducing our approach. We also found that using
our method, the volume of transferred data had been reduced
from 20 GB to several hundreds of megabytes.

Next, the result for Windows 7 Professional (32 bit
version) is shown in Table III. When compared with the
result for Ubuntu, in the case of Windows, the number
of dirty disk blocks was larger. and the volume of data
that was transferred was also larger. The longest migration
time was 89.028 seconds for the PDF benchmark. On the
other hand, the best migration time was 68.892 seconds
for the presentation benchmark. Windows was shown to
generate a greater number of dirty disk blocks than Ubuntu.
Additionally, we found that the Presentation benchmark
consumed the most migration time in the case of Ubuntu
while the PDF benchmark consumed the most migration
time in the case of Windows. The best time in the case of
Ubuntu was 28.720 seconds for the YouTube benchmarks,
while for Windows, the best time was 68.892 seconds for
the presentation benchmark. All of the benchmarks results
in Windows achieved a migration time of about 1 minute.

It was found that the introduction of the deduplication
for storage migration led to greater efficiency. For all of
the benchmarks, we were able to achieve faster storage
migration than traditional storage migration techniques.

IX. FUTURE WORK

As mentioned above, we can use fingerprint algorithms
such as SHA-1 and Rabin fingerprint to deduplicate VM
disk pages. In fact, we divide the VM image files into
chunks, and calculate fingerprints for all chunks. VM images
are transferred, we can compare fingerprints in the source
VM image with those in the destination VM image to

exploit deduplicated VM disk blocks. This approach also
provides deduplication on local VM disk storage to reduce
the volume of local storage data. Although this approach
somewhat complicated, it is better than our bitmap approach.
Therefore, we will implement the deduplication system
using a fingerprint algorithm.

X. CONCLUSION

In this paper, we proposed a fast VM storage migration
technique using data deduplication. In the pre-examination
results, we show that data deduplication for fast VM is
an effective approach because only a few disk blocks are
usually updated in daily computing operations. Thus, we
implement a prototype that realizes fast VM storage migra-
tion using data deduplication. For all of the benchmarks,
we achieve storage migration that is faster than traditional
storage migration.

REFERENCES

[1] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck, “Network file system
(nfs) version 4 protocol,” 2003.

[2] S. Sud, R. Want, T. Pering, K. Lyons, B. Rosario, and
M. X. Gong, “Dynamic migration of computation through
virtualization of the mobile platform,” inMobiCASE, 2009,
pp. 59–71.

[3] K. Takahashi and K. Sasada, “A fast vm transport mechanism
that consider generations with disk dirty page tracking,” in
53th Programming Symposium. IPSJ, January 2011, pp. 37–
45.

[4] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun, and H. Chen,
“Live and incremental whole-system migration of virtual
machines using block-bitmap.” inCLUSTER’08, 2008, pp.
99–106.

[5] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg,
“Live wide-area migration of virtual machines including
local persistent state,” inProceedings of the 3rd international
conference on Virtual execution environments, ser. VEE ’07.
New York, NY, USA: ACM, 2007, pp. 169–179. [Online].
Available: http://doi.acm.org/10.1145/1254810.1254834

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,”SIGOPS Oper. Syst. Rev.,
vol. 37, pp. 164–177, Oct. 2003. [Online]. Available:
http://doi.acm.org/10.1145/1165389.945462

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

[7] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi,
“A live storage migration mechanism over wan for relocatable
virtual machine services on clouds,”Cluster Computing and
the Grid, IEEE International Symposium on, vol. 0, pp. 460–
465, 2009.

[8] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu,
“Vmflock: virtual machine co-migration for the cloud,”
in Proceedings of the 20th international symposium on
High performance distributed computing, ser. HPDC ’11.
New York, NY, USA: ACM, 2011, pp. 159–170. [Online].
Available: http://doi.acm.org/10.1145/1996130.1996153

[9] National Institute of Standards and Technology,FIPS
PUB 180-1: Secure Hash Standard, Apr. 1995, supersedes
FIPS PUB 180 1993 May 11. [Online]. Available:
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[10] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum, “Optimizing the migration of
virtual computers,” SIGOPS Oper. Syst. Rev., vol. 36,
pp. 377–390, December 2002. [Online]. Available: http:
//doi.acm.org/10.1145/844128.844163

[11] M. Kozuch, M. Satyanarayanan, T. Bressoud, and Y. Ke, “Ef-
ficient state transfer for internet suspend/resume,”Intellectual
Property, no. May, 2002.

[12] N. Tolia, N. Tolia, T. Bressoud, T. Bressoud, M. Kozuch,
M. Kozuch, and M. Satyanarayanan, “Using content address-
ing to transfer virtual machine state,” Tech. Rep., 2002.

[13] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, David, and C. Steere, “Coda: A highly available
file system for a distributed workstation environment,”IEEE
Transactions on Computers, vol. 39, pp. 447–459, 1990.

[14] VMware, Inc., “VMware Storage VMotion: Non-disruptive,
live migration of virtual machine storage,” http://www.
vmware.com/products/storage-vmotion/

[15] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai, “The
design and evolution of live storage migration in vmware
esx,” in Proceedings of the 2011 USENIX conference on
USENIX annual technical conference, ser. USENIXATC’11.
Berkeley, CA, USA: USENIX Association, 2011, pp.
14–14. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2002181.2002195

[16] P. Riteau, C. Morin, and T. Priol, “Shrinker: Efficient
Wide-Area Live Virtual Machine Migration using Distributed
Content-Based Addressing,” INRIA, Research Report RR-
7198, Feb. 2010. [Online]. Available: http://hal.inria.fr/
inria-00454727/en/

[17] MokaFive, “MokaFive Player,” http://www.moka5.com/

[18] M. O. Rabin, “Fingerprinting by random polynomials.” TR-
CSE-03-01, Center for Research in Computing Technology,
Harvard University, Tech. Rep., 1981.

[19] A. Tridgell and P. Mackerras, “The rsync algorithm,”
Australian National University, Department of Computer
Science, Technical Report TR-CS-96-05, Jun. 1996,
http://rsync.samba.org.

[20] J. Black, “Compare-by-hash: a reasoned analysis,”Proc 2006
USENIX Annual Technical Conference, pp. 85–90, 2006.
[Online]. Available: http://www.usenix.org/event/usenix06/
tech/full papers/black/black.pdf

[21] V. Henson and R. Henderson, “Guidelines for using compare-
by-hash,” 2005.

[22] J. G. Hansen and E. Jul, “Lithium: virtual machine
storage for the cloud,” inProceedings of the 1st ACM
symposium on Cloud computing, ser. SoCC ’10. New York,
NY, USA: ACM, 2010, pp. 15–26. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807134

[23] F. Bellard, “Qemu, a fast and portable dynamic
translator,” in ATEC’05: Proceedings of the USENIX
Annual Technical Conference 2005 on USENIX
Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2005, p. 41. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1247401

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“KVM: the Linux Virtual Machine Monitor,” in Proceedings
of the Linux Symposium, 2007, pp. 225–230.

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

