
The Optimal Resource Allocation Among Virtual Machines in Cloud Computing

Marjan Gusev
Faculty of Information Sciences and Computer Engineering

Ss. Cyril and Methodius University
Skopje, Macedonia

Email: marjan.gushev@finki.ukim.mk

Sasko Ristov
Faculty of Information Sciences and Computer Engineering

Ss. Cyril and Methodius University
Skopje, Macedonia

Email: sashko.ristov@finki.ukim.mk

Abstract—Virtualization is a key technology for multi-tenant
cloud computing enabling isolation of tenants in one or
more instances of virtual machines and sharing the hardware
resources. In reality, modern multi-core multiprocessors also
share the last level cache among all cores on one chip. Our goal
will be to enable an optimal resource allocation by avoiding
cache misses as much as possible, since this will lead to per-
formance increase. In this paper, we analyze the performance
of single and multi-tenant environments in cloud environment
installed on a single chip multi core multiprocessor with
different resource allocation to the tenants. We realize a series
of experiments with matrix multiplication as compute intensive
and memory demanding algorithm by varying the matrix size
to analyze performance behavior upon different workload and
variable cache requirements. Each experiment uses the same
resources but it is orchestrated differently. Although one might
think that virtualization and clouds include software overhead,
the results show how and when cloud computing can achieve
even better performance than traditional environment, both in
a single-tenant and multi-tenant resource allocation for certain
workload. The conclusions show that there are regions where
the best performance in the cloud environment is achieved
for cache intensive algorithms allocating the resources among
many concurrent instances of virtual machines rather than in
traditional multiprocessors using OpenMP.

Keywords-Cache memory; Cloud Computing; Matrix Multipli-
cation; Shared Memory; Virtualization.

I. INTRODUCTION

Cloud Service Providers (CSPs) rent on-demand scalable
hardware resources. The customers can use CPU, memory,
and storage with arbitrary size and type in virtual ma-
chines (VMs) whenever they need. This flexibility results
in dynamic resource workload. CSPs foster it even more by
consolidating VMs on smaller number of physical servers
in order to save power consumption. In such dynamic
environment, customers’ VMs are not totally isolated. They
share same physical resources, especially CPU, memory
and network. This paper focuses on CPU utilization when
sharing among many concurrent VMs.

Cache memory is the CPU’s key element in compute
and memory intensive algorithms. Due to the performance
impact of the cache, we define these algorithms as cache
intensive algorithms. Matrix multiplication is an example
of such algorithm that today’s computations are using.

This algorithm is compute intensive O(n3) and memory
demanding O(n2).

Producers of modern multiprocessors must adopt caches
for cloud computing especially in the multitenant, multipro-
cess and multithreading dynamic environment. For example,
Intel introduces Intel Smart Cache [1] to improve the perfor-
mance. Sharing the last level cache among multiprocessor’s
cores allows each core dynamically use the cache up to
100%. This technology can be used to increase the overall
performance in cloud computing multi-tenant environment.
Machina and Sodan in [2] developed a model that describes
the performance of the applications as a function of allocated
cache size, even if the cache is dynamically partitioned.

The fundamental driver for Multi-tenancy is Virtualiza-
tion. It introduces additional layer and can provide better
performance. The cache intensive algorithms run faster in
distributed than shared cache memory virtual environment.
Gusev and Ristov in [3] found that matrix multiplication
algorithm can run faster in virtual environment compared
to traditional, both by sequential and parallel executions
(for problem sizes that fit in distributed L1 and L2 caches
correspondingly). However, virtualization produces huge
performance drawback for shared cache memory, even if
it is dedicated per chip in multi chip multiprocessor. In
this paper, we continue the performance analysis in cloud
solution, compared to both virtual environment in guest op-
erating system and traditional operating system. We expect
that there are regions where the experiments will prove
that cloud virtualization produces better performance and
achieves better performance.

Koh et al. [4] describe the phenomenon that running the
same VM on the same hardware at different times among
the other active VMs will not achieve the same performance.
They predict the performance scores of the applications
under performance interference in virtual environments. VM
granularity has a significant effect on the workload’s perfor-
mance for small network workload [5].

The experiments performed in this paper address several
VM instances in a cloud system using different number of
CPUs (assuming all cores are utilized). The introduction
of a virtualization in the cloud is supposed to decrease
the performance [6]. Our plan is to check validity of the

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. Test Cases in Traditional Environment

following hypotheses:

• Is there a region where cloud environment achieves
better performance than traditional and virtual environ-
ment, and

• What is the performance of cloud computing with
multi-VM environment in comparison to allocation of
all resources to only one VM?

The rest of the paper is organized as follows: The testbed
for three workload environments is described in Section II.
Sections III and IV present the results of the experiments
performed to determine the best environment for cache
intensive algorithm and best resource allocation among
process, threads and tenants correspondingly, while Section
V presents the performance when the algorithm is executed
sequentially on a single core. The results of the cache misses
analysis are presented in Section VI to prove the causes for
better / worse performance in L2 / L3 region for traditional
and cloud environment. The final Section VII is devoted to
conclusion and future work.

II. THE WORKLOAD ENVIRONMENTS

This section describes the testing methodology and defines
the workload environments for experiments. Matrix multi-
plication algorithm is used as test data for both sequential
and parallel execution. For all different environments, we
plan to use the same hardware and operating system. The
only difference is inclusion of virtual machines and enabling
cloud environment.

A. Traditional Environment

This environment consists of Linux Ubuntu Server 11.04
installed on Dell Optiplex 760 with 4GB DDR2 RAM and
Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz [7].
The multiprocessor has 4 cores, each with 32 KB 8-way
set associative L1 cache dedicated per core and 8-way set
associative L2 cache with total 6 MB shared by 3MB per
two cores.

Three different parallel executions are defined as test cases
1.1, 1.2 and 1.3 in this environment, as depicted in Fig. 1.
The sequential execution is determined as test case 1.4.

1) Case 1.1: 1 process with 4 (max) threads on total 4
cores: In this test case the matrix multiplication is executed
by one process using 4 parallel threads as presented in
Fig. 1 a). Each thread runs on one core multiplying the whole
matrix AN ·N and a column block of matrix BN ·N/4.

2) Case 1.2: 2 different processes with 2 threads per
process on total 4 cores: In this test case two concurrent
processes execute matrix multiplication. Each process uses
two parallel threads as shown in Fig. 1 b). Each process
multiplies the whole matrix AN ·N and a half of matrix
BN ·N/2 divided vertically. Each thread multiplies matrix
AN ·N and half of BN ·N/2, i.e., BN ·N/4.

3) Case 1.3: 4 different processes with 1 thread per
process (sequentially) on total 4 cores: In this test case
4 concurrent processes execute matrix multiplication as de-
picted in Fig. 1 c). Each process multiplies the whole matrix
AN ·N and a quarter of matrix BN ·N/4 divided vertically.

4) Case 1.4: 1 process sequentially on 1 core: In this test
case, one process executes matrix multiplication sequentially
on one core, i.e., three cores are unused and free. The process
runs on one core multiplying the whole matrix AN ·N with
the whole matrix BN ·N .

B. Virtual Environment

This environment consists of the same hardware and
operating system as described in Section II-A. Additionally
new VM is installed with same Linux Ubuntu Server 11.04
using VirtualBox and Kernel-based Virtual Machine virtu-
alization standard (KVM). All available resources (4 cores)
are allocated to the only one VM for parallel execution and
only one core for sequential execution.

Two test cases are performed in this environment one with
parallel and the other with sequential execution.

1) Case 2.1: 1 VM with 1 process with 4 (max) threads on
total 4 cores: In this test case one process executes matrix
multiplication by 4 parallel threads, all in the VM. Each
thread runs on one core multiplying the whole matrix AN ·N
and a column block of matrix BN ·N/4.

2) Case 2.2: 1 VM with 1 process sequentially on total 1
core: In this test case one process executes matrix multipli-
cation sequentially in VM on one core, i.e., three cores are
unused and free. The process runs on one core multiplying
the whole matrix AN ·N with the whole matrix BN ·N .

C. Cloud Virtual Environment

Cloud virtual environment is developed using OpenStack
Compute project [8] deployed in dual node as depicted in
Fig. 2. KVM virtualization standard is also used for VMs.
One Controller Node and one Compute Node are used.

This cloud virtual environment consists of the same hard-
ware and operating system as described in Section II-A for
Compute Node server. Virtual Machine described in Section
II-B is instantiated in one or more instances for the four test
cases that are performed in this environment.

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 2. OpenStack dual node deployment [9]

Figure 3. Test Cases in Cloud Virtual Environment

Three test cases 3.1, 3.2 and 3.3 are performed as parallel
executions in this environment depicted in Fig. 3. The test
case 3.4 for sequential execution is defined as one instance
of VM with one sequential process.

1) Case 3.1: 1 instance of VM with 1 process with 4 (max)
threads per process on total 4 cores: This case is similar as
cases 1.1 and 2.1, i.e., one instance of VM is activated in
the Cloud allocated with all 4 cores as depicted in Fig. 3 a).
One process in VM executes matrix multiplication with 4
paralllel threads. Each thread runs on one core multiplying
the whole matrix AN ·N and a column block of matrix
BN ·N/4.

2) Case 3.2: 2 concurrent instances of VM with 1 process
per VM with 2 threads per process on total 4 cores: In
this test case two concurrent instances of same VM are
activated in the Cloud allocated with 2 cores per instance
as depicted in Fig. 3 b). One process in each VM executes
matrix multiplication concurrently with 2 parallel threads per
process (VM). Each process (in separate VM) multiplies the
whole matrix AN ·N and a half of matrix BN ·N/2 divided
vertically. Each thread multiplies matrix AN ·N and half of
BN ·N/2, i.e., BN ·N/4.

3) Case 3.3: 4 concurrent instances of VM with 1 process
per VM with 1 thread per process (sequentially) on total 4
cores: In this test case, 4 concurrent instances of same VM
are activated in the Cloud allocated with 1 core per instance
as depicted in Fig. 3 c). Each process (in separate VM)

multiplies the whole matrix AN ·N and a column block of
matrix BN ·N/4.

4) Case 3.4: 1 instance of VM with 1 process sequentially
on total 1 core: This case is similar as test case 3.1. The
difference is that only one core is dedicated to the only VM,
i.e., three cores are unused and free. The process runs on
one core multiplying the whole matrix AN ·N with the whole
matrix BN ·N .

D. Test Goals

The test experiments have two goals:
• The first goal is to determine if the additional virtu-

alization layer in cloud drawbacks the performances
compared to traditional or virtualized operating system
when all the resources are dedicated to only one tenant
and multi-threading is used.

• The second goal is to determine which resource allo-
cation among tenants and threads provides best perfor-
mance in the traditional environment and in the cloud.

Different sets of experiments are performed by varying
the matrix size changing the processor workload and cache
occupancy in the matrix multiplication algorithm.

III. TRADITIONAL VS VIRTUAL VS CLOUD
ENVIRONMENT PERFORMANCE WITH ALL RESOURCES

ALLOCATED

This Section presents the results of the experiments
performed on three workload environments when all the
resources (CPU cores) are rented to one tenant, i.e., test
cases 1.1, 2.1 and 3.1 as described in Section II.

Fig. 4 depicts the speed in gigaflops that matrix multipli-
cation achieves for different matrix size N when executing
one process concurrently using 4 threads on 4 cores on three
same hardware resources, but different system environments
as described in Section II. The curves are identified by V(4)T
for traditional environment, V(4)V for environment with
virtual and V(4)C with cloud environment. Fig. 5 shows only
the differences of achieved speeds in Fig. 4 using relative
presentation of the ratio to the default speed value obtained
by traditional environment.

Two regions with different performance for all three test
cases are clearly depicted in Fig. 4; the left one with higher
speed and the right one with lower speed. The first region is
the L2 region as defined in [3] (the region for such matrix
size N that will enable storage of all memory requirements
in L2 cache and avoid generation of cache misses for reusing
the same data on L2 level). The second region is the region
where the matrices can not be stored completely in the L2
cache and many L2 cache misses will be generated due to
re-using of data, but memory requirements will fit in the L3
cache (if it exists). This region is called the L3 region. We
must note that those matrices that fit in L1 region are too
small to produce higher speed.

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 4. Speed comparison for traditional / virtual machine allocated
with all hardware resources (4 threads)

Figure 5. Relative speed comparison for Fig. 4.

Analyzing the performance by comparing the three curves
in figures 4 and 5, we can conclude that cloud virtualization
performs the algorithm better than other two environments
in the L2 region. Virtualization also performs better than
traditional environment in the same L2 region, but produces
worse performance in points where performance drawbacks
appear due to cache set associativity described in [10]. Cloud
and traditional environments provide similar performance
in L3 region, i.e., shared main memory, much better than
virtual environment. The conclusion is that in this region
virtualization provides the worst performance and cloud
environment achieves the best performance.

Another important conclusion is the fact that the speed
increases in the L2 region where the cache memory is
dedicated per core (group of 2 cores) for virtual and cloud
environments. However, the speed decreases in the shared
memory L3 region when matrix size N increases demanding
more memory requirements, generating higher cache miss
penalty and increasing the overall memory access time.

Based on results of these experiments, we can conclude
that cloud virtual environment achieves better performance
compared to traditional environment for cache intensive

Figure 6. Speed comparison for traditional machine allocated with different
resources per thread

algorithms in the L2 region using dedicated L2 cache per
core and shared L3 cache and main memory. Section VI
describes the causes for this phenomenon.

IV. MULTIPROCESS, MULTITHREAD AND MULTITENANT
ENVIRONMENT PERFORMANCE

This section presents the results of the experiments per-
formed on traditional and cloud workload environment when
the resources (cores) are shared among processes, threads
and tenants in different ways.

A. Multiprocessing and Multithreading in Traditional Envi-
ronment

This Section presents the results of the experiments that
run test cases 1.1, 1.2 and 1.3 described in Section II,
i.e., different resource allocation per process in traditional
environment.

The achieved speed for the matrix multiplication algo-
rithm is presented in Fig. 6 in gigaflops for different matrix
size N executing with 1, 2 and 4 processes using total 4
threads on all 4 cores on the same traditional environment.
By V(1x4)T, we denote the results obtained for environment
defined in the test case 1.1, V(2x2)T the test case 1.2 and
V(4x1)T the test case 1.3.

The same two regions (L2 and L3) are depicted in Fig. 6
identified by different speed performance for all 3 test cases.

The relative ratio of achieved speeds in comparison to
the traditional environment defined in test case 1.1 with 1
process and 4 parallel processes is presented in Fig. 7.

Comparing the obtained curves in figures 6 and 7 we can
conclude that environment for test case 1.3 is the leader in
the speed race in front of case 1.2 and 1.1 for the L2 region.
All test cases provide similar performance in the L3 region
where the best performance is achieved by test case 1.3.

The fact that the speed is almost linear in the L2 region
where cache memory is dedicated per core (group of 2
cores) is also an important conclusion. However, the speed
decreases for all 3 test cases in the shared memory L3 region

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 7. Relative speed comparison for Fig. 6.

when the matrix size N is increased and higher cache miss
penalty is generated.

We can conclude that dividing the problem in separate
processes is the best solution for cache intensive algorithms
in the L2 region. The OpenMP handles better in the L3
region by allocating all the resources to one process that
executes concurrently with maximum number of threads
equal to the number of cores.

B. Multi-tenant / Multi-threading in Virtual Cloud Environ-
ment

This section presents the results of the experiments that
run test cases 3.1, 3.2 and 3.3 described in Section II
with different resource allocation per tenant in cloud virtual
environment.

The speed achieved for the matrix multiplication algo-
rithm is presented in Fig. 8 for different matrix size N of
the matrix multiplication executing on one, two and four
VM using total 4 threads on all 4 cores on the same cloud
virtual environment. The curves are identified by V(4)C for
test case 3.1, V(2x2)C for test case 3.2 and V(4x1)C for test
case 3.3. The relative differences to the default speed V(4)C
are presented in Fig. 9.

Fig. 8 presents that the same two regions L2 and L3 can
be identified by different performance for all 3 test cases.

Analyzing the performance behavior presented in figures 8
and 9 we can conclude that the environment defined by test
case 3.3 is the leader in the speed race in front of the test
cases 3.2 and 3.1 for the left part of the L2 region, and the
environment for test case 3.2 is the leader for the speed race
in front of the test cases 3.3 and 3.1 in the right part of the
L2 region. All test cases provide similar performance in the
L3 region with test 3.1 as a leader.

We can also conclude that the speed increases in the L2
region where cache memory is dedicated per core (group of
2 cores) for all three test cases. However, the speed decreases
for all test cases in the shared memory L3 region when the
matrix size N is increased enough and higher cache miss

Figure 8. Speed comparison for virtual machine(s) in cloud allocated with
different resources per machine and per thread

Figure 9. Relative speed comparison for Fig. 8

penalty is generated increasing the overall memory access
time.

Dividing the problem in separate concurrent VMs is the
best solution for cache intensive algorithms in the L2 region
for dedicated L2 caches. The best solution for the L3 region
with shared main memory is to allocate all the resources
to one process (VM) to be executed concurrently with
maximum threads as number of cores.

V. TRADITIONAL VS VIRTUAL VS CLOUD
ENVIRONMENT PERFORMANCE FOR SEQUENTIAL

EXECUTION

This section presents the results of the experiments
performed on three workload environments for sequential
execution, i.e., test cases 1.4, 2.2 and 3.4 as described in
Section II.

The achieved speed for execution of the matrix multipli-
cation algorithm is shown in Fig. 10. The figure depicts
the speed in gigaflops for different matrix size N when
executing one process sequentially on one core on three
different system environments as described in Section II. The
curves are identified by V(1)T for traditional environment,

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 10. Speed comparison for sequential execution in the three
environments

Figure 11. Relative speed comparison for Fig. 10.

V(1)V for environment with virtual and V(1)C with cloud
environment.

The performance analysis of the curves in figures 10 and
11 shows that cloud virtualization achieves better perfor-
mance for the algorithm execution in the L2 region. Virtu-
alization also performs better than traditional environment
in the same L2 region. Cloud and traditional environments
provide similar performance in the L3 region, better than
virtual environment. The conclusion is that in this region
virtualization provides the worst performance and cloud
environment the best performance.

VI. CACHE MISS ANALISYS

This section presents the results of the experiments re-
alized using Valgrind [11] to prove why the algorithm
runs better in cloud environment in L2 region and runs
better in traditional environment in L3 region. L1 and L2
cache misses are analyzed for both L2 and L3 regions for
sequential execution in traditional and cloud environment.
Table VI presents the results of these experiments. L1DT
and L1DC identifies the number of L1 data cache misses
for traditional and cloud environment correspondingly, and

Figure 12. Relative comparison for L1 data cache misses

L2DT and L2DC for the number of L2 data cache misses
for both environments correspondingly.

Table I
NUMBER OF L1 AND L2 DATA CACHE MISSES IN CLOUD AND

TRADITIONAL ENVIRONMENT IN SOME POINTS IN L2 AND L3 REGIONS

N L1DT L1DC L2DT L2DC
100 145,572 142,344 11,553 9,176
200 1,039,954 1,036,676 22,807 20,432
300 3,448,511 3,445,020 41,580 48,158
320 33,600,548 33,597,359 46,329 72,598
340 5,011,438 5,006,561 51,501 83,472
360 5,941,929 5,936,645 60,225 94,021
380 7,093,110 7,087,590 100,675 106,888
400 68,438,786 68,435,517 113,818 119,676
500 113,364,842 113,385,000 187,027 666,141
600 244,545,355 244,541,890 765,609 27,234,248

A. L1 Data Cache Misses

The relative ratio of L1 data cache misses in comparison
to the traditional environment is depicted in Fig. 12. We can
conclude that cloud environment achieves smaller number of
L1 data cache misses than the traditional environment in the
L2 region, and comparable number of L1 data cache misses
in the L3 region.

B. L2 Data Cache Misses

The relative ratio of L2 data cache misses in comparison
to the traditional environment is depicted in Fig. 13. We can
conclude that cloud environment achieves smaller number
of L2 cache misses than the traditional environment in the
L2 region, but much more than traditional environment in
the L3 region.

VII. CONCLUSION AND FUTURE WORK

Several experiments including sequential and parallel ex-
ecutions are performed with different resource allocation
in traditional, virtual and cloud environments on the same
multiprocessor. The testing methodology addresses each
environment with full utilization to all CPU cores with

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 13. Relative comparison for for L2 data cache misses

different techniques: mono-process with multi-threading,
multi-processes with multi-threading and multi-processes
with single threads.

Cache intensive algorithm is the algorithm which is com-
putationally intensive and memory demanding, i.e., utilizes
the cache with data reuse to perform several computations.
Simple matrix multiplication algorithm is used for sequential
execution and 1D blocking matrix B for parallel execution
to efficiently utilize cache performance. Our goal is not to
create a new algorithm which exploits super linear speedup
in cloud environment, but to examine the cache memory
usage phenomenon and its performance impact in cloud.

The conclusions brought from the experiments performed
in this paper are summarized to the impact of the resource
allocation. Dividing the algorithm to parallel cores enables
usage of more L1 and L2 cache for parallel version in
comparison to the traditional environment, phenomenon ex-
plained in [3] for L1, L2 and L3 regions for multiprocessors
using shared L2 cache and distributed L1 cache.

The experiments performed in this paper address several
virtual machine instances in a cloud system using different
number of CPUs (assuming all cores are utilized). Each
experiment orchestrates the CPU cores differently. The con-
tribution of the paper can be summarized as:

• The experiments prove that there is a region (L2 region)
where cloud environment achieves better performance
than traditional and virtual environment, both for par-
allel and sequential process execution, and

• The experiments prove that cloud computing provides
better performance in a multi-VM environment, rather
than allocating all the resources to only one VM.

The best resource allocation for traditional environment
for cache intensive algorithms is the usage of multiple
processes with single threads. Multiple VMs with single
threads is the best resource allocation for cloud environment.
Comparing the environments, cloud computing provides the
best performance.

Future multiprocessors will have more cores and cache on
chip with different cache types and results of this research
will have higher impact. Our plan for further research is
to continue with performance analysis of cloud computing
on different hardware and cloud platforms with different
hypervisors to analyze CPU behavior with different cache
organization and the best platform for cache intensive al-
gorithms. Experiments with MPI for inter VM instance
communication are planned as future research.

REFERENCES

[1] Intel. Intel smart cache. [retrieved: May, 2012].
[Online]. Available: http://www.intel.com/content/www/us/
en/architecture-and-technology/intel-smart-cache.html

[2] J. Machina and A. Sodan, “Predicting cache needs and
cache sensitivity for applications in cloud computing on
cmp servers with configurable caches,” in Proceedings of the
2009 IEEE International Symposium on Parallel&Distributed
Processing, ser. IPDPS ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2009.5161233

[3] M. Gusev and S. Ristov, “Matrix multiplication performance
analysis in virtualized shared memory multiprocessor,” in
MIPRO, 2012 Proc. of the 35th Int. Convention, 2012, pp.
264–269.

[4] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and
C. Pu, “An analysis of performance interference effects in
virtual environments,” in Performance Analysis of Systems
Software, 2007. ISPASS 2007. IEEE International Symposium
on, april 2007, pp. 200 –209.

[5] P. Wang, W. Huang, and C. Varela, “Impact of virtual machine
granularity on cloud computing workloads performance,” in
Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on, oct. 2010, pp. 393 –400.

[6] B. Xiaoyong, “High performance computing for finite element
in cloud,” in Future Computer Sciences and Application
(ICFCSA), 2011 International Conference on, June 2011, pp.
51 –53.

[7] cpu world. Intel(r) core(tm)2 quad cpu q9400. [retrieved:
May, 2012]. [Online]. Available: http://www.cpu-world.com/
sspec/SL/SLB6B.html

[8] Openstack. Openstack compute. [retrieved: May, 2012].
[Online]. Available: http://openstack.org/projects/compute/

[9] ——. Openstack dual node. [retrieved: May,
2012]. [Online]. Available: http://docs.stackops.org/display/
documentation/Dual+node+deployment

[10] S. Ristov and M. Gusev, “Achieving maximum performance
for matrix multiplication using set associative cache,” in Next
Generation Information Technology (ICNIT), 2012 The 3rd
International Conference on, 2012, pp. 542–547.

[11] Valgrind. Valgrind. [retrieved: May, 2012]. [Online].
Available: http://valgrind.org/

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

