
Controlling Data-Flow in the Cloud

Mandy Weißbach and Wolf Zimmermann
Institute of Computer Science, University of Halle

06120 Halle (Saale), Germany
Email: {weissbach, zimmermann}@informatik.uni-halle.de

Abstract—A big obstacle for using cloud services is that
users have no control over the locations where their data
are stored or processed, respectively. This paper presents a
program analysis approach that enables clients to negotiate
services with undesired locations. Clients may only use services
that guarantee not to use (directly or indirectly) services on
undesired locations for processing or storing the clients’ data.
In order to increase trust in the answers given by services
during the negotiation process, a cryptographic approach
similar to Web page certification is proposed. We show that
a static data-flow analysis combined with a cryptographic
approach ensures that clients’ data do not reach undesired
locations in the cloud.

Keywords- data-flow; service-level agreement; cloud security.

I. INTRODUCTION

One major obstacle in using cloud services is that clients
have no control where their data are being stored and
processed. National data protection laws may require from
clients to satisfy some standards. For example, EU-directives
imply that it is illegal to pass personal data to environments
where the access to data cannot be controlled [1]. Recently,
there is an even stronger proposal [2]. This may apply
towards storing data as well as to the results from processing
data. However, if cloud servers located at different locations,
they need to obey national laws on the server’s location, and
these might be rather different than the location of the cloud
users and therefore there might be unauthorized access to
clients’ data that might be legal in the cloud servers country.

Unfortunately, encryption of data is only a solution when
data are just stored (see, e.g., [3]), but it is currently not
a solution when they are being processed [4] (some work
on directly processing encrypted data exist, but it is just
at the beginning and it is not clear whether this research
will be successful at the end). Therefore, it is crucial that
cloud service users can require that their data are stored
in certain locations or exclude some locations for storing
and processing their data. But, cloud service providers
themselves prefer where to store the data of the service
users. Even worse, they may use other cloud services which
themselves may use other services and so on. Thus, it seems
almost impossible to control where data are processed and
stored. Thus, several authors see this issue as one of the
major challenges in cloud computing [5], [6], [7].

In this paper, we propose a service-level agreement ap-
proach to ensure that the data of cloud service users are not

processed or stored at undesired locations. Typical service-
level agreement (SLA) approaches such as, e.g., reliability
or response time can be measured by service users. If the
chosen service violates its assured service quality, the service
user is enabled to use alternative services. However, the
problem in this work has different characteristics: (i) it is not
measurable whether data are not being stored and processed
at undesired locations, (ii) a violation cannot be observed
by service users, and (iii) if a cloud service violates directly
or indirectly the SLA, there already is a possible threat for
the service user, i.e., the damage is sustained. Thus, service
violations in the context of this work should be avoided, and
service users have to trust the agreement.

We tackle the problem of avoiding storing or processing
data at undesired location by data-flow analysis. In par-
ticular, this analysis ensures that either data do not leave
the cloud server hosting the cloud service or the data
are only transferred (possibly in processed form) to cloud
services ensuring that the data received are neither stored
nor processed at undesired locations. This approach enables
the cloud service to provide the correct agreement. However,
a malicious service may give the wrong answer. We propose
cryptographic methods analogous to web page certification
in order to increase the trust into the negotiated service-level
agreement.

The paper is organized as follows: an example of a service
model is provided and explained in Section II. In Section
III, a data-flow analysis with respect to the given example is
done. Section IV proposes a cryptographic approach in order
to increase the trust in the answer given by the service model
of Section II. On top of that, Section V presents an approach
to choose dynamically a service that can be trusted. Section
VI disscuses related work and Section VII concludes this
work.

II. APPROACH

This section demonstrates the underlying approach. In our
service model, we assume that each service A provides a set
of functions, denoted by ProvidedA. This might be given as
a WSDL-description (Web Services Description Language).
Furthermore each service A might use other services. We
assume that this is not hard-coded in the implementation
of A, but there is a variable I a where I contains the
set of functions that is called on a, and a can be bound

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

negotiateVOID

mainVOID

s.f (mydata);

(mydata,mydata’);read

s.g(mydata’);
}

gVOID (T x){

(T x){

IC

IC

private LOC myloc=BLoc ∈FriendCountry

(T x){fVOID

private LOC myloc=CLoc ∈TrustedCountry

(T u){kVOID d.p(u); }

d.q(v); }(T v){lVOID

BOOL undesired (SET(IC) r,SET(LOC) locs){

//Discussed in Section III
}

ID ID

private LOC myloc=DLoc ∈SpyCountry

(TVOID p w){ store(w); }

(TVOID q w){ store(w); }

BOOL undesired (SET(ID) r,SET(LOC) locs){

//Discussed in Section III
} IE e

IE

y −1); }(

BOOL undesired (SET(IE) r,SET(LOC) locs){

//Discussed in Section III
}

IBIB

BOOL undesired (SET(IB) r,SET(LOC) locs){

hVOID (INT y){

IC

IC ICinterface : {BOOL undesired (SET(IC),SET(LOC)); }

interface {

interface : {

fVOID (T); VOID g (T); }IB

IB IB BOOL undesired (SET(IB),SET(LOC)); }

interface {

interface : {

pVOID (T); VOID q (T); }ID

ID D BOOL undesired (SET(ID),SET(LOC)); }

A
repeat

s = Reg.choose(IB)
(undesired)until s.hasInterface

and B,Locs.undesired(I)
}

() {

() {

T mydata,mydata’;

INT y 0;

if (x ≠ null) {y

=

=1;
else c.k(process(

c.h(y);}
x));

}

f (x); c.l(x); }

private T process return x; }

B

 c

C

 d

D

E

VOID m(INT y){ write

private LOC myloc=ELoc ∈SpyCountry

 s

//Discussed in Section III
}

+1); }ye.m(

interface { hVOID (INT), VOID k (T), VOID l (T); }

interface {

interface : {

mVOIDIE

ID EE BOOL undesired (SET(IE),SET(LOC)); }

(T); }

Figure 1. Storing Data at Undesired Locations

(dynamically) to a service X that provides at least I , i.e.,
I ⊆ ProvidedX . Functions in I are called required functions
of A w.r.t. a. The set of candidate services must be published
and we assume that a registry Reg maintains all published
services. For the purpose of this and the next section, we
assume that the use structure is acyclic. Section IV shows
how this assumption can be dropped.

Example 1: Consider services A and B in Fig. 1. A.s is
bound to service B and B.c is bound to service C. The
provided interface of B is ProvidedB = {f, g, undesired}.
The required functions of A w.r.t. s are {f, g}. The required
functions of B w.r.t. c are {h, k, l}. �
Remark: It is part of service-level agreement approaches
that negotiations bind services to these variables. For sim-
plicity, we only consider a set of functions for the selection
of candidate services. However, this can easily be replaced
by other match-making approaches, e.g., it can be based on
contracts or adapters can be included. �
In the context of this paper a client would like to negotiate
an agreement that a selected service guarantees to avoid
data-flow from the client’s data to a set Loc of undesired
locations. This ensures that the client’s data are not stored at
undesired locations. For the purpose of negotiation, service
A may offer a function undesired ∈ ProvidedA that returns
true iff data flows via some operations o from the provided
interface of A to services at undesired locations. It is
sufficient to take into account only the set S ⊆ ProvidedA

of operations used by the client. If A uses another service
B, it needs to ask B (via B’s function undesired) whether
it can guarantee that A’s data do not flow to a location in
l ∈ Loc. Obviously, this needs only to be guaranteed for
those operations of B where B passes (possibly processed)
data of A. For simplicity, we assume that each service X
knows its location and this location is stored in a constant
X.myloc.

Example 2: Consider the services A, B, C, D, and E in
Fig. 1. Service A would like to use service B. Service B is
located in FriendCountry. B itself uses service C located in
TrustedCountry while C uses serviced D and E located in
SpyCountry . For the example, we assume that all services
(except possibly A) are published.

Suppose that client A wants to avoid storing its data
neither in their original nor in processed form at servers
in SpyCountry. Thus, before client A actually uses service
B it would like to know whether data passed to B are
never stored (neither in original nor in processed form)
at a server in SpyCountry . Let Loc be the set of servers
in SpyCountry . The procedure negotiation searches for a
published service B offering at least the operations specified
in IB where IB is the set of functions of the required service
that are called from A. For the purpose of negotiation, A
calls undesired(IB ,Loc) because A calls b.f(mydata) and
b.g(mydata ′), if b is bound to service B. B calls functions
h, k, l ∈ ProvidedC if c is bound to a service C. A call
of B.f implies that data of A flow to the calls c.k(z) and
c.l(x), but there is no flow from data of A to the call c.h(y).
Thus, the call undesired(IB ,Loc) must return true only
if B .myloc 6∈ Loc and undesired({k, l},Locs) = true .
Note that function h needs not to be considered because
mydata does not flow to y in the call c.h(y). The functions
k, l ∈ ProvidedC call p, q ∈ ProvidedD if C.d is bound to a
service D. The arguments of the calls c.k(z) and c.l(x) flow
to the calls d.p(u) and d.q(v), respectively. Thus, there is a
flow from the data of A to service D located in SpyCountry
which could store these data. Therefore, the negotiation
must fail. C.undesired({k, l},Locs) must return false and
therefore B.undesired(IB ,Loc) returns false , i.e., A cannot
use B.

Suppose there would be an alternative service D′ with
the same implementations of p and q, but its location

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

is in MyCountry . Then, if C.d is bound to D′ in-
stead of D, D′.undesired({p, q},Loc) returns true be-
cause D′ does not use other services. Thus, in this case
C.undesired({k, l},Locs) can return true and therefore also
B.undesired(IB ,Loc) returns true . Hence, A can use B.
Note, that C.e is still bound to service E in SpyCountry
but there is no flow from the data of A to E because E is
only used in h and there is no flow from data of A to the
call c.h(y) in B. �

In general, if a service A negotiates with a service B
for avoiding undesired locations Loc, A must additionally
provide the set of functions O ⊆ ProvidedB used by A. If
B calls functions provided by other services, and data from
A flow to B then, B must ensure that these services are
neither located in an undesired location nor passed directly
or indirectly to a service located in an undesired country.
Therefore, B has to negotiate with the required services for
assuring that the data of A are never passed to services in
an undesired location.
Remark: A cyclic use-relation would lead to non-
terminating negotiations. One possibility to overcome this
problem is that after a certain time, the negotiation with a
service B is interrupted and another service is considered
for negotiation, i.e., the function undesired terminates after
a certain time and returns false . �

III. DATA-FLOW ANALYSIS

For the implementation of undesired , the data-flow from
the provided functions to the required functions needs to
be analyzed. For such a data-flow analysis, we refer to
[8] (an interprocedural def-use-chain is needed). Let x be
a parameter of a function f ∈ ProvidedA provided by a
service A. The result of the program analysis is a predicate
DEPe,x for each argument e of a call f of a required
function of A. DEPe,x is true if the value of e depends
on x.

Example 3: Consider services A and B in Fig. 1. The
function f ∈ ProvidedB has a parameter x of type T . If
x is not null the function h ∈ ProvidedC is called. So
DEPx,y = false because the value of the argument y does
not depend on x.
Remark: The program analysis is conservative, i.e., the
value of e might be independent of x although the pro-
gram analysis computes DEPe,x = true . However, if
DEPe,x = false , then it is guaranteed that the value of e is
independent of x. An exact computation of DEPe,x would
be undecidable. �
Let T f(T1 x1, . . . , Tn xn) ⊆ ProvidedA. Then, the slice
of f consists of all set of required functions of A that are
called with an argument depending on one of the parameters
xi, i.e.,

Slicef , {p : ∃s.p(e1, . . . , ek) ∈ A • ∃i, j •DEPei,xj}
The slice of a set of functions S ⊆ ProvidedA is defined by

SliceS ,
⋃
f∈S

Slicef

Let B be a service that is used by A and S ⊆ ProvidedA.
Then

CalledS,B , SliceS ∩ ProvidedB

is the set of functions of B called by A that may depend on
a parameter of a function in S. For these functions, it must
hold that B doesn’t pass the data directly or indirectly to
a service at undesired locations. Thus, the requirement for
service B is
UnDesB,S,L , CalledS,B = ∅∨

B.undesired(CalledS,B , L) = true
Example 4: Consider service B in Fig. 1. The Slice of

the function f ∈ ProvidedB and g ∈ ProvidedB are
defined by

Slicef , {k} and Sliceg , {l}
because there is no dataflow from x to y (DEPx,y = false),
which means h /∈ Slicef . With Slicef and Sliceg , it is
Slicef,g = {k , l}.

So only the functions k and l are called with data stemming
from A by service B. Hence,
Called{f,g},C , {k , l}.

In the next step the slices Slicek and Slicel are computed:
Slicek = {p} and Slicel = {q}.

Therefore, p and q are called with data from A over B:
Slicek,l = {p, q}.

Considering Slicek,l and the provided functions of the
service D and E, only service D is called with data from
A:
Called{k,l},D , {p, q} and Called{k,l},E , ∅.

Now, we can compute if there exists a data-flow to an
undesired location. Thus,

UnDesD,{k,l},SpyCountry , false
because of

D.myloc ∈ SpyCountry and Called{k,l},D /∈ ∅.
Hence,

UnDesE,{k,l},SpyCountry , true
because of

Called{k,l},E = ∅.
So,

UnDesC,{f,g},SpyCountry , false
because of

Called{f,g},C /∈ ∅ and
C.undesired(Called{f,g},C , SpyCountry) = false.

We can conclude that there is a data-flow from service
B over C to D. And D is a service with an undesired
location. This violation is produced by service D. Note that
although E is called and E.myloc ∈ SpyCountry, this is
not omitted, as no data flows from A to E.

Thus, for a service A, the function undesired can be
implemented as shown in Fig. 2.

Theorem 1: Let X be a service with an undesired location
X.myloc ∈ L. If there is a data-flow from a parameter x of a
function f ∈ S ⊆ ProvidedA to X , then undesired(S,L) =
false .

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

/∗@return : false− > data− flow to undesired location(s)
true− > data− flow only to desired locations∗/

BOOL undesired(SET(ProvidedA) S,SET(Locations) L) {
if myloc ∈ L return false;
foreach service X used by A do

if ¬UnDesX,S,L return false;
return true;

}

Figure 2. Implementation of undesired

C

public key:
private key: s

k

analyze

Certified

Program Analysis

PA

undesired
Client Web Service

I

A

Figure 3. Trusted Agreement

Proof: Let X be a service with X.myloc ∈ L, i.e., the
location of X is undesired. The maximal distance d(Y,X)
of a service Y to X is the length of the longest cycle-free
path from Y to X w.r.t. the use relation. We prove the claim
by induction on the maximal distance to X .
BASE CASE: d(Y,X) = 0. Then Y = X and therefore
Y.myloc ∈ L. For this case, undesired returns false .
INDUCTIVE CASE: d(Y,X) > 0. Let be S ⊆ ProvidedY

such that there is a data-flow from a parameter x of a
function f ∈ S to X . Thus, there must be a data-flow
(internal to Y) to argument e of function call z.g(· · · e · · ·)
where z is bound to Z and there is a data-flow from the cor-
responding parameter x of g ∈ ProvidedZ to X . Obviously
d(Z,X) < d(Y,X). Thus, by induction hypothesis it holds
undesired(S′, L) returns false for each S′ ⊆ ProvidedZ

with g ∈ S′. By definition, it is DEPe,x = true , thus,
g ∈ Slicef and therefore g ∈ SliceS . Since g ∈ ProvidedZ ,
it holds g ∈ CalledS,Z . Thus, CalledS,Z 6= ∅ and therefore
the induction hypothesis implies UnDesZ,S,L = false . Since
undesired(S,X) only returns true if Y.myloc 6∈ L and
UnDesZ,S,L = true for all services used by A, it must
return false .

IV. TRUSTED AGREEMENT

The approach of Sections II and III makes some ide-
alistic assumptions: First, it assumes that each service is
not malicious, i.e., it gives the correct answer according to
Theorem 1. Second, there are no cycles in the use-relation.
In this section, we present an approach to increase the trust
in the answer given by a service that is also able to deal
with cycles in the use-relation.

The main idea is similar to the verification of web pages,
cf. Fig. 3: there is an independent certified program analysis

service PA that performs the program analysis and computes
the result of undesired . The following negotiation protocol
increases the trust of the client to the analysis result:

Step 1: Client tells A that it would like to negotiate
undesired locations

Step 2: A selects a certified program analysis PA and
returns PA’s public key k to Client .

Step 3: Client uses k to check whether PA is certi-
fied. If this is the case, Client encrypts its query
undesired(S,L) with k and passes it to A. If k
does not belong to a certified program analysis,
then Client may refuse to choose A or request
another program analysis.

Step 4: A passes the encrypted query undesired(S,L)
together with its source text to PA. For security
reasons, the source text is also encrypted with k.

Step 5: PA first decrypts the query and the source text
of A. Then it performs the program analysis ac-
cording to Section III. Finally, it signs the query
undesired(S,L) and the result with its private key
s and passes it to A.

Step 6: A passes the signed result to Client .
Step 7: Client decrypts the signed result with the public

key k of PA. Then Client verifies whether its
query was being analyzed and whether the answer
is true . If yes, then it accepts A, otherwise it
refuses to choose A.

Since Client obtains the public key k of a program
analysis, it can verify whether the program analysis can be
trusted. Furthermore, the encryption of the query in Step
3 keeps it secret to A. Thus, A needs more effort to be
malicious because the private key s of PA is required to
decrypt the query, which is needed for the manipulation of
the query. A possibility of A to be malicious would be that
it creates its own (malicious) query q, encrypts it with k
and passes it to PA. However, in Step 5 the analysis result
together with the query is signed by PA’s private key s.
Since this key and the original query are secret to A, A is
unable to replace the responded and manipulated query q of
the PA by the original query. Client would discover such a
manipulation at Step 7.
Remark: At first glance, it seems to be a severe restriction
that A must pass its source text to PA. However, A can
choose a program analysis PA that it trusts before offering
PA to Client . �
Sections II and III demonstrate that PA might itself query
services B used by A while performing the program anal-
ysis. In this case PA has the role of a client and B has
the role of the service being queried. Hence, the above
protocol can be used to negotiate with B. As PA is able
to keep track of the analysis requests of A, it can check for
cycles before processing the analysis request. In particular, it
checks whether a query undesired(S,L) for A is currently

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

BOOL undesired(SET(ProvidedA) S,SET(Locations) L) {
if myloc ∈ L return false;
foreach service variable Ix x of A do

while ¬x.hasInterface(undesired) ∨ ¬UnDesx,S,L do {
x = Reg.choose(Ix)
if x = null return false;

}
return true;

}

Figure 4. Choosing an Adequate Service

being analyzed, i.e., whether there is an open analysis
request undesired(S′, L) with S′ ⊆ S. If yes, it can return
immediately true . This is valid because if there is a data-
flow from S′ to an undesired location l, then there must be
another call of a provided function to a service B with a
data-flow to an undesired location.

Remark: We assume that the services are installed cor-
rectly and that we can use the advantages of trusted cloud
federations [9], [10] in order to avoid that hackers change
the implementation of the services. �

V. DYNAMICALLY CHOOSING A SERVICE

In the scenarios of the previous sections, if a client
requests a service A for avoiding data-flow to undesired
locations and A itself may request for avoiding data-flow
to undesired locations, then the chosen service B is not
changed. However, service A might decide to choose an
alternative service that fulfills the requirements for A. Thus,
instead of returning false if a possible data-flow to an
undesired location is discovered, cf. Fig. 2, it can be searched
for a service that guarantees that there is no data-flow to an
undesired location, cf. Fig. 4. If there is no such service
(i.e., Reg .choose(Ix) = null) then false is returned. If
undesired(S,L) returns true each service variable x of A is
bound to a service X . Thus, for each call x.f(· · ·) ∈ SliceS ,
there is no data-flow to an undesired location.
Remark: The search for an adequate service in the registry
Reg might take a long time. An alternative would be to
bound the number of tries to find an adequate service. �

The problem with this approach is that the service A
needs to know the undesired locations. Thus, encrypting
the analysis request with PA’s public key prevents A from
choosing alternative services according to Fig. 4. However,
the program analysis PA could choose an alternative service
on behalf of A. Thus PA could tell A which services it can
choose. This dynamic choice can be achieved by changing
the last step of Step 5 in Section IV: A positive answer
is passed to A as in Step 5. However, if PA’s answer is
negative, it performs the procedure in Fig. 4. Any query
undesired(CalledS,b, L) to services b used by A is passed
by A to the service bound to b. The result is passed back to
PA which can tell A whether to bind the chosen service to
b. If PA finishes the procedure in Fig. 4, it passes its final
answer to A.

Thus, the answer is partially not being kept secret to the

service being analyzed. However, the final answer is still
kept secret and the client can still verify the final answer.
The undesired locations and functions used by the client are
still kept secret to the service being analyzed.

VI. RELATED WORK

There is a lot of work on data security in the cloud. These
works ensure data integrity ([11], [12], [13], [14], [15]), i.e.,
no malicious service or cloud attack changes the client’s data
or that this can be discovered by the client, respectively.
These works assume (similar to our work) that there is an
independent auditor. The works [12], [14] discuss privacy
issues w.r.t. the auditor. [11] considers data-flow. They do
not perform a static data-flow analysis but monitor data-flow
between services in order to detect malicious services.

Works on privacy leaks on smart phones are closer to this
work [16], [17]. These works analyze whether private data
leave smart phone applications. While [16] uses a monitoring
approach, [17] uses a static data-flow analysis approach. In
contrast to our approach, they analyze the software executed
on the smart phone, but they also forbid data leaving the
smart phone that are stored in trusted locations.

Song et al. [18] investigates data-flow analysis in the
context of service computing. In contrast to our work, they
analyze data-flow correctness, e.g., whether each business
process implementing a service receives the data it needs.

VII. CONCLUSIONS

In this work, we have shown how static data-flow analysis
can ensure that clients data don’t reach undesired locations
(directly or indirectly) via software services. For this, an
independent trusted program analysis is required. The ap-
proach turns out to be a negotiation approach similar to
service-level agreements. The client sends a request to a
service candidate whether it can guarantee to avoid data-flow
to services on undesired locations. For this, an independent
program analysis service signs the analysis result with its
private key. Therefore, the client can verify whether a trusted
program analysis has being performed. In order to prevent
malicious services, the analysis request (in addition to the
analysis result) is kept secret by encrypting it with the public
key of the certified program analysis.

If we assume that no service is malicious (but possibliy
erroneous), then there is no need for keeping the analysis
request secret. If a service uses other services, it can look
for alternatives that ensure themselves the avoidance of data-
flow to undesired locations. In order to keep the analysis
request secret to the services being analyzed, the service
selection can be performed by the program analysis.

One might argue that a drawback of our approach is
that the services must pass their source code to a certified
program analysis. However, this certified program analysis
is the only service that knows the source code and its the
service that can choose the program analysis it trusts.

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

A more serious problem is that extremely malicious ser-
vices send a source text to a certified program analysis that
differs from their implementation. This could be prevented
by two different approaches: first, there might be other
program analyzes (e.g., that the service is doing something
reasonable) and this analysis requests are also encrypted. If
a service does not know what property is being analyzed,
it is more difficult to prepare itself for cheating. A second
possibility would be a combination of a monitoring approach
(e.g., similar to [16]) with a randomized testing approach
as used for checking data integrity (see, e.g., [15]): For the
latter, the program analyzer can generate test cases (based on
the source text it knows) and tests the service using these test
cases. The monitoring approach monitors the data leaving
the service and their corresponding destination services. Any
difference between the data-flow analysis results and the
destination services is a hint that the analyzed service is
malicious, and the certified program analysis can give a
negative answer to the client. It is subject to future work to
detail these ideas. To check the performance of the proposed
approach, the implementation of a tool is also a subject for
future work.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] European Commission and others, “Directive 95/46/ec of the
european parliament and of the council of 24 october 1995
on the protection of individuals with regard to the processing
of personal data and on the free movement of such data,”
Official Journal of the European Communities, vol. 23, p. 31,
1995.

[2] European Commission,
http://eur-lex.europa.eu/LexUriServ/, 2012,
last accessed May 2012.

[3] R. Seiger, S. Groß, and A. Schill, “Seccsie: A secure cloud
storage integrator for enterprises,” in 13th IEEE Conference
on Commerce and Enterprise Computing (CEC). IEEE,
2011, pp. 252–255.

[4] L. Wei, H. Zhu, Z. Cao, W. Jia, and A. Vasilakos, “Sec-
cloud: Bridging secure storage and computation in cloud,” in
Distributed Computing Systems Workshops (ICDCSW), 2010
IEEE 30th International Conference on. IEEE, 2010, pp.
52–61.

[5] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Ma-
suoka, and J. Molina, “Controlling data in the cloud: outsourc-
ing computation without outsourcing control,” in Proceedings
of the 2009 ACM workshop on Cloud computing security.
ACM, 2009, pp. 85–90.

[6] M. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali,
“Cloud computing: Distributed internet computing for it and
scientific research,” IEEE Internet Computing, vol. 13, no. 5,
pp. 10–13, 2009.

[7] S. Pearson, “Taking account of privacy when designing cloud
computing services,” in ICSE Workshop on Software Engi-
neering Challenges of Cloud Computing, 2009. IEEE, 2009,
pp. 44–52.

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2006.

[9] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Federation
establishment between clever clouds through a saml sso
authentication profile,” International Journal on Advances in
Internet Technology, vol. 4, no. 12, pp. 14–27, 2011, ISSN:
1942-2652.

[10] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Evaluating
a distributed identity provider trusted network with delegated
authentications for cloud federation,” in PROCEEDINGS of
The Second International Conference on Cloud Computing,
GRIDs, and Virtualization (Cloud Computing 2011). IARIA,
2011, pp. 79–85, ISBN: 978-1-61208-153-3.

[11] J. Du, W. Wei, X. Gu, and T. Yu, “Runtest: assuring integrity
of dataflow processing in cloud computing infrastructures,”
in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security. ACM, 2010, pp.
293–304.

[12] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving
public auditing for data storage security in cloud computing,”
in INFOCOM, 2010 Proceedings IEEE. IEEE, 2010, pp. 1–
9.

[13] M. Tribhuwan, V. Bhuyar, and S. Pirzade, “Ensuring data stor-
age security in cloud computing through two-way handshake
based on token management,” in 2010 International Confer-
ence on Advances in Recent Technologies in Communication
and Computing (ARTCom). IEEE, 2010, pp. 386–389.

[14] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote
data integrity checking protocol with data dynamics and
public verifiability,” IEEE Transactions on Knowledge and
Data Engineering, vol. 23, no. 9, pp. 1432–1437, 2011.

[15] Y. Liang, Z. Hao, N. Yu, and B. Liu, “Randtest: Towards more
secure and reliable dataflow processing in cloud computing,”
in 2011 International Conference on Cloud and Service
Computing (CSC). IEEE, 2011, pp. 180–184.

[16] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” in
Proceedings of the 9th USENIX conference on Operating
systems design and implementation. USENIX Association,
2010, pp. 1–6.

[17] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detect-
ing privacy leaks in ios applications,” in Proceedings of the
Network and Distributed System Security Symposium, 2011.

[18] W. Song, X. Ma, S. Cheung, H. Hu, and J. Lü, “Preserving
data flow correctness in process adaptation,” in Services
Computing (SCC), 2010 IEEE International Conference on.
IEEE, 2010, pp. 9–16.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

