CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

ERHA: Execution and Resources
Homogenization Architecture

Guilherme Galante, Luis Carlos Erpen de Bona
Department of Informatics
Federal University of Parana
Curitiba, PR — Brazil
{ggalante,bona} @inf.ufpr.br

Abstract—In this paper, we present the Execution and Re-
sources Homogenization Architecture (ERHA). The architecture
aims to provide mechanisms for submitting and executing batch
applications in private IaaS clouds using homogeneous virtual
environments created over heterogeneous physical infrastructure.
With ERHA it is possible to deploy and execute applications in
IaaS clouds in an automatic and easy way. The architecture
creates homogeneous virtual environments and manages the
entire execution process, from source code submission to results
collection phase. The results confirmed the architecture efficiency
in deploying parallel applications in clouds and reducing signif-
icantly the disparities in execution time using different machine
models.

Index Terms—scientific applications; application execution;
homogeneous environments.

I. INTRODUCTION

The rapid provisioning of independent and isolated re-
sources, hardware and software customization, quick access to
resources as well as on-demand scalability, have made cloud
computing an attractive model for the scientific community. In
fact, many scientists have adopted this new paradigm, moving
their data and performing in silico experiments in the cloud
[11-[4].

However, the deployment and execution of scientific appli-
cations are generally not straightforward, comprising a set of
complex hardware and software configurations. Other issues
must be considered in a cloud scenario, e.g., particular control
aspects of different clouds, interfaces to be used, number of
virtual machines (VMs) to be deployed and what resources
will be needed by them.

According to [5], running a scientific application in the
cloud presents three different challenges: initial application de-
ployment, subsequent application execution, and data transfers
to/from the cloud. Generally, the application deployment in a
cloud requires that all software (and possibly data) be stored in
a VM image, which is sent to and stored in the cloud. Thus, the
user can create a new VM from this image, access it and run
applications. At the end, the application results must be copied
to a non-volatile storage using a network protocol. These steps
seem extremely simple for a computer scientist, but may pose
a challenge to people from other areas. The challenge may be
even greater when it comes to parallel applications.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

Paulo Antonio Leal Rego, José Neuman de Souza
Master and Doctorate in Computer Science
Federal University of Ceara
Fortaleza, CE — Brazil
pauloalr @lia.ufc.br, neuman@ufc.br

Another related problem is the provisioning of comput-
ing resources in heterogeneous physical infrastructures. The
VMs performance is directly related to the physical machines
(PMs) where they are allocated. As the cloud computing
environment is commonly highly heterogeneous, there may be
machines with different processors. This difference between
the CPUs can directly influence the performance of VMs
and consequently the applications encapsulated within. An
example is presented in [6], where the performance results of
a MapReduce execution on Amazon EC2 show fluctuations up
to 24%. Another issue related to performance disparities due to
heterogeneity is that the slowest instance will be the bottleneck
for an entire execution of the application, thus, under-utilizing
faster machines.

Considering these issues, this paper presents the Execution
and Resources Homogenization Architecture (ERHA), a solu-
tion to automate the deployment and execution of sequential
and parallel batch applications in clouds, providing homo-
geneous computing resources. This type of application was
focused because it is very common in scientific computations.
The architecture provides a language to describe the resources
and the execution parameters, a standard method to deploy
and execute the application in clouds, and a mechanism that
enables the allocation of VMs using processing units (PUs), a
metric that represents the effective processing power of each
machine (physical or virtual).

Four experiments show the architecture efficiency in de-
ploying applications in clouds in an easy way and reducing
significantly the disparities in execution time using different
PMs models.

The remainder of the paper is organized as follows. Sec-
tion II presents the related works. Section III introduces the
proposed architecture. In Section IV, the experiments are
presented and the results are discussed. Finally, in Section V,
we present our conclusion and potential future research topics.

II. RELATED WORK

Several studies [2], [7], [8] have assessed the aspects of
running scientific applications on public clouds. The feasibility
of the current cloud services (Amazon and GoGrid) for the
execution of scientific applications is explored in [7]. A perfor-
mance comparison of eight applications (CAM, Gamess, GTC,

253

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

IMPACT-T, MAESTRO, MILC, Paratec and HPCC) running
in a private virtual cluster and in Amazon EC2 is presented
in [8]. In a similar study, the impact of using different MPI
libraries in an atmospheric model running on EC2 is analyzed
in [2].

All these studies present some concerns about applications
performance. Large fluctuations of high-performance comput-
ing workloads on cloud infrastructure were reported in [9]. In
[7], the authors have found that many Amazon and Google
services exhibit large performance changes over time.

The studies which use techniques for limiting the CPU
usage of VMs are generally related to the dynamic provi-
sioning of resources. In [10], Xen’s performance isolation for
I/O intensive applications is studied and two mechanisms are
proposed to improve CPU and network resource isolation.
In [11], an architecture for dynamic resources management
upon the hypervisor Xen is presented. The authors dynam-
ically adjust the amount of CPU and memory of VMs to
reduce service level objectives (SLOs) violation. In [12], an
adaptive control system which automates the task of tuning the
resources allocation for the maintenance of SLOs is presented.
The work uses KVM hypervisor and focuses on maintaining
the expected response time for Web applications, by tuning
the CPU usage.

Unlike aforementioned works, the hypervisors KVM and
Xen are used in ERHA and the techniques for limiting the
CPU usage are leveraged to handle the problem of providing
homogeneous resources despite being in a heterogeneous
infrastructure. In addition, besides Amazon EC2 (with the
Elastic Compute Unit), no other public cloud provider or
research uses an abstraction like our PU for representing CPU
resources.

About the creation of virtual environments and the execu-
tion of applications, the three most similar works are high-
lighted: Neptune [13], DADL [14] and Nimbus Context Broker
[15]. Neptune is a domain specific language that automates
configuration and deployment of existing HPC software in
AppScale clouds. DADL (Distributed Application Description
Language) is a language for describing hardware requirements,
behavior and architecture of distributed applications. Finally,
Nimbus Context Broker is a tool used to create and provide
virtual clusters.

Cloud computing is taking larger proportions in the sci-
entific field and there are several studies about scientific
applications performance in cloud. Despite this, to the best of
our knowledge, there is no published research addressing the
support for running sequential and parallel batch applications
in clouds, especially considering the virtual environments
homogenization, as we show with ERHA.

III. ERHA ARCHITECTURE

ERHA is an architecture that aims to provide mechanisms
to submit and execute batch applications in private laaS
clouds (e.g., OpenNebula and Eucalyptus) using homogeneous
virtual environments created over heterogeneous physical in-
frastructure. With ERHA it is possible to deploy and execute

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

applications in clouds in an automatic and easy way. The
architecture creates the virtual environment and manages the
entire execution process, from source code submission to
results collection phase.

Furthermore, the architecture allows users to configure
their VMs’ processing power using an uniform metric, the
Processing Units (PU). A PU is a value in terms of GFLOPS
(billion floating-point operations per second), or other metric
that represents the processing power of each physical or virtual
machine. The system administrator defines a value to the PU,
which is used in the VMs allocations. All virtual instances
requested by the user will have equivalent computing power,
regardless the underlying PM and its processor model. For
example, considering a PM with 30 GFLOPS and the PU set
as 10 GFLOPS, it is possible to allocate three VMs with 1
PU, or one VM with 1 PU and another with 2 PUs.

To implement the execution environment and the resources
homogenization, ERHA uses three layers, as shown in Figure
1: (1) Resource Description Layer, (2) Execution Management
Layer and (3) Allocation Layer.

RDB N
Applications

RDB parser

daemon

Allocation

Layer
limit manager b

Cloud Middleware
Cloud Resources

Fig. 1.

Architecture layers

The Resource Description Layer, Execution Management
Layer and Allocation Layer are presented in Section III-A,
II-B, II-C, respectively. A complete example of running an
application envolving all ERHA layers is presented in Section
1I-D.

A. Resource Description Layer

The Resource Description Layer (RDL) is responsible for
receiving the resources demands and informing it to the other
layers. The resources needed by the application are informed
in the Resource Description Block (RDB). The block is made
up of a set of attribute-value pairs and it must be inserted into
the source code, marked by the reserved word #neb_config
and delimited by braces ({}). An example of RDB is shown
in Figure 2.

In this example, a VM named OMPTest is requested in an
OpenNebula cloud. The VM has four virtual CPUs (VCPU),
eight PUs and 256 MB RAM, no disk attachment is needed

254

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

include <stdio.h>
include "omp.h"

#neb_config RDB

{
env_cloud=OpenNebula
env_cloudfe=10.0.0.1
env_name=0OMPTest
env_type=SMP
env_VCPU=4
env_PU=8
env_memory=256
env_disk=NONE
env_image=ANY
env_finalize=YES

environment
settings

execution

app_script=exec.sh settings

app_extras=extras.tar.gz
app_output_dir=output
}

int main (int argc, char *argv[])

{
-

Fig. 2. RDB example

and a default image is used. When the execution ends, the
VM will be finalized. Note that in RDB is informed the total
amount of PUs of a VM, and this processing power is divided
by all VCPUs (in this example, each VCPU has 2 PUs).

The rest of RDB describes the execution script name, the ex-
tras.tar.gz file, which contains the applications dependencies,
and the output directory, where results will be saved.

The information is obtained by the RDB Parser, which
parses all fields and converts them to the specific cloud
middleware format (OpenNebula, in this example). The parser
sends the formatted data to the Execution Management Layer,
which will use them to request the resources to the cloud via
Allocation Layer.

B. Execution Management Layer

The Execution Management Layer (EML) handles the ex-
ecution process, controlling all needed interactions with the
cloud during the application execution. EML is a client-
server application composed of three components: 1) Client,
2) Server and 3) VM-Daemon.

The Client is installed in the user machine and provides a
command-line interface that is used to submit the applications
to the cloud. This interface is also used to track the execution
progress and receive error messages. It is also responsible
for receiving the resources description from RDB Parser and
sending it to Server module, deploying the application in the
cloud, managing the execution and collecting the results.

The Server runs in the cloud front-end and is responsible
for receiving the requests and sending the performing the
actions related to VMs creation and finalization. It receives the
resources description from the Client, converts this information
to the appropriate format and makes the requests to the
Allocation Layer. The same process is performed to finalize
the virtual environment. It is necessary just one Server instance
to serve all Clients.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

The last component is the VM-Daemon. This module must
be inserted into VM image and is initialized on VM boot
process. When started, the VM-Daemon sends and receives
information to/from the Client, including IP address, VM iden-
tification, authorization keys, error warnings and commands
that must be executed in VM.

C. Allocation Layer

The Allocation Layer (AL) was designed to perform the
VMs allocation based on PUs. AL ensures uniform allocation
of computing power to VMs and standardizes the representa-
tion of the processing power of a cloud infrastructure through
the use of PUs. The PU is the abstraction used for representing
the processing power, similar to ECU (Elastic Computing
Unit) for Amazon EC2.

Despite the VM performance being directly related to the
underlying PM, the use of PUs metric makes it possible
to guarantee VM processing power without worrying about
the infrastructure heterogeneity. Four modules make up the
AL: (1) Limit Manager, (2) Monitor, (3) Scheduler and (4)
Daemon.

Limit Manager is the module responsible for applying the
limits on CPU usage. When a new VM is created, for example,
the Daemon invokes the Limit Manager, which sets the CPU
resource that can be used by the VM, considering the amount
of PUs allocated to it.

This feature is implemented limiting the CPU cycles used
by each VM. To achieve the desired results, it is necessary
that the hypervisors allow a way to set the percentage of CPU
that will be used by a given VM. Xen has this functionality
natively implemented through Credit Scheduler algorithm [16].
An alternative for limiting the CPU usage for the Kernel-based
Virtual Machine (KVM) with the cpulimit tool is evaluated in
[17] and is used in this work.

Monitor is the module responsible for capturing information
about the entire infrastructure. This module can directly access
the infrastructure data or make requests to the cloud computing
middleware. The monitored information is related to CPU,
memory, storage and network for each PM and VM.

All decisions about the VMs allocation on PMs are taken
by Scheduler. Unlike the schedulers present in the main cloud
computing middleware, like Eucalyptus and OpenNebula, the
proposed scheduler must not consider the raw information
about CPU, memory and hard drive to define where the VMs
will be allocated. Once the architecture is based on PUs,
all allocations must be made based on the number of PUs
required by the VM and the amount of free PUs in the PMs.
The architecture provides some basic scheduling policies, e.g.,
Random, Round Robin and First Fit. New scheduling policies
can be easily created and added to the architecture.

The last module, the Daemon, manages all the other mod-
ules and controls the infrastructure. It communicates with
the cloud computing middleware and maintains information
about the PMs and running VMs (captured by the Monitor).
In addition, it has access to all the requests that come to
the middleware. The Daemon receives the requests from

255

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Execution Layer and invokes the Scheduler when there are
VMs at pending state. When the Daemon receives the VM-PM
mapping from Scheduler, it allocates the VMs. The Daemon
is also responsible for storing information about the PUs and
invoking the Limit Manager to apply the limit of CPU usage
when a VM is started or migrated.

D. Running Applications with ERHA

To demonstrate how ERHA works, this section presents an
example of using the architecture to run the scenario described
in the RDB shown in Figure 2. The environment creation and
the application execution is performed in thirteen steps, as
illustrated in Figure 3 and explained in sequence.

[EML-Server]
Allocation Layer,
Y

[RDB Parser]
[EML-Client]

Application
[RDB]

A=

Cloud Front-End

Virtual Machine
[EML-VM]

Fig. 3. Application Execution Steps

The process starts when (1) the user adds the RDB to the
application, provides the scripts and other dependencies and
submits the application through EML-Client. The Client (2)
uses the RDB Parser to get information about the requested
environment and (3) sends the VM template to EML-Server,
which (4) requests a VM to the Allocation Layer. In the
Allocation Layer, (5) the Daemon detects a pendency and
calls the Scheduler, that (6) returns a VM-PM mapping. Then,
(7) the Daemon sends the VM creation request to the cloud
middleware, and the VM is created. Next, the Daemon calls
the Limit Manager to (8) apply the CPU limitation to the VM,
based on the PU configuration established in RDB.

After VM operating system booting process, (9) the EML-
VM gets the IP and the VM public-key and sends them to
EML-Client. The IPs are used to identify the VMs during
the execution process, and the public-key is used to allow
passwordless remote access. In the following step, (10) EML-
Client uploads the application and its dependencies to the VM
and sends the compilation and execution commands. After
finishing the application execution, the (11) EML-VM collects
the results and sends them back to the Client. If the machines
are no longer needed, (12) EML-Client requests the VM
destruction to the Allocation Layer and (13) the Daemon sends
the command for VM destruction to the cloud middleware.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

IV. TESTS AND RESULTS

To evaluate the proposed architecture, a prototype was im-
plemented using Python, Ruby and Shell Script. OpenNebula
2.2.1 was used as cloud middleware and KVM and Xen
as virtualization technology. The choice of OpenNebula was
made based on the flexibility for VMs creation, which allows
the configuration of resources according to application needs,
unlike Eucalyptus and OpenStack, in which a pre-configured
class must be chosen.

TABLE 1
PHYSICAL MACHINES CONFIGURATIONS

Ci7 Ci5 X4 C2D

Intel Core | Intel Core | Intel Xeon | Intel Core 2
Processor i7-930 2.8 | i5-750 X34302.4 | Duo E7400

GHz 2.66 GHz GHz 2.8 GHz
PUs (Total) 10 9 8 5
Memory 24 GB 4 GB 8 GB 4 GB
0s Ubuntu Server 11.04 64 bits Debian 6.0

64 bits

Hypervisor KVM Xen

A heterogeneous private cloud with OpenNebula was used
as testbed, consisting of 2 machines model Ci5, 1 machine
model Ci7, 1 machine model X4 and 1 machine model C2D,
all connected by a Gigabit Ethernet network. The configura-
tions of the physical machines are presented in Table 1. All
VMs use Ubuntu Server 11.04 32 bits as operating system. All
source code and applications used in experiments are available
in the project site [18].

The Intel Linpack benchmark was used to collect the
VMs’ computing power running inside all PMs. With this
information, it is possible to find the relation between CPU
usage (%) and the amount of PUs for all PMs. For this work,
the PU was set to 3 GFLOPS (50% of one core of X4), and
the relation %CPU/PU is presented in Table II. This specific
configuration is more suitable for CPU-intensive applications
because only the Linpack benchmark is used in the process of
PU definition.

TABLE I
RELATION BETWEEN THE CPU USAGE AND THE AMOUNT OF PUS FOR
EACH PHYSICAL MACHINE.

CPU usage

Ci7 Ci5 X4 C2D
1PU 39% | 41% 50% | 44%
2PUs | 78% 81% | 100% | 83%
3PUs | 119% | 118% | 150% | 130%
4PUs | 157% | 162% | 200% | 165%
5 PUs 196% | 218% | 250% | 200%
6 PUs | 234% | 260% | 300% | N/A
7PUs | 274% | 305% | 350% | N/A
8 PUs | 320% | 354% | 400% | N/A
9 PUs | 368% | 400% | N/A N/A
10 PUs | 400% | N/A N/A N/A

We conducted four experiments with two parallel OpenMP
applications: a 2D heat transfer problem [19] and a LU decom-
position algorithm [20]. The heat transfer problem consists in

256

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

solving a partial differential equation to determine the variation
of the temperature within the heat conducting body. LU
decomposition is a method to factorize a matrix as the product
of a lower triangular matrix and an upper triangular matrix.
This algorithm is a key step in several fundamental numerical
algorithms in linear algebra such as solving a system of linear
equations, inverting a matrix, or computing the determinant of
a matrix.

The experiments were grouped in two sets, each set ex-
amining different issues. In Set A, three experiments test the
ERHA efficiency in providing a homogeneous environment.
In Set B, the impact of PMs load in application performance
is evaluated. For each test, the applications were run 10 times
and the results were combined to calculate mean, in a 95%
confidence interval.

A. ERHA Efficiency

In this section, three different test cases were used to
validate the ERHA architecture and to analyze its efficiency
using different configurations.

1) Experiment 1: In the first experiment we tested the
architecture with the Limit Manager module disabled. The
purpose of this experiment is to evaluate the difference in
the PMs processing power. The LU decomposition and heat
transfer applications were executed on a virtual environment
allocated on one PM of each model (Ci5, Ci7, X4 and C2D).
The tests were performed using VMs with 1, 2 and 4 VCPUs,
except for C2D, which supports VMs with just 2 VCPUs.

Figure 4 shows the applications execution time for each
configuration. It can be seen that both applications take longer
in C2D for all configurations. The difference reaches 30.3%
in the case of heat transfer application with 1 VCPU and
28,2% in the case of LU decomposition with 2 VCPUs. These
results emphasize the need for a solution which considers the
infrastructure’s heterogeneity once they confirm the influence
of the underlying PM on virtual machines performance and its
applications.

2) Experiment 2: In the second experiment, the Limit
Manager features were evaluated. The LU decomposition and
heat transfer applications were executed in VMs with 1, 2 and
4 VCPUs and setting the processing power to 1 PU per VCPU,
totaling respectively 1, 2, and 4 PUs. The results are presented
in Figure 5.

As expected, the execution time is greater than in Experi-
ment 1, due the CPU limitation imposed by Limit Manager.
Taking the PM X4 as basis, in LU decomposition the largest
difference is 1.7% in processing time, while in the heat
transfer problem the largest difference is 6%. The results
show that performance variability is reduced if compared with
Experiment 1.

3) Experiment 3: In the third experiment, the previous
experiment we repeated using 2 PUs per VCPU. The VMs
with 1, 2 and 4 VCPUs had processing power of respectively
2, 4 and 8 PUs. The results can be observed in Figure 6. The
most relevant difference in execution time is 3.5% for LU

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

LU
()
£
(=)
° \© \©
£8 §° 5 8% 808
32 9 9 ¥ (g\n o\
\l{)/ : b“
1VCPU 2VCPUs 4VCPUs
mC2D 718.2 344.9 NIA
mci7 713.1 3735 1897
cis 7155 362.5 210.0
nx4 953.5 4808 245.0
HEAT
(0]
E_
(=)
el \© \©
5§ A %‘,{b\ 376.1 =
33 g ¥] S P
Q \'g/ u rb@. l\ ' 192-4
. [|
1VCPU 2VCPUs 4VCPUs
mC2D 517.4 2833 NA
mCi7 530.4 280.3 1436
cis 558.1 284.9 164.9
nx4 742.9 376.1 192.4

Fig. 4. ERHA Efficiency - Execution time without CPU limiting

o e o\ LU: 1 PU/VCPU
24001 N o™ NP oq545
2 2000
FZ 1600 o o
° o
§§ 1200 ¥ S &P o715 SRS
g8 800 P S s3ga
57 400
0
1VCPU 2VCPUs 4VCPUs
mC2D 2116.1 1069.0 N/A
mCi7 2163.4 1071.0 540.2
cis 21204 1074.9 537.7
mX4 21545 10715 538.4
\ HEAT: 1 PU/VCPU
2000 &¥ S
o ¥ 8 N 16761
2 _ 1600
=8 1200 A
5§ oY » o7 362
3g 800 %> g
ol > Q% 4208
i 400 .
0
1VCPU 2VCPUs 4VCPUs
uC2D 1592.7 838.7 N/A
uCi7 1574.4 7987 399.9
Ci5 1650.4 8438 420.9
X4 1676.1 836.2 420.8

Fig. 5. ERHA Efficiency - Execution time with CPU limiting enabled: 1 PU

per VCPU

decomposition problem in case with 2 VCPUs and 5.9% for
heat transfer problem in case with 1 VCPU.

The test confirmed the results of the second experiment, by
proving the efficiency of the proposed solution to reduce the
VMs performance variability commonly imposed by different
PMs models. Furthermore, despite the execution time being
larger when executing the applications with 4 VCPUs and 2
PUs per VCPU than in the case without CPU limitation, it is
important to highlight that the more powerful processors still

257

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

97 o o ggo

1000
i3
£ 800 o
B e e o
<
§5 600 NPT
=30 o\
g e 40 NN
a 200
0
1VCPU 2 VCPUs 4VCPUs
mC2D 955.1 474.2 N/A
B Ci7 968.3 499.3 245.7
Ci5 964.8 484.4 247.2
m X4 960.3 482.3 244.7
& g o HEAT:2PUSVCPU
o 800 AT P O 7467
£
£ % 600
%§ S0 &0 g
S8 400 % N »° 3738
ER S ge
g2 %° o 1924
- ‘110
0
1VCPU 2 VCPUs 4VCPUs
mC2D 734.1 376.1 N/A
u Ci7 702.6 366.9 1815
Ci5 750.9 386.2 193.6
u X4 746.7 373.8 192.4
Fig. 6. ERHA Efficiency - Execution time with CPU limiting enabled: 2

PUs per VCPU

have resources enough to run more VMs (2 PUs free in Ci7),
allowing other applications to run in that PM.

B. Impact of Physical Machines Load

The objective of this experiment is to evaluate the efficiency
of the architecture to provide performance isolation while
running more than one VM per PM. In this experiment, two
VMs were executed at the same time in each PM (Ci5, Ci7 and
X4), one running the heat transfer application and the other
running the LU reduction problem.

Two different configurations of VMs were used: VMs with
2 VCPUs and 4 PUs (2 PUs for each VCPU) and VMs with
4 VCPUs and 4 PUs (1 PU for each VCPU). Considering
that two VMs will run on each PM, a total of 8 PUs will be
used. The results can be observed in Figure 7, where the cases
marked with -extra load represent the tests where 2 VMs are
used in the same PM (competing for CPU resources). The
results were compared with the previous experiments results
(Figures 5 and 6), where a single VM per PM was used.

It can be observed that the largest differences between the
execution time were 4,6% and 4,5% in the VMs with 2 and
4 VCPUgs, respectively, both running the LU decomposition
application in host Ci7. These results show that the solution
provides a good performance isolation for 2 VMSs running on
the same PM. Further experiments must be performed to prove
the ERHA'’s efficiency regardless the number of VMs per PM.

To sum up, the presented experiments were executed and
configured easily with ERHA. The results demonstrate the
solution’s efficiency to deploy applications in clouds and to
reduce the performance fluctuations despite being in a dynamic
and heterogeneous environment.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

2VCPUs -2 PUs
485.1484.4

393.0 386.2

476.5 499.3 486.7 482.3

368.7 366.9 38243738

Execution Time
(seconds)

Ci7 Ci5 X4

B HEAT-extraload W HEAT ® LU- extra load LU

4VCPUs -1 PU
553.1537.7
413.4 420.9

600 564.7 540 2
500
400
300
200
100

538.5538.4

401.8 399.9 417.3 420.8

Execution Time
(seconds)

Ci7 Ci5 X4

B HEAT-extraload W HEAT mLU- extraload LU

Fig. 7. Execution time using different loads in physical machines

V. CONCLUSION AND FUTURE WORK

This paper presented a solution to automate the deploy-
ment and execution of batch applications in clouds, providing
mechanisms to create homogeneous virtual environments over
private cloud middleware. The results described in Section IV
confirmed the ERHA’s efficiency in deploying applications in
clouds and reducing the disparities in execution time using
different PMs.

Although the presented tests have just used OpenMP ap-
plications, ERHA allows to run sequential, shared-memory
and distributed memory parallel applications. For example,
it is possible to run MPI applications in a homogeneous
virtual cluster with all credentials for SSH communications,
automatically created and managed by the architecture.

The architecture is useful in the cases where the researchers
expect comparable performance for their applications, inde-
pendent of the physical resources used. This feature is quite
important for repeatability of experiments and results. Further-
more, considering the uniform processing power allocations
provided by ERHA, it is possible to reduce the performance
variability in VMs’ migrations between different physical
machine types.

To conclude, the main contribution of this paper was the
reduction of the impact of the data center heterogeneity in
the VMs performance. In addition, we proposed mechanisms
to enable running applications in clouds in an easy and
uniform way, abstracting the infrastructure and middleware
complexities.

The next step in our research is to extend the architecture
implementation to work with other cloud middleware and new
application types such as MapReduce. We also intend to create
new scheduling policies and implement an interface to permit
users to dynamically change the amount of PUs and VCPUs
allocated to VMs.

258

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

ACKNOWLEDGMENTS

This work is supported by FUNCAP, CAPES and INCT-
MACC (CNPq process 573710/2008-2).

[1]

[2]

[3]

[4]

[7]

[8]

Copyright (c) IARIA, 2012.

REFERENCES

G. V. Mc Evoy, B. Schulze, and E. L. M. Garcia, “Performance and
deployment evaluation of a parallel application on a private cloud,”
Conc. and Comp.: Prac. and Exp., vol. 23, pp. 2048-2062, Dec. 2011.
C. Evangelinos and C. N. Hill, “Cloud computing for parallel scien-
tific hpc applications: Feasibility of running coupled atmosphere-ocean
climate models on amazon’s ec2.” October, vol. 2, no. 2.40, pp. 2-34,
2008.

L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl,
“Scientific cloud computing: Early definition and experience,” in Proc.
of the 2008 10th IEEE Intl Conf. on High Perf. Comp. and Comm., ser.
HPCC °08. IEEE Computer Society, 2008, pp. 825-830.

J.-S. Vockler, G. Juve, E. Deelman, M. Rynge, and B. Berriman, “Ex-
periences using cloud computing for a scientific workflow application,”
in Proc.of the 2nd Intl Workshop on Scientific cloud computing, ser.
ScienceCloud °11. ACM, 2011, pp. 15-24.

Y. Simmhan, C. Van Ingen, G. Subramanian, and J. Li, “Bridging the
gap between desktop and the cloud for escience applications,” IEEE 3rd
Intl Conf. on Cloud Computing, pp. 474-481, 2010.

J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements
in the cloud: observing, analyzing, and reducing variance,” Proc. VLDB
Endow., vol. 3, pp. 460—471, September 2010.

A. Tosup, N. Yigitbasi, and D. Epema, “On the performance variability
of production cloud services,” in IEEE/ACM 11th Intl Symposium on
Cluster, Cloud and Grid Computing, may 2011, pp. 104-113.

K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance analysis of
high performance computing applications on the amazon web services
cloud.” in Proc. of IEEE Intl Conf. on Cloud Computing Technology and
Science, 2010, pp. 159-168.

ISBN: 978-1-61208-216-5

[9]

(10]

[11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

Y. El-Khamra, H. Kim, S. Jha, and M. Parashar, “Exploring the perfor-
mance fluctuations of hpc workloads on clouds,” in Proc. IEEE Second
Intl Conf. on Cloud Computing Technology and Science, 30 2010-dec.
32010, pp. 383-387.

D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
performance isolation across virtual machines in xen,” in Proc. of the
ACM/IFIP/USENIX 2006 Intl Conf. on Middleware, ser. Middleware *06.
Springer-Verlag New York, Inc., 2006, pp. 342-362.

W. Dawoud, I. Takouna, and C. Meinel, “Elastic vm for cloud resources
provisioning optimization,” in Advances in Comp. and Comm., ser.
Comm. in Comp. and Information Science, A. Abraham, J. Lloret Mauri,
J. F. Buford, J. Suzuki, and S. M. Thampi, Eds. Springer Berlin
Heidelberg, 2011, vol. 190, pp. 431-445.

A. Sangpetch, A. Turner, and H. Kim, “How to tame your vms: an
automated control system for virtualized services,” in Proce. of the 24th
Intl Conf. on Large installation system administration, ser. LISA’10.
USENIX Association, 2010, pp. 1-16.

C. Bunch, N. Chohan, C. Krintz, and K. Shams, “Neptune: a domain
specific language for deploying hpc software on cloud platforms,” in
Proc. of the 2nd Intl workshop on Scientific cloud computing, ser.
ScienceCloud "11. ACM, 2011, pp. 59-68.

J. Mirkovic, T. Faber., P. Hsieh, G. Malayandisamu, and R. Malavia,
“Dadl: Distributed application description language,” USC/ISI, Tech.
Rep. ISI-TR-664, 2010.

Nimbus Project, http://www.nimbusproject.org/, [retrieved: june, 2012].
T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and
B. Rao, “Quantitative comparison of Xen and KVM,” in Xen summit.
Berkeley, CA, USA: USENIX association, Jun. 2008.

P. A. L. Rego, E. F. Coutinho, D. G. Gomes, and J. N. de Souza,
“Faircpu: Architecture for allocation of virtual machines using process-
ing features,” in Proc. of Fourth IEEE Intl Conf. on Utility and Cloud
Computing, Dec 2011, pp. 371 -376.

ERHA Project, http://www.inf.ufpr.br/ggalante/erha, [retrieved: june,
2012].

J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook - 3rd ed.
Phlogiston Press: Cambridge, Massachusetts, 2008.
D. Poole, Linear Algebra: A Modern Introduction.
2006.

Cengage Learning,

259

