CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

A Generalized Approach for Fault Tolerance and LoadBased Scheduling of
Threads in Alchemi .Net

Vishu Sharma, Manu Vardhan, Shakti Mishra, Dharreei®ingh Kushwaha

Department of Computer Science and Engineering
Moatilal Nehru National Institute of Technology, Alabad
Allahabad, India
Email: {cs0916, rcs1002, shaktimishra, dsk}@mnuiira

Abstract— Computational grids can be best utilized by the
divide and conquer approach, when it comes to exeting a
large process. In order to achieve this, building mitithreaded
application is one of the efficient approaches. Ththreads are
scheduled on different computational nodes for exetion. One
of the frameworks that support multithreaded applications is
Alchemi, but it does not incorporate any load basedcheduling
and fault tolerance strategy. In Alchemi, a managenode uses
first come first serve (FCFS) scheduling to schedelthreads on
executors (node that execute independent threadjut it does
not consider any CPU load on which the executors ar
running. Moreover if an executor fails in between,then the
manager node reschedules the thread on other exeoutnode.
One solution for the above problem is to save intemediate
results from each thread and reschedule these thrda on
another executor. We propose an approach that prodes fault
tolerance in Alchemi by using Alchemi Replica Managr
Framework (ARMF), where the manager node will be
replicated on one of its executor node. The propodealgorithm
is 6-16 percent more efficient than FCFS, when impmented in
Alchemi.

Keywords-ARMF; FCFS; fault tolerance; load baseukstuling.

. INTRODUCTION

A computational grid provides distributed enviromiza
which user jobs can be executed either on locahaiemote
machines [2]. In grid, user jobs are considered
applications that contain the tasks to be executedher,
each independent task is represented by a singéadh
Whenever a user is having a job which contains ipielt
individual tasks it is better to use multithreadamyironment
because thread creation and management is eadiéastar
than process creation. Threads provide followingaathges
over processes [20]:

a user. Alchemi .NET has the 5 priority levels friowest to
highest. Each application consists of several ttwedhe
manager node is responsible for the schedulingrefitls on
different executors and collects the results frohese
executors after successful completion. The twoeissalated
with Alchemi are scheduling of threads and faukrance.
The first issue is that of scheduling, where trenager
node uses FCFS [17] policy for scheduling. It stotiee
threads according to their priority and scheduteshighest
priority thread on next available executor. It doest
consider the CPU load of the processors on whi@h
executors are running. If more than one executavéslable
at a time, it might happen that a thread is sclestloin a
more loaded executor which can degrade the perfurea

public abstract class GThread : MarshalByRefO

{

public abstract void Start();

/* method is overridden by the class that inhettits
Gthread class*/ }

Figure 1. Structure of Gthread class.

Second issue is that of Fault tolerance, this hgygtem
to recover from faults [4]. In case of Alchemi grifla thread
is scheduled on an executor and due to some reaens

a§Xxecutor crashes, the thread running on this esealso
crashes. In such a case, the manager reschedislgébrdad
on another executor and the thread is restartenh fitee
scratch. Moreover there may be the case when tbleeAdi
manager can crash and all the executors curresgigtered
with the manager will come to halt.

One solution to the above problem is discussedbjn [
The authors have used a file based implementatiavhich

« Thread creation takes less time because it uses tfefile stores the intermediate results and if threshes it is

address space of process that owns it.
e Thread termination is easier than process

* There is less communication overhead between

threads because address space is shared.

Figure 4 shows the architecture of Alchemi. It shaav
manager connected with four executors. Alchemvides
API’s that are used to create grid applicationsAlchemi,
Gthread class is used to implement the multithreagi 3].
Figure 1 shows the Gthread class and its strudtucentains
an abstract method start ().Each thread is giveriagity by

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

rescheduled on another executor and resumes ituitéxe
from last successful result, without starting frém scratch.
It reads the last successful result from the stbred
The second limitation in [5] is that all the fatdlerance
code overhead is on the user who submits the apbiplic
The Alchemi manager is not responsible for any kafd
activity. Thus we came across the following issties are
yet to be resolved in Alchemi .NET.
If a thread execution fails in between, then how th
values produced by this thread (till the point of
failure) can be saved at manager node and how the

211

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

remaining work of the failed thread is assigned toincurring more overhead on the manager node. This
other thread. Approach given in [5] does not talkapproach [5] has been shown only for one applinatio
about how this kind of fault tolerance mechanismAuthors have not discussed how other applicatiars lwe
can be implemented in manager node. It completelymplemented using this approach.

relies on user. Neither have they discussed abeut t

possibility of Alchemi manager failure.

One of the characterization techniques is givgi0j. In
this technique, individual machine faults are dadinas,

« If the more than one executor is available at samgesource level fault and faults in global envirominef grid
time and the CPUs on which these executors argre considered as service level faults. This paopes not
running might be overloaded then how to scheduleelaborate much about the resumption of jobs froenpiint

threads to get a better solution.

where it was crashed.

To address above mentioned issues, a generalized Another improved approach is given in [11]. Fault

approach is proposed as under, in which fault doleg is
provided for computational applications [12] rurgnion a
global grid.

tolerance is achieved at job level but as eachcpmb be
divided into individual tasks using multithreadiag several
issues like which thread got faulted, how to corabthe

To provide a kind of check pointing scheme whichresults from faulted threads etc remain unhandled.

stores the intermediate results produced by threads An approach for thread scheduling is shown in [16],
and the Alchemi manager node is incorporated withwhere different threads are scheduled to downldes! from

the facility to control the execution of failed ¢#ads

different servers. But in this approach if a thrdads to

and reschedule these threads on other availabRxecute, it is rescheduled after all threads corapleeir
executors. In case of Alchemi manager failure theexecution.

ARMF is proposed, which will provide the backup

in such cases.

All the above discussed literature work motivatedta
put efforts for providing a novel solution to fatdlerance

« To choose the best available executor on the bésis and load based scheduling in Alchemi .NET.

the load of CPU.

For more complex scientific application this appfoa
may not work well as it requires users input. Heribe
proposed approach is confined to the computatitengive
processes.

Rest of the paper is organized as follows. Secflo
describes the existing work done in fault tolerarsel
scheduling in grids. Section 3 shows the propoggtcach.
Section 4 shows the case study using the propdgedthm
and Section 5 derives the conclusion.

. RELATEDWORK

In load-based scheduling [18], load information'the
exchanged much frequently due to network commuioicat

. PROPOSEDAPPROACH

In our approach two concepts, first is fault totera and
second is scheduling of threads, based upon CPdl doa
integrated into single algorithm. We first discugsout the
fault tolerance approach followed by the threadedaling
based on CPU load. The proposed approach did netdw=y
the manager load, as the thread will always exeontéhe
executor node, not on the manager node. There makeb
case of manager failure, which we have discusskevbe

A. Fault Tolerance Approach

In Alchemi .NET the applications are divided into
individual threads and these threads are schedaoled

overheads [2]. It is desirable to exchange the loagurrently available executors. If a thread execustops in

information only when it is needed.
In a system, fault tolerance is achieved by meéssme

redundancy that could be hardware, software or time

redundancy [19].

between then the work done by that thread till gwant will
be lost.

In [5], an approach is proposed in which file igated
for each thread which keeps track of thread execufhis

Viadimir et al. [7] discuss about the scheduling ofapproach puts extra burden of creating and usiadithover

divisible load applications, where the resources saiected
dynamically, based on the intermediate results.tHis

approach, application specific requirement alsy9la vital

role in selecting the resources. But this apprasetpplied at
application level and does not concentrate on rtuldaded
grid [15] environment.

the application programmer who creates the apjoicat

We propose an approach that enhances this idelay[5]
incorporating the manager with the capability afatimg and
maintaining the file. Each application, submitteg¢ bk
different user is different and hence the interratdresults
(variables) would be different. We try to genemlithis

Zeliko et al. [8] discusses an improved scheduling®PProach so that different kind of applications dam

strategy in Alchemi. This approach still relies anstatic
strategy for selecting the executors and adds mgtioi fault-
tolerance. To achieve fault tolerance, a file basetinique
is proposed in [5]. First problem with this approas that it
places the burden of creating and manipulatindikhen the
user who creates the application and the manages dot
contribute in any kind of fault tolerance activit$econd
problem is that for each thread there is a sinifge fmeans

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

executed in the same way. To support this kind of
dynamicity, we are using the XML-file. As the agmaliion is
submitted, the manger node creates an XML-file with
relevant information loaded into it. This informati is
responsible for resuming a crashed thread.

A big challenge in this approach is how to identligse
variables. In our approach these variables arelisgipipy the
user who submits the application because the usewk
what and where the values must be stored. Durieghttead

212

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

execution, the executor is responsible for saviege values
into the XML-file that is on manager. Whenever astred
thread is rescheduled on different executor theagannode
will extract the values from that XML-file and wiflass it to
the thread so that it can resume its operations.

Public class table: Gthread /* user cod { table (
int starting_number, int last_number)

{/* constructor initializes the values in XML fil&

/* initialization of values done by manager */

} Public void start()

{for(hum=starting_number;num<=last_number;
number++)

for(inti=1; i<= 10; i++)
{ result=num*i; }

savetofile(num, result);

}} Savetofile(values)/* method runs on executbr

{ /* sends intermediate values to the managelenp
*/ }

Figure 2. Proposed structure of thread implementation.

Figure 2 shows the structure of the threaded ¢lestsa
user implements. This class extends the Gthread gizen
in Figure 1. The Structure of the XML file is givamFigure
3. This file contains the values for threads forickh
processing has been successful.

<file application_id="*“><thread
<init><thread_id> 123</thread_id>
<first number>1</first number>
<last number>5<last number>
<completed>yes</completed></init></thread>
<thread>
<init><thread_id>163</thread_id>
<first number>6</first number>
<last number>10<last number>
<completed>no</completed>
</init>

</thread> </file>

Figure 3. Structure of XML file.

In the existing file-based fault tolerance approgsh
fault tolerance is supported at user end. Faudirdoice is
completely dependent on application user. In ooppsed
approach, fault tolerance is supported by the Afdhe
manager, application user need not to concern alsut
implementation.

Next, in Alchemi architecture, there is no prowsifor
handling the situation where manager can fail. Wriese
circumstances all the Executors registered with feiked
manager will stop executing, and the whole systeith w
come to halt. There should always be some backeaplica
manager, so that single point failure can be awbide

Alchemi manager which is responsible for managhe t
execution of grid applications can be replicatetisTtan be

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

achieved by replicating the Alchemi manager abiits of the
Executor, which is currently registered with thiamager.
Figure 4 describes the whole scenario. The marnagpbs
is connected with four executors. Each executocues an
independent thread. User application is contaiBitiyreads.

— R
— T1LFL ~
-~ ~
4 T1 T3 N
Executar 2 Executor = | N
\ / N 'L
T2 =
Executor 4
) a L.
Executor 1 > Manager - Replica Manager
T1,P1 Tz2,p2 | T3P /
AN I I T2, P2
~ N_._._-/' e
‘-\. /

~Lsers Application
—_

—

Figure 4. Architecture of Alchemi and Alchemi Replica manager

P1, P2, P3 are the thread priorities assigned &yuser
for the respective thread. T1', T2', T3’ are theretid
associated with the Replica manager which is orciixe 4.

The information that needs to be transferred to the
Executor node, so that the Alchemi manager caniraont
functioning from the point of failure and not frothe
scratch, is stored in a XML file with the managEhnis XML
file needs to be replicated to that Executor nodeich is
acting as a replica of Alchemi manager. Periodidation of
this XML file is required, so as to maintain thensistency
of the system.

The information that needs to be transferred he t
executor node is stored in a XML file with the mgeg so
that the Alchemi manager can continue functioniognf the
point of failure and not from the scratch. This XMile
needs to be replicated to that Executor node, wisiettting
as a replica of Alchemi manager. Periodic updatibihis
XML file is required, so as to maintain the consmty of the
system.

In the present Alchemi framework, an executor can
register itself only with one manager. Issue asgedi here,
from the developers/programmers perspective is “hiogv
Executor will register itself with the new manager., the
replicated manager in case of manager failure”.hWfite
present framework, if the manager fails, the neplica
manager needs to inform all the executors, regdtevith
the failed manager, to get them registered with rieev
replica manager. Or there should be some provigipn
which an executor can register it with more thare on
manager.

B. Maodified Scheduling Algorithm

Alchemi .NET provides its grid API that is used to
develop grid applications to be submitted to theh&ami.
Each application contains threads. Number and ipriof

213

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

threads are defined by the application programmtettoes
not consider current performance of the CPU on lviihe

executor is running. If at the same time two execuiare
available and one of these is overloaded wherdees &t not,
so it might happen that a highest priority thremddheduled
on an executor that is overloaded. In those casemthe
higher priority thread execution duration is largijs

overloaded executor might degrade the performance.

C. Algorithm

The algorithm combines both the approaches disdusse
above. lIts theoretical description is given inureg?7.
The architecture of the proposed approach is showigure
8. A ft_thread is added at manager and executoeso#it
manager node the ft_thread is running continuoasly is
responsible for receiving the intermediate valuesnfthe
ft_thread running on executors. It writes the imtediate

In the proposed approach, an executor does notitend \3jyes into the XML file and reads them in caseaalty
load information periodically, rather it sends ihenever an

executor finishes execution of a thread and iteiady to
receive a new thread from the manager. We assuatéth
thread is interrupted during its execution due he toad

information on its machine.

In Figure 5 default mechanism of selecting the atas

is shown.

Stepl: Thread=gethighestprioritythrea
Step2: Executor=Getnextavailableexecutor()

Step4: Schedule(dedicateschedule);

Step3: create new schedule with executor and thrgad

Figure 5. Default scheduling mechanism in Alchemi.

Figure 6 shows the modified algorithm, if more thware
executor is available at the same time our algorigielects

the best one.

Stepl: Thread= Gethighestprioritythrea

Executor= Executoravailable[].getleasded().

Step4: schedule(dedicateschedule);

Step2: Execut_available[]=Getcurrent_avail_exe¢utor

Step3: Create new schedule with executor and thread

Figure 6. Modified mechanism.

/ T \

thread needs to be rescheduled.

1.Get the highest priority thread from the datat

2.Create the entry in XML file for that thread.

3.Get the available executors check their load fag
and if more than one executor is available get [the
minimally loaded executor.

4.Receive the intermediate values sent by the exed
for that thread.

5.Replace the existing value in XML file with th
recently received values.

6.If executor gets disconnected then check the thiead
status allocated to that executor. If it is n
completed create new thread with the same thread id
that was executing on the crashed executor.

7.Supply the last successful results to that ne
created thread so that it can resume its execution.

8.Get the minimally loaded executor and assigned this
thread to that executor.

9.Repeat steps 1 to 8 until the thread databaseptyem

Figure 7. Proposed algorithm.

thr=ad exeC_Itor
storage storag=

Manager Node

i.D C Savetofile
HimL File je——p] » j | 1
‘g —omrunication between threads £ implementation
y to support fau t tolerance # g
- v
% void start) _ o
Schedulinc | ¢ I Swecution in
tirzas ‘% savetodle(atry | Starts method
1
-

sxepcutor selectior
to assign the treac

racieving the thresds fram
rianager and executing them

. thread responsible for
~a ﬁ

Executor Node

Figure 8. Architecture of Fault Tolerant Alchemi.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

214

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

IV. CASESTUDY

for a thread is shown on a normal executor. Werassihat
an overloaded executor takes 50% more time to éxexu

We evaluate the scenario where an overloaded executthread. In Table | application number 4 has threzfdsame

might be a bottleneck for the performance. In Féglr we

type, i.e., all the threads are having same pyioiit this case

show an example witthree executors on which threads arealso, our proposed algorithm performs well.

scheduled. We assume that all
overloaded execute the threads in approximatelyegsanme.

In Figure 9, an executor is marked as overloadetlitan
takes more time to execute a thread as compareahto
average loaded or underloaded executor.

An average loaded or underloaded executor takestd u
of time to execute a high priority thread and 2tsi0f time
to execute a low priority thread whereas an oveeda
executor takes 6 units of time for high priorityehd and 3
units of time for low priority thread. Hence thengoletion
time for this application according to FCFS schiduis 9
units of time.

In Figure 10, we see another arrangement of threads

the executors. In this low priority threads areestified on

overloaded executor and all high priority threade a
scheduled on less overloaded executors. The capplet

time of the application is 8 units of time.

evecutar 1 H L
L L |
evecutar 2
coccutor 3 overloaded H | L |

i oty Lts by &g by

Timer

H-high priority thread L- low prior ity threac

Figure 9. Arrangement of threads on executors according faudte
mechanism.

Load information collected from the executor alsdpk
in selecting the best available executor wheneubéread is
rescheduled after a crash. In our approach we astua if
at any point of time two executors are available setect
one which is less loaded.

In the simulated environment we analyze the behafio
proposed application with different applicationshe$e
applications are included in random. In Alchemifetent
executor nodes are connected to manager node. thesa
available executor nodes some are overloaded ipaoson
to others.

Table | shows five applications, number of high éowl
priority threads for each application. In this &btolumn
name A.N. stands for application number, N.T. fatal
number of threads in an application, N.H.P for Nembf
high priority threads, N.L.P. for Number of low gty
threads and E.E.T. for Expected execution time omal

executor. In Table Il, completion time for FCFS and

proposed algorithm is shown. The total number odats in
a single application is shown in Table I. The exiecutime

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

executors that ate no

executor 1

executor 2

executor 3 overladed

tl t2 t3 t4 t5 tEu t?- tB tg
Tirme
H- high priority thread

Figure 10.Arrangement of threads on executors accordingdpgsed
algorithm.

L- lowe priority thread

TABLE I. APPLICAION CHARACTERISTICSH RPRESENTS THE HIGH
PRIORITY THREAD ANDL REPRESENTS THE LOW PRIORITY THREAD
AN. N.T. N.H.P N.L.P E.E.T.

H L
1 7 2 5 4 2
2 14 2 12 6 4
3 11 2 9 10 6
4 9 9 0 6 -
5 6 4 2 10 5

Figure 11 shows the results obtained from FCFS and
proposed algorithm in simulated environment. Itvegidhat

our proposed algorithm gains better completion tire@gure

8 also shows that for a given application set, pnaposed
algorithm is 6-16 % more efficient in comparisonRGFS
algorithm. In case where all the threads have gaiosty, it

is 11% more efficient than the FCFS algorithm.

V. CONCLUSION

An approach that achieves fault tolerance suppdsied
manager node of Alchemi is presented in this paper.
comparison to other approaches, the schedulinigre&ds on
various nodes after the crash requires no uservaréon.
Rather the proposed approach implements faultaioter in
system by using manager node and executor nodeal¥de
propose an Alchemi Replica Manager Framework (ARMF)
and a scheduling algorithm based on the load irdtion of
executor nodes. ARMF replicates the XML-file, whigh
maintained by the manager node and stores alletipaired
information about the threads executing on the @xes, to
one of its executor, which will be acting as thelie
manager in case of manager failure. Our proposgatitim
selects the executors depending upon the loadniafiion of
currently available executors. This helps Alchenaneger
to select best executor (least loaded for a higbrifyr

215

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

thread) amongst available ones. In performanceysitiias
been found that the proposed approach is 6 — 16d¥e m
efficient than FCFS, when implemented in Alchemi. €]
Alchemi Replica Manager Framework (ARMF) provides a
mechanism to replicate manager node to one okésLgor.

7
TABLE Il COMPARISON BETWEEN PROPOSED ALGORITHM ANBCFS 7
Application No.of No.of FCFS Proposed
number exec- over Comp- algorithm
utors loaded letion completion
CPUs time time (8]
1 3 1 9 8
2 Z 2 21 18 9]
3 3 1 33 28
4 3 1 18 16
5 3 1 22.5 20
[10]
35 - A
= // \\ o —+—FCFS
g p/d \Zal
Z 15 —=— PROPOSED [12]
g // ALGORITHM
g 10 ¢
: [13]
o T T T .
1 2 5 + 5
application number [14]
Figure 11.Performance study of both algorithms.
[15]
REFERENCES
[1] Sunita Bansal, Gowtham K, and Chittrnjan Hotta:vélo
adaptive scheduling Algorithm for computational dgri
Proceeding IMSAA'09 Proceedings of the 3rd IEEE[1g)
international conference on Internet multimedia viees
architecture and applications, pp. 1-5, 2009.
[21 Ruchir Shah, Bhardwaj Veeravalli, and Manoj Misfan the
Design of Adaptive and Decentralized load balancing
algorithms with Load estimation for computationatidg [17]

environments, IEEE transactions on parallel andridised
systems, vol. 18, no. 12, pp. 1675-1685, 2007.

Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and
Srikumar Venugopal: Alchemi: A .NET-based Grid [1g]
omputing Framework and its Integration into Glokgids.

In: Grid Computing and DistributedSystems (GRIDS),
Technical Report, GRIDS-TR-2003-8, Grid Computingda
Distributed Systems Laboratory, University of Maliboe,

Australia, pp. 1-17, 2003

William C. carter: Fault-Tolerant Computing: An fotluction

and a Viewpoint, IEEE TRANSACTIONS ON
COMPUTERS, vol. C-22, no. 3, pp. 225 — 229, 1973.

Md. Abu Naser Bikas, AltafHussain, Abu Awal Md. %o
Md. Khalad Hasan, and Md. Forhad Rabbi: File BaG&dD
Thread Implementation in the .NET-based Alchemi

(3]

[19]
[4]

20
5] (20]

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Framework, Multitopic Conferencel, NMIC. IEEE Intey pp.
468-472, 2008.

Veeravalli Bharadwaj, Debashish Ghose, and Thomas G
Robertazzi: Divisible Load Theory: A New Paradigor f
Load Scheduling in Distributed Systems, Cluster gotimg

6, pp. 7-17, 2003, 2003.

Vladimir V. Korkhov, Jakub T. Moscicki, and Valerid.

Krzhizhanovskaya: The User-Level Scheduling of Bibie
Load Parallel Applications With Resource Selectiand
Adaptive Workload Balancing on the Grid, IEEE syste
journal, vol. 3, no. 1, pp. 121-129, 2009.

Zelijko Stanfel, Goran artinovic, and ZeljkoHocenski
Scheduling Algorithms for Dedicated Nodes in Alch&nid.

IEEE International Conference on Systems, Man and
Cybernetics, pp., 2531 — 2536, SMC 2008.
Gracjan Jankowski, Radoslaw Januszewski, and Rafal

Mikolajczak.: Improving the fault-tolerance leveithin the
GRID computing environment - integration with tloevtlevel
checkpointing packages, CoreGRID Technical Report
Number TR-0158, June 16, 2008.

Jes’us Montes CeSViMa, Alberto S’anchez, and M&'1a
P erez.: Improving grid fault tolerance by meansgtifbal
behavior modeling, Ninth International Symposium on
Parallel and Distributed Computing, pp. 101-108.20

HwaMin Leel, DooSoon Parkl, Min Hongl, Sang-Soo2/eo
SooKyun Kim3, and SungHoon Kim4.: A Resource
Management System for Fault Tolerance in Grid Cdingu
International Conference on Computational Sciencel a
Engineering, pp. 609-614, 2009

Nirmalya Roy and Sajal K. Das: Enhancing Avaliabof
Grid Computational Services to Ubiquitous Computing
Applications, IEEE transactions on parallel andtriisted
systems, vol. 20, no. 7, pp. 953-967, 2009.

Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, anitk@nar
Venugopal: Alchemi: A .NET-based Enterprise Grid
Computing System, 6th International Conference raarhet
Computing Las Vegas, pp. 1-10, 2005.

Sandeep Singh Rawat and Dr. Lakshmi ajamani:
Experiments with CPU Scheduling Algorithm on a
Computational Grid, IEEE International Advance Catipg
Conference (IACC 2009), pp. 71-75, India, 2009

Jos’e Augusto Andrade Filho, Rodrigo ernandes déoMe
and Evgueni Dodonov: Toward an efficient Middlewé#oe
Multithreaded Applications in Computational Grid 1th
IEEE International Conference on Computational i&mzeand
Engineering, pp. 147-154, 2008.

Suvarna N. A and Dinesh Chandra: Evaluation of
Improvement Algorithms for dynamic Co-Allocation ttvi
respect to parallel downloading in Grid Computirgrst
International Conference on Integrated Intellig€omputing,
pp. 79-83, 2010.

U. Schwiegelshohn and R. Yahyapour: Analysis oétfir
come-first serve parallel job scheduling, Procegsliof the
ninth annnal ACMSIAM symposium on Discrete algamith
(SODA'98), pp. 629-638, 1998.

Cui Zhendong and Wang Xicheng.: A Grid Scheduling
Algorithm Based on Resources Monitoring and Load
Adjusting, Knowledge Acquisition and Modeling Wohkp,
2008, KAM Workshop, pp. 873-876, 2008.

Nils Mullner, Abhishek Dhama, and Oliver Theel:rdang a
Good Trade-off between System Availability ahidhe
Redundancy, Symposia and Workshops on Ubiquitous,
Autonomic and Trusted Computing, pp. 61-67, 2009.
http://www.personal.kent.edu/~rmuhamma/OpSysteme&ily
threads.htm accessed on 10-05-2011.

216

