
Measuring Elasticity for Cloud Databases

Thibault Dory, Boris Mejı́as
Peter Van Roy

ICTEAM Institute
Univ. catholique de Louvain

dory.thibault@gmail.com, peter.vanroy@uclouvain.be,
boris.mejias@uclouvain.be

Nam-Luc Tran
Euranova R&D

Mont-Saint-Guibert, Belgium
namluc.tran@euranova.eu

Abstract—The rise of the Internet and the multiplication
of data sources have multiplied the number of “Bigdata”
storage problems. These data sets are not only very big but
also tend to grow very fast, sometimes in a short period.
Distributed databases that work well for such data sets need to
be not only scalable but also elastic to ensure a fast response
to growth in demand of computing power or storage. The
goal of this article is to present measurement results that
characterize the elasticity of three databases. We have chosen
Cassandra, HBase, and mongoDB as three representative
popular horizontally scalable NoSQL databases that are in
production use. We have made measurements under realistic
loads up to 48 nodes, using the Wikipedia database to create
our dataset and using the Rackspace cloud infrastructure.
We define precisely our methodology and we introduce a
new dimensionless measure for elasticity to allow uniform
comparisons of different databases at different scales. Our
results show clearly that the technical choices taken by the
databases have a strong impact on the way they react when
new nodes are added to the clusters.

Keywords-Cloud computing; key/value store; elasticity;
NoSQL; Cassandra; mongoDB; HBase; Wikipedia.

I. INTRODUCTION

Nowadays there are a lot of problems that require
databases capable of storing huge quantities of unstructured
data. The datasets are so big that they must be stored on
several servers and, as new data are gathered and new users
appear, it must be possible to extend the available storage
and computing power. This can only be done by adding
more resources into the cluster, e.g., adding servers. This
addition is likely to have an impact on performance and
therefore the goal of this paper is to present the definitions,
methodology and results that are the outcome of our study
of elasticity for a few chosen distributed databases. We also
have defined a new dimensionless number to characterize
the elasticity that ease the comparison between databases.
The results are analyzed to explain the reason of some
unexpected behaviors, but some stay unexplained for now.

This paper summarizes the results of a master’s thesis
[1]. We present first the detailed methodology and defini-
tions, followed by the databases chosen, the measurement
conditions, and the benchmark implementation. Finally, we
present and analyze the measurement results.

II. STATE OF THE ART

The Yahoo! Cloud Servicing Benchmark [2] is the most
well known benchmarking framework for NoSQL databases.
It was created by Yahoo!. It currently supports many differ-
ent databases and it can be extended to use various kinds
of workloads. The benchmark used for the measurements
presented here could have been implemented on top of
YCSB as a new workload but it has not been for various
reasons. The first reason is simplicity: it seemed easier to
implement its functionalities directly instead of extending
the big and far more complex YCSB where it would not
have been so easy to control all the parameters. The second
reason is that we wanted to explore the best methodology for
measuring elasticity without being tied to the assumptions
of an existing tool.

III. METHODOLOGY

A. Definitions

1) Performance: The performance is characterized by
the time needed to complete a given number of requests
with a given level of parallelization. The chosen levels
of parallelization and number of requests used during the
measurements are explained in the step by step methodology.
In all the measurements of this article, we perform requests
in batches called request sets. This allows us to decrease
variability and improve accuracy in measurement time.

2) Elasticity: The elasticity is a characterization of how
a cluster reacts when new nodes are added or removed
under load. It is defined by two properties. First, the time
needed for the cluster to stabilize and second the impact
on performance. To measure the time for stabilization, it
is mandatory to characterize the stability of a cluster, and
therefore a measure of the variation in performance is
needed. The system can be defined as stable when the
variations between request set times are equivalent to the
variations between request set times for a system known
to be stable. That is, a system in which there are no data
being moved across the nodes and when all the nodes are up
and serving requests. These variations are characterized by
the delta time, which is the absolute value of the difference

154

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

in time needed to complete a request set and the time
needed to complete the previous request set. Concretely, for
a given database, data set, request set, and infrastructure,
the variability is characterized by the median value of the
delta times and the system is said to be stable if the last X
sets have a delta time smaller than the previously observed
value. In this article we fix the value of X to 5, which gives
satisfactory results for the measurements done.

We make the hypothesis that just after the bootstrap of
the new nodes, the execution time will first increase and
then decrease after an elapse of time. This is illustrated
graphically in Figure 1 by the shape of the curve. In case
the time needed for stabilization is very short, the average
value and therefore the shape of the curve could be nearly
unaffected by overhead related to elasticity, but at least the
standard deviation will increase due to the additional work
needed to move data to new nodes. It is important to take
this standard deviation into account because highly variable
latency is not acceptable. To characterize the elasticity in
this article, we will take both the execution time and the
standard deviation into account.

To characterize the elasticity with a single dimensionless
number, we therefore propose the following formula:

Elasticity =
A+B

(Rt1 +Rt2)2 ∗ F
(1)

Here A and B are the surface areas shown in Figure 1,
where A is related to the execution time increase and B is
related to the standard deviation, Rt1 is the average response
time of one request for a given load before the bootstrapping
of the new nodes, Rt2 is the average response time once the
cluster has stabilized with the same load applied. Finally, F
is the factor to suppress the dependency to the number of
requests per node in the cluster. It is given by

F =
Number of requests

cluster size
(2)

In all the measurements of this article, we assume that N =
M , that is, we double the number of nodes.

The triangular area defined by the edges (Rt1,Rt2), (Boot-
strap,Stable), and (Rt1,Stable) is not counted because even
for perfect elasticity this triangle will exist as a performance
ramp from level Rt1 to Rt2. The area A + B is then
purely due to elasticity and has a dimension of time squared.
The value Rt1 + Rt2 are both inversely proportional to
the average performance and have a dimension of time.
The elasticity is therefore the ratio of the elastic overhead
A + B to the absolute performance (Rt1 + Rt2)2 ∗ F and
is a dimensionless number. The division by F removes the
scaling factor of the size of the request set (e.g., the 10000
mentioned above).

B. Step by step methodology

Figure 3 illustrates the step by step methodology used
during the tests. It is based on the following parameters : N

Figure 1. Surface areas used for the characterization of the elasticity

Figure 2. Observed standard deviations for 10000 requests with 80% reads

the number of nodes, R the size of a request set and r the
percentage of read requests. In practice, the methodology is
defined by the following steps:

1) Start up with a cluster of N = 6 nodes and insert all
the Wikipedia articles.

2) Start the elasticity test by performing request sets that
each contain R = 10000 requests with r = 80%
read requests and as many threads as there are nodes
in the cluster when the elasticity test begins. The
time for performing each request set is measured.
(Therefore the initial request sets execute on 6 threads
each serving about 1667 (≈10000/6) requests.) This
measurement is repeated until the cluster is stable,
i.e., we do enough measurements to be representative
of the normal behavior of the cluster under the given
load. We then compute the median of the delta times
for the stable cluster. This gives the variability for a
stable cluster.

3) Bootstrap new nodes to double the number of nodes
in the cluster and continue until the cluster is stable
again. During this operation, the time measurements
continue. We assume the cluster is stable when the
last 5 request sets have delta times less than the one
measured for the stable cluster.

4) Double the data set size by inserting the Wikipedia
articles as many times as needed but with unique IDs
for each insert.

5) To continue the test for the next transition, jump to step
(2) with a doubled number of requests and a doubled
number of threads.

155

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Figure 3. Step by step methodology

C. Justification of the methodology

One approach to characterize the variability is to use the
standard deviation of request set times and a statistical test
to compare the standard deviations. However, our experience
shows that the standard deviation is too sensitive to normal
cluster operations like compaction and disk pre-allocations.
Figure 2 shows that the standard deviation can vary more
than a factor of 4 on a stable cluster made of six 4GB
Rackspace instances. This is why we use the delta time
characterization instead. Because it is based only on the
average values, it tends to smooth these transient variations.
The median of all the observed delta times is used instead
of the average to be less sensitive to the magnitude of the
fluctuations.

Remark that we still use the standard deviation as part
of the characterization of the elasticity. This characteri-
zation captures all the important information about the
elasticity (time needed to stabilize, loss of performance,
and variability) with the two surface areas (A and B) and
normalizes it into a dimensionless number that can be used
for comparisons.

Finally, the number of observations needed to have an
idea of the normal behavior of a database cluster cannot be
fixed in advance. Experience shows that, from one system to
another, high variability in performance can arise at different
moments. This variability is mainly due to the writes of big
files on the disk, like compactions, disk flushes, and disk
pre-allocations, all of which can happen at very different
moments due to the randomness of the requests and the
technical choices made by each database. The variability
has a measurable result that will be discussed in the result
section. In practice, the observations were stopped when
the performance and standard deviation got back to the
level observed before the compactions or disk pre-allocations
happened.

D. Properties of the methodology

All the parameters are updated linearly in respect to the
number of nodes that are bootstrapped in the elasticity test,
but all those parameters are not updated at the same time
during the methodology. However, the measurements obey
several invariants, which are given in italics below.

The size of the request sets is always increased at the
same time as the number of client threads, which implies
that on the client side, the number of requests done by each
client thread is independent of cluster size. On the database
nodes, there are two different situations. When the elasticity
test begins and during the entire first phase of the test, as
many threads as there are nodes in the cluster are started,
and therefore, the amount of work done by each node in the
cluster is independent of cluster size.

The second phase starts when new nodes are bootstrapped
and lasts as long as the cluster needs time to stabilize. During
this time, the amount of work done by the nodes already
present in the cluster should decrease progressively as newly
bootstrapped nodes start to serve part of the data set. In a
perfect system, all the nodes in the enlarged cluster should
eventually do an amount of work that has decreased linearly
regarding to the number of nodes added in the cluster. It is
important to note that the eventual increase in performance
that would appear at this point is not a measure of the
scalability as defined earlier. This is due to the fact that,
at this point, neither the data set nor the number of client
threads has been increased linearly regarding to the number
of nodes added. The goal of the elasticity test is only to
measure the impact of adding new nodes to a cluster that
serves a constant load.

Once the elasticity test ends, the size of the data set
inserted into the database is increased linearly according to
the number of nodes just added. As a consequence, during
the next round of the elasticity test the amount of data served
by each node has not changed. Therefore, once the number
of threads is increased at the beginning of the next elasticity
test, the total amount of work (number of requests served
and data set size) per database node does not change.

IV. DATABASES CHOSEN

The three databases selected for this study are Cassandra
[3] 0.7.2, HBase [4] 0.90.0 and mongoDB [5] 1.8.0 because
they are popular representatives of the current NoSQL world.
All three databases are horizontally scalable, do not have
fixed table schemas, and can provide high performance on
very big data sets. All three databases are mature products
that are in production use by many organizations [6] [7] [8].
Moreover, they have chosen different theoretical approaches
to the distributed model, which leads to interesting compar-
isons.

All three databases are parameterized with a common
replication factor of 3 and strong consistency for all requests
in order to ensure a comparable environment on both the
application and server side.

V. MEASUREMENT CONDITIONS

This section describes the budget allocated, the infras-
tructure and the data set used as well as the benchmark
implementation.

156

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

A. Budget and infrastructure

We first explain our decisions regarding budget and infras-
tructure, since they affect the whole measurement process.
The budget allocated for all the tests of this article is 800
euros. We choose to use the 4 GB cloud instances from
Rackspace. This allowed us to perform measurements at full
load for up to 48 nodes with all three databases.

Using cloud instances instead of dedicated servers has
consequences on performance. Indeed several instances are
sharing the same physical computer and therefore using
cloud instances adds variability, depending on the resources
usage of the other instances, to the measurements.

Finally, the data set per node has been chosen large
enough to be sure that the subset of the data stored on each
node could not fit entirely in RAM. It is important to remind
the reader that the databases studied here are made to handle
“Bigdata” problems where typically it would cost too much
to fit all the dataset into memory. Therefore, with a focus
on “Bigdata”, it is natural to consider databases that cannot
fit into memory.

B. Data set

The data set is made of the first 10 million articles of the
English version of Wikipedia. They can be downloaded as a
single archive provided [9] by Wikimedia itself. The dump
was downloaded on March 7, 2011 and it takes 28 GB of
disk space.

C. Benchmark implementation

The benchmark is written in Java and the code source is
available as a GitHub repository under a GPL license [10].
The benchmark framework is used to automate the parts of
the methodology that concerns the insertion of articles as
well as applying the load and computing the results.

To approximate the behavior of Wikipedia users, the
requests are fully random. Meaning that for each request,
a uniform distribution (the Java class java.util.Random,
initialized without seed) is used to generate a integer in
the range of the IDs of the inserted documents. Then, after
the article has been received by the client, a second integer
is generated using a uniform distribution to decide if the
client thread should update this article or not. Update simply
consist in appending the string “1” at the end of the article.

VI. RESULTS

Figures 4 to 11 give graphs showing the elastic behavior
of all databases at all transition sizes. These graphs represent
the measured average time in seconds needed to complete
a request set versus the total execution time in minutes.
Standard deviations are indicated using symmetric (red)
error bars, but it is clear that this does not imply improved
performance during stabilization (downward swing)! The
first part of each graph shows the normal behavior of
the cluster under load. The first arrow indicates when the

Table I
STABILIZATION TIME (IN MINUTES, LOWER IS BETTER)

Database Cluster size variation Data tr. time Add. time Total time
Cassandra 6 to 12 nodes 113 28 141
HBase 6 to 12 nodes 3.3 9 12.3
mongoDB 6 to 12 nodes 172 11 183
Cassandra 12 to 24 nodes 175 26 201
HBase 12 to 24 nodes 3.2 14 17.2
mongoDB 12 to 24 nodes 330 22 352
Cassandra 24 to 48 nodes 86 2 88
HBase 24 to 48 nodes 8 37 45

Table II
ELASTICITY (LOWER IS BETTER)

Database Cluster old and new size Score
Cassandra 6 to 12 nodes 1735.
HBase 6 to 12 nodes 646.
mongoDB 6 to 12 nodes 4626.
Cassandra 12 to 24 nodes 1044.
HBase 12 to 24 nodes 70.
mongoDB 12 to 24 nodes 4009.
Cassandra 24 to 48 nodes 3757.
HBase 24 to 48 nodes 73.

new nodes are bootstrapped and the second arrow indicates
when all the nodes report that they have finished their data
transfers. The graphs also show the standard deviations and
the two thin (red) lines show the acceptable margins for the
delta time that are computed from the first part of the graph.

Table I shows the stabilization times (in minutes), which
consists of the times for all the nodes to finish their data
transfers as well as the additional times needed for the whole
cluster to achieve stabilization once all the data transfers
are done. The time needed to finish all the data transfers is
measured using tools provided by the databases to monitor
data transfers across the cluster. The additional time to
achieve stabilization is the time when the cluster reaches
a stable level minus the time when the cluster reported that
all the data transfers were done.

Table II shows the dimensionless elasticity scores accord-
ing to the definition in Section III-A. In practice, the curves
have been approximated by cubic splines interpolating the
given point and those splines have been integrated using
a recursive adaptive Simpson quadrature. The lower the
elasticity score, the better the elasticity.

A. Analysis of the results

Analysis of the measurement results is made more difficult
by the variability of the cluster performance under load
before new nodes are bootstrapped. Those variabilities are
very clear for Cassandra on Figure 4 and 5, for HBase
on Figure 8 and for mongoDB on Figure 11. These big
variabilities in performance have different origins but all of

157

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Figure 4. Elasticity under load Cassandra (6→12 n.)

Figure 5. Elasticity under load Cassandra (12→24)

Figure 6. Elasticity under load Cassandra (24→48)

Figure 7. Elasticity under load mongoDB (6→12 n.)

Figure 8. Elasticity under load HBase (6→12 nodes)

Figure 9. Elasticity under load HBase (12→24 n.)

Figure 10. Elasticity under load HBase (24→48 n.)

Figure 11. Elasticity under load mongoDB (12→24)

158

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

them have the same immediate cause: the writing of at least
one big file on the disk. First, for Cassandra and HBase,
big writes are triggered when compactions or disk flushes
occur. The flushes occur when the memtable is full, and com-
pactions follow after a few flushes [3] [11]. A load constantly
updating data will, sooner or later, trigger compactions and
disk flushes. Second, for mongoDB: big writes are only
triggered when disk pre-allocations occur. mongoDB uses
the mmap function provided by the operating system instead
of implementing the caching layer itself, meaning that it is
the OS itself that decides when to flush. mongoDB pre-
allocates big files when it needs new storage space instead
of increasing the size of existing files. In practice, mongoDB
allocates space on disk each time it needs to store a lot of
new data, like during chunks movements or big inserts.

Note that compaction is part of normal database operation
that is needed both when handling client requests and when
handling bootstrapped nodes during elastic growth. So we
make no effort to remove the compaction cost from our
measurement of elasticity. It is important to note that the
only requests that will be slowed down by the writing of
big files are the ones sent to nodes currently writing those
big files. Therefore, when the number of nodes increases, the
probability to send requests to a node currently doing a lot of
I/O decreases. Indeed, looking at Figure 6 for Cassandra and
Figure 10 for HBase, we observe the overall performance is
more stable for bigger clusters.

On this infrastructure, the technical choice taken by
mongoDB to make small but frequent disk flushes leads to
less variability in performance than Cassandra. One could
wonder what is the cause of the variability observed at the
beginning of the chart on Figure 11 for mongoDB as no
new nodes were bootstrapped at this time. This is caused by
the fact that during the insertion, some nodes stored more
chunks than the other and only started to distribute them
across the cluster during the start of the test.

The variability of HBase performance is quite different
from Cassandra even if their technical choices are close.
By default the memtable’s size of Cassandra is 64MB
and HBase is 256MB, leading to more frequent flushes
and compactions for Cassandra but on the other hand, the
compactions are also made on smaller files for Cassandra.
The effect of compactions is only visible on Figure 8 and
not on Figure 9 nor on Figure 10. This could be because the
number of nodes is bigger and the effect of the compaction
impacted a smaller number of requests.

Finally, there are no results for mongoDB going from
24 to 48 nodes. This is due to several problems encoun-
tered with mongoDB during the insertion of the articles.
Starting with a cluster of size 12, mongod processes started
to crash because of segmentation faults that caused data
corruption, even with the journaling enabled. This problem
was temporarily fixed by increasing the maximum number
of files that can be opened by the mongod processes. But

for 24 nodes, the segmentation faults were back with another
problem. Eight threads were used to insert the articles, each
of them making its requests to a different mongos router
process, but all the writes were done on the same replica
set. The elected master of this replica set was moving the
chunks to other replica sets but not as fast as it was creating
them, leading to a disk full on the master and at this point
all the inserts stopped instead of starting to write chunks on
other replica sets.

Elasticity

For the analysis of the elasticity results, we first explain
some technical choices of the databases. The databases can
be divided in two groups depending on the kind of work
that the databases have to do when new nodes are added.

In the first group, which contains Cassandra and mon-
goDB, the databases have to move the data stored on the old
nodes to the new nodes that just have been bootstrapped. In
the case of a perfectly balanced cluster, that means moving
half of the data stored on each of the old nodes to the new
ones.

In the second group, which in this article contains only
HBase, the database (HBase itself) and the storage layer
(Hadoop Distributed File System [12]) have been separated
to be handled by two distinct entities in the cluster. At the
HBase level, each region server is responsible for a list of
regions meaning that it has to record the updates and writes
into memtables and it also acts as a cache for the data
stored in the HDFS level. When new nodes running both
a region server and a datanode are bootstrapped, the new
region servers will start to serve a fair share of the available
regions but the existing data will not be moved to the new
datanode. Therefore there will be not big data transfer on
new node bootstrapping.

The fact that HBase does not have to move all the data
appears very clearly on the charts. HBase only needs a
few minutes to stabilize while Cassandra and mongoDB
take hours. The technical choices taken by HBase are a
big advantage in terms of elasticity for this methodology. In
Figures 9 and 10, HBase moves new regions to the region
servers quickly, but the new region servers still need to load
data, this is why the peaks happen after the new nodes are
integrated.

For Cassandra, the impact of bootstrapping new nodes
is less than the variability induced by normal operations
for clusters smaller than 24 nodes, after that the impact
is much more important than the usual variability of the
cluster’s normal operations. Note that the performance of
Cassandra only improves when all the nodes are fully
integrated because new Cassandra nodes only start serving
requests when they have downloaded all the data they should
store. The time needed for the cluster to stabilize increased
by 54% between the tests of 6 to 12 nodes and 12 to 24
nodes, while it decreased by an impressive 50% between the

159

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

tests of 12 to 24 nodes and 24 to 48 nodes. The nonlinear
increase is due to the fact that new nodes know which are the
old nodes that should send them data thanks to the nodes’
Tokens, leading to simultaneous data transfers between nodes
across the cluster. On the other hand, the 50% decrease is
still to be explained.

With mongoDB, the variability in performance added
by the bootstrap of new nodes is much bigger than the
usual variability of the cluster. Unlike Cassandra, newly
bootstrapped mongoDB nodes start serving data as soon
as complete chunks have been transferred. Therefore newly
bootstrapped nodes that serve the few chunks already re-
ceived will pre-allocate files to make room for the next
chunks received leading to a lot of requests potentially
served by nodes writing big files to disk and therefore
degrading the performance. The time needed for the cluster
to stabilize increased by 92% between the tests of 6 to 12
nodes and 12 to 24 nodes. This almost linear increase is due
to the fact that there is only one process cluster wide, the
balancer, that moves the chunks one by one.

The elasticity scores give an accurate idea of the elasticity
performance of the databases, disadvantaging databases for
the height of the peak and the time needed before stabi-
lization. Note that, for HBase, the decreasing score is due
to relatively smaller peaks as the cluster grows and the last
one can also be explained by the fact that the performance
is less, so the elasticity is relatively better with respect to
this worse performance. Globally, the elasticity score also
shows the advantage of HBase for clusters of all sizes.

VII. CONCLUSIONS AND FUTURE WORK

The main conclusion of our measurements is that the
technical choices taken by each database have a strong
impact on the way each of them reacts to the addition of
new nodes. For this definition of elasticity, HBase is a clear
winner. This is due to its technical choices and architecture
leading to much less data transfer on node addition.

This article gives measurement results only for systems
that scale up, and not for systems that scale down. We
decided for this limitation because we wanted to explore
in detail what happens when a system scales up, and expe-
rience has borne out that these measurements are sufficiently
surprising and technically difficult to carry out. We expect
that future work measuring systems that scale down will give
a fresh set of surprises.

We plan to continue expanding the cluster sizes to see if
the current trends will last or if some other bottleneck will
appear at some point. For example it would be interesting
to see if it is possible to reach any bottleneck with systems,
like HBase and mongoDB, using a centralized approach to
store the localization information in the cluster.

We also intend to solve the problems encountered for
mongoDB to measure its performance optimally. Then it
would also be interesting to do the same tests but with

different values for the parameters like the read-only percent-
age or using a different statistical distribution. We plan to
extend our coverage of the measurement space and continue
to refine our new elasticity measure. Finally, we intend to
measure the performance of other databases like Riak and
distributed caches like infinispan and ehcache.

VIII. ACKNOWLEDGEMENTS

We would like to thank Euranova for the idea of studying
the elasticity of distributed databases and for their support
that helped us improve this article [13]. Special thanks go
to the director of Euranova R&D, Sabri Skhiri, for his
insightful comments. We also thank Ivan Frain and Samuel
Richard for their constructive comments.

REFERENCES

[1] T. Dory, “Study and Comparison of Elastic Cloud Databases:
Myth or Reality?” pldc.info.ucl.ac.be, Programming Lan-
guages and Distributed Computing (PLDC) Research Group,
Université catholique de Louvain, Tech. Rep., Aug. 2011.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in SoCC, 2010, pp. 143–154.

[3] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” SIGOPS Oper. Syst. Rev.,
vol. 44, pp. 35–40, April 2010. [Online]. Available:
doi.acm.org/10.1145/1773912.1773922

[4] Apache HBase, “Frontpage,” hbase.apache.org, Jun. 2011.

[5] mongoDB, “Frontpage,” www.mongodb.org, Jun. 2011.

[6] Apache Cassandra, “Frontpage,” cassandra.apache.org, Jun.
2011.

[7] HBase Wiki, “PoweredBy,” wiki.apache.org/hadoop/Hbase/
PoweredBy, Jun. 2011.

[8] mongoDB, “Production Deployments,” www.mongodb.org/
display/DOCS/Production+Deployments, Jun. 2011.

[9] Wikipedia, “Latest dump of Wikipedia English,” download.
wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.
bz2, Jun. 2011.

[10] GitHub, “Wikipedia-noSQL-Benchmark,” https://github.com/
toflames/Wikipedia-noSQL-Benchmark/, Jun. 2011.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A distributed storage system for structured data,”
ACM Trans. Comput. Syst., vol. 26, no. 2, 2008.

[12] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop distributed file system,” in Proceedings of the
2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), ser. MSST ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1–10. [Online].
Available: dx.doi.org/10.1109/MSST.2010.5496972

[13] Euranova, “Frontpage,” euranova.eu, Jun. 2011.

160

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

