
Testing the Suitability of Cassandra for Cloud Computing Environments

Consistency, Availability and Partition Tolerance

Felix Beyer, Arne Koschel,

Christian Schulz, Michael Schäfer

Irina Astrova
Institute of Cybernetics

Faculty IV, Department for Computer Science

Applied University of Sciences and Arts

Tallinn University of Technology

Tallinn, Estonia

Hannover, Germany irina@cs.ioc.ee

{felix.beyer, christian.schulz2, michael.schaefer}@stud.fh-

hannover.de, arne.koschel@fh-hannover.de
 Alexander Reich
BeEvolution GmbH

Stella Gatziu Grivas, Marc Schaaf Hannover, Germany

Institute for Information Systems

University of Applied Sciences Northwestern Switzerland

alexander.reich@beevolution.de

Olten, Switzerland

{stella.gatziugrivas, marc.schaaf}@fhnw.ch

Abstract—Since relational database management systems

(DBMSs) are ill-suited to cloud computing environments,

multiple efforts are now underway to offer a viable alternative

to relational DBMSs. These efforts have led to the rise of a new

kind of DBMSs called NoSQL. One of the most visible

products in this rise is Cassandra. Cassandra is a NoSQL

DBMS, which can also be used as a clustered file system.

Cassandra was claimed to be particularly well suited for cloud

computing environments. Our goal in this paper was to

confirm or deny that claim. Towards this goal, we conducted

tests on Cassandra to determine what levels of consistency,

availability and partition tolerance can be achieved and if these

can be achieved without sacrificing performance.

Keywords—Cloud computing, Cassandra, consistency,

availability, partition tolerance, experiments.

I. INTRODUCTION

Consistency, availability and partition tolerance are of
great importance to cloud computing environments. These
can be achieved by using relational or NoSQL database
management systems (DBMSs). Since NoSQL DBMSs are
still a new research area, various definitions exist that may
even contradict each other. For this paper, we have chosen
the following definition: NoSQL is a movement grouping all
efforts, which intend to provide a viable alternative to (SQL-
based) relational databases for storing and processing data
[1].

Relational DBMSs [3] are 30 years old. They have been
the dominant storage technology behind websites. The past
few years have seen the emergence of cloud computing
environments, which are going to be an increasingly
common backbone for websites. But cloud computing
environments and relational DBMSs do not fit well together
[10]. In particular, relational databases can scale, but usually
only when this scaling happens on a single node (i.e., vertical
scaling). When the capacity of that single node is reached,
relational databases need to scale horizontally and be

distributed across multiple nodes over a network. This is
when the suitability of relational DBMSs for cloud
computing environments is reduced.

A. Consistency

Consistency guarantees that every node in the cluster has
the same view on data. So once one node has written some
data, all other nodes in the cluster will see those data.

The importance of consistency for cloud computing
environments is perhaps best explained by example.
Consider an airline company that provides a booking
website. Assume that the airline company’s database is
distributed over a network, so data can be accessed from
different nodes. Consistency is endangered now because one
node may change data without knowing about the changes
have been made by other nodes. In particular, assume that a
customer opens a session on the booking website and a last
available seat for the selected flight is displayed to the
customer. This seat has already been booked, but the node
serving the customer’s session does not know about it yet.
The result is that the customer can still book the last seat.
Next time when the nodes synchronize each other,
inconsistency shows up as there will be two bookings for one
and the same seat.

To avoid a situation like the above, NoSQL DBMSs
should provide consistency. Relational DBMSs typically use
ACID (Atomicity Consistency Isolation Durability)
transactions for this purpose. But ACID transactions are not
distributed-system friendly. Therefore, NoSQL DBMSs
typically either skip them entirely or comply with BASE
(Basically Available Soft-state Eventual Consistency).

Compliance with BASE means that the latest version of
data on one node might not match that on other nodes; so
every node in the cluster is only guaranteed to see writes
eventually. As a result, NoSQL DBMSs might not handle
long running business processes [6] like booking flights,
where the current state of data, e.g., seats availability on the
plane, should be shown to all other customers while one

86

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

customer, who is booking a flight, has not finished the
booking yet.

B. Availability

Availability guarantees that if one node fails, there will
still be some copies of data on other nodes in the cluster, so
the availability of the whole cluster will not be endangered
by that node failure.

Continuing the previous example, assume that the node
serving the customer’s session experiences a failure during
which the customer cannot book the last seat anymore.

To avoid a situation like the above, NoSQL DBMSs
should provide availability. Relational DBMSs typically use
replication for this purpose. The same technique is used by
NoSQL DBMSs.

C. Partition Tolerance

Partition tolerance guarantees that the cluster remains
operational even when communication between nodes in the
cluster is lost.

Continuing the previous example, assume that the airline
company’s database is running on multiple nodes across a
network. Also, assume that a network connection with the
node serving the customer’s session is lost due to a network
failure. The database is now partitioned. If the database is
tolerant of it, then the cluster can still perform read and write
operations, i.e., the customer can still book the last seat. If
not, the cluster will be completely inaccessible.

To avoid a situation like the above, NoSQL DBMSs
should provide partition tolerance – they typically use
quorum for this purpose. Being single-node, relational
databases cannot be partitioned.

II. CONTRIBUTION

In this paper, we deal with using NoSQL DBMSs in
cloud computing environments. Unlike many other papers,
we do not focus on traditional approaches that use clustered
file systems like Gluster [2] or relational DBMSs like
MySQL and Oracle. Rather, we introduce a novel approach
that uses Cassandra.

Cassandra [5] was claimed to be particularly well suited
for cloud computing environments. Our goal was to confirm
or deny that claim. For this purpose, we experimented with
Cassandra. In particular, we built a test setup, developed a
test application and conducted tests on Cassandra using this
application.

III. CASSANDRA

Cassandra is a recently upcoming NoSQL DBMS that
can also be used as a clustered file system [4]. It was
originally developed as an open source by Facebook in 2007
to horizontally scale their internal application; viz. Inbox
Search. Later in 2009 Facebook released Cassandra to
Apache. This allowed Cassandra to move forward in the
direction that is more general to the public than just to
Facebook’s in-house needs.

Recently, Cassandra has acquired great popularity and
showed high potentials for cloud computing. This is because
Cassandra offers a variety of possibilities to provide the

desired levels of consistency, availability and partition
tolerance.

A. Consistency

In Cassandra, every operation is assigned a consistency
level, so that it can be decided whether the consistency
should be guaranteed among all nodes in the cluster or it is
acceptable if some node might not contain the latest version
of data, e.g., in case of a node failure. In particular,
Cassandra supports the following consistency levels:

ANY: W + R > N

ONE: W = 1 or R = 1

QUORUM: W = Q or R = Q

ALL: W = N or R = N,
where R is the number of records to read (i.e., the

number of reads on a replica), W is the number of records to
write (i.e., the number of writes on a replica), N is a
replication factor and Q = N / 2 + 1.

Even though Cassandra complies with BASE, it is still
possible to have ACID transactional consistency guarantees
using ZooKeeper [7], a coordination service for distributed
systems. For short running business processes, single path

locking can be used (classes ZkReadLock and

ZkWriteLock). However, in distributed systems with
many interactions, the use of single path locking is not
recommended since it often results in deadlocks. It is better

to use multi-path locking (a class ZkMultiLock) since this
class contains methods, which check for deadlocks and
handle them before they occur. A downside of multi-path
locking is decreased performance. For simple applications,
both single and multi-path locking is sufficient to ensure
consistency. More complex applications, however, require

the use of a class ZkTransaction. This class works in

conjunction with ZkMultiLock. It provides a simplified
Thrift API, which allows for specification of a series of data
mutation operations to be performed by a transaction. After

the transaction has been specified, a method commit is

executed with an instance ZkMultiLock passed it as a
parameter. At this point, cages will add a reference to a
transaction node, which is created by ZooKeeper. Next, the
transaction can read the current values of the data, which are
to be updated. At this point, the original state will be written
into the transaction node [8]. Once this has been done, the
data mutations will be performed. After that, all references to
the transaction node from within the locks will be removed.
The transaction node gets deleted and the transaction itself
has been committed.

If the node fails during the execution of a sequence of
individual data mutations, the cages will immediately be
unlocked. The transaction, which has already been executed,
will be rolled back to the “written before” state in the
transaction node. So the state of the database will be
identical to the original state before the node has performed
its operations. This guarantees consistency of the database
and complies with so-called relaxed ACID since changes one
node makes during a long running business process will be
seen by other nodes in the cluster [9].

87

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

B. Availability

In Cassandra, availability is achieved through replication.
Every node in the cluster that needs access to data has its
own replica, so a failure of one node will not make all
replicas unavailable at the same time.

C. Partition Tolerance

In Cassandra, partition tolerance is achieved through
quorum (e.g., if one node is separated from the other two
nodes in the cluster, it stops processing).

IV. TEST SETUP

The test setup consisted of a cluster having two nodes:
primary and secondary. Writes are directed at both nodes,
while reads are directed to just one of the nodes, which is
known as the primary node. Because the other node is kept
updated, it is known as a secondary node. It is always ready
to take over. If the primary node should fail or become
inaccessible for any reason, Cassandra will redirect reads to
the secondary node and processing will continue
uninterrupted. Before the failed node comes back on line,
any interim updates will be applied to synchronize it with the
other node.

A. Cluster Infrastructure

To configure the first node, we adjusted some variables
in the configuration file. In particular, we set both

ThriftAddress and ListenAddress to the IP address
of the first node to enable intra-cluster communication and
data access. (The database was accessed using Thrift API.)

Also, we set ReplicationFactor to a value that was
equal to the number of nodes in the cluster (i.e., 2) to ensure
that a failure of one of the nodes would not make both
replicas unavailable at the same time. (In general, the cluster
can be configured with more than two replicas, depending on
the probability of failures and the requirements for
availability.)

For the second node, we set both ThriftAddress and

ListenAddress to the IP address of the second node. In

addition, we set Seed to the IP address of the first node so
that the second node would know to which server it had to
connect for getting data when it was added to the cluster.

Finally, we set AutoBootstrap to true. This resulted in
the second node being added to the cluster automatically. (If
a new node is added, only seed nodes in the cluster need to
be configured, instead of adjusting all node configurations.)

After the cluster configuration had been completed, we
checked if the two nodes would connect to each other. We

did it by using a command ring, which returned a list of all
available nodes. Although this check showed that the two
nodes were available in the cluster, we analyzed entries in
the log file generated by Cassandra to see if the cluster
remained operational over some period of time.

The following listing shows an excerpt from the resulting
log file:

INFO 16:50:25,966 Starting up server gossip
INFO 16:50:26,045 Binding thrift service to 192.168.5.132:9160

INFO 16:50:26,050 Cassandra starting up ...
DEBUG 16:50:26,132 attempting to connect to 192.168.5.134
INFO 16:50:26,160 Node 192.168.5.134 is now part of the
 cluster
DEBUG 16:50:26,161 Resetting pool for 192.168.5.134
DEBUG 16:50:26,793 attempting to connect to 192.168.5.134
INFO 16:50:26,798 InetAddress 192.168.5.134 is now UP
INFO 16:50:26,800 Started hinted handoff for endpoint
 192.168.5.134
INFO 16:50:26,811 Finished hinted handoff of 0 rows to
 endpoint 192.168.5.134

As can be seen, the second node (192.168.5.134) was
added to the cluster, and a synchronization process called

hinted handoff was started and finished.

B. Test Database Schema

Cassandra supports a data model that is based on column
families. A column family is a container for columns,
analogous to a table in relational DBMSs; it holds the
columns as an ordered list (a column family row), which can
be referenced by the column name. There are two kinds of
column families: simple and super. Simple column families
consist of columns, which are grouped. Super column
families can be viewed as a column family within another
column family.

In Cassandra, a database is a distributed multi-
dimensional map, which is indexed by a key. The top
dimension is referred to as a key space and under this key
space, column families follow. The key space is divided up
by a cluster into ranges delimited by tokens.

In Cassandra, a database schema is flexible, meaning that
we do not have to decide what columns we need in the
records ahead of time. Rather, we can just add or delete
columns on the fly. This is by contrast to relational DBMSs,
where a database schema is fixed and pre-defined.

In the test setup, we used a simple database schema

Address. There was only one key space Keyspace1

containing a column family Standard2, which in its turn

contained the following columns: firstname,

lastname, street, housenumber, zip, city, and

country. To populate the column family with data sets, we
used the following statements:

setKeyspace1.Standard2["1"]["firstname"]="MyFirstname"
setKeyspace1.Standard2["1"]["lastname"]="MyLastname"
setKeyspace1.Standard2["1"]["street"]="MyStreet"
setKeyspace1.Standard2["1"]["housenumber"]="MyHouseNumber
"
setKeyspace1.Standard2["1"]["zip"]="MyZip"
setKeyspace1.Standard2["1"]["city"]="MyCity"
setKeyspace1.Standard2["1"]["country"]="MyCountry"

In this listing, the key value was set to 1. However, for

any next data sets, this value was increased by one in order
to differentiate the data sets from each other.

88

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

V. TEST APPLICATION

To experiment with Cassandra, we developed a test
application in Java. This application took the following
arguments as input: a node IP, a Cassandra port, a command

to be performed (viz., put, delete or get), data for the
command and optionally a key ID of the data. The test
application consisted of the following classes.

A. SelectClient

This class was used to determine the time periods for
every method execution.

B. CassandraClient

This class was used to open and close a connection to the
database.

C. PutCassandraData

This class was used to insert data into the database. The

class had a method putDataIntoCassandra, which
defines the column names, generates new records and adds
them to the database. The record generation was performed
by a random generator, which combines data from the
specified lists, and could be repeated any number of times
using a loop.

D. GetCassandraData

This class was used to retrieve records from the database.
Retrieving records was performed by the following methods:

 getKeyList, which sets a range for the specified
key space and gets a key range from Cassandra.

 getData, which reads all records in the specified
key range and returns the result.

 getDataByKey, which defines a slice range, reads
one specific record identified by its key ID and
returns the result.

 printData, which displays on the shell all records
in the specified maximum range.

 printDataByKey, which displays on the shell
one specific record identified by its key ID.

E. DeleteCassandraData

This class was used to remove records from the database.
Removing records was performed by the following methods:

 deleteCassandraData, which creates a key
range and deletes all records in the specified key
range.

 deleteCassandraDataByKey, which deletes
one specific record identified by its key ID.

VI. EXPERIMENTS

After setting up the cluster infrastructure, we performed
the following test cases using the test application. After each
test case, we analyzed the log file entries generated by
Cassandra.

A. Test Case 1: Putting Data to Database

In this test case, we checked if records could be inserted
into the database. For this purpose, we tried to add data to the
first node.

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 16:52:47,373 insert
DEBUG 16:52:47,381 insert writing local key 1
DEBUG 16:52:47,383 insert writing key1 to 432@192.168.5.134
DEBUG 16:52:47,391 Processing response on a callback from
 432@192.168.5.134

At first, an insert was executed, following by a local
write. Then a remote write was executed, following by a
response from the second node (192.168.5.134) to check if
this node had received the data.

B. Test Case 2: Getting Data from Database

In this test case, we checked if records could be removed
from the database. For this purpose, we tried to read data
from the first node.

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 16:53:42,116 range slice
DEBUG 16:53:42,117 RangeSliceCommand{keyspace
 =’Keyspace1’, columnfamily=’Standard2’,
 supercolumn=null, predicate=SlicePredicate(
 columnnames:[[B@1b7c76]),
 range=[0,0], maxkeys=1}<somerangesliceoutput>
DEBUG 16:53:42,191 get slice <somegetsliceoutput>
DEBUG 16:53:42,203 Reading consistency digest for 1
 from 606@[192.168.5.134,192.168.5.132]

At first, a range slice was executed; it set the key space,
the column family and the range. It was followed by a get

slice, which collected the requested data. An entry reading

consistency digest in the log file indicated that the
database was checked for consistency.

C. Test Case 3: Deleting Data from Database

In this test case, we checked if records could be removed
from the database. For this purpose, we tried to delete data
from the first node.

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 16:54:04,475 remove
DEBUG 16:54:04,476 insert writing local key 1
DEBUG 16:54:04,477 insert writing key 1 to 676@192.168.5.134
DEBUG 16:54:04,480 Processing response on a callback
 from 676@192.168.5.134

At first, a remove was executed, following by a local
write, which set the data values to null. Then a remote write
was executed, following by a response from the second node
(192.168.5.134) to check if this node set the data to null.
Thus, deleting data was somehow similar to adding data.

89

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

D. Test Case 4: Consistency

In this test case, we checked if all nodes in the cluster had
the same view on data even in the presence of updates. For
this purpose, we added some data to the first node and tried
to read the data back from the second node.

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 18:09:55,489 Adding hint for 192.168.5.134
 <some row mutation operation which adds new data on
 the first node>
DEBUG 18:11:29,284 Node 192.168.5.134 state normal, token

115100908670755235738753006493737225538
INFO 18:11:29,284 Node 192.168.5.134 state jump to normal
INFO 18:11:29,284 Will not change my token ownership to
 192.168.5.134
INFO 18:11:29,284 Started hinted handoff for endpoint
 192.168.5.134 <some data mutation operation>
INFO 18:11:29,385 Finished hinted handoff of 2 rows to
 endpoint 192.168.5.134

At first, some data mutation was performed. Then a token
was sent to the second node, following by starting and
finishing a synchronization process with the second node
(192.168.5.134) as the endpoint.

The following listing shows an excerpt from the resulting
log file for the second node:

DEBUG 16:58:13,064 Node 192.168.5.132 state normal, token

115100908670755235738753006493737225538
 <some row mutation operation which adds the changed
 data of the first node>
INFO 16:58:13,344 Started hinted handoff for endpoint

192.168.5.132
INFO 16:58:13,351 Finished hinted handoff of 0 rows to
 endpoint 192.168.5.132

At first, the token was received from the first node. Then
some data mutation was performed, following by starting
and finishing another synchronization process with the first
node (192.168.5.132) as the endpoint. After the
synchronization process had finished, the data on the second
node were one and the same as on the first node, thus
indicating that the database was in a consistent state.

It should be noted that since we wrote data with a

consistency level of ONE and wanted to get the same data
back while reading, we read the data with a consistency level

of ALL.

E. Test Case 5: Availability

In this test case, we checked if the database was available
even in the presence of node failures. For this purpose, we
disconnected the first node to simulate its failure and tried to
read data from the second node to see if some copy of the
data was still available.

Since data were replicated within a single cluster, they
were available even after the first node had been
disconnected. The performance for a read operation became

half as fast as before. But this was fine for a two-node
cluster.

F. Test Case 6: Partition Tolerance

In this test case, we checked if the database was tolerant
to partitions in the presence of network failures. For this
purpose, we disconnected the second node to simulate a loss
of a network connection between the two nodes and tried to

write data with a consistency level of ONE to the first node to
see if that node could still process the write (even knowing
that data on the second node could not be updated
immediately).

The following listing shows an excerpt from the resulting
log file for the first node:

DEBUG 18:11:29,116 range slice
DEBUG 18:11:29,117 RangeSliceCommand{keyspace
 =’Keyspace1’, columnfamily=’Standard2’,
 supercolumn=null, predicate=SlicePredicate(
 columnnames:[[B@1b7c76]),
 range=[0,0], maxkeys=1}<somerangesliceoutput>
DEBUG 18:11:29,191 get slice <somegetsliceoutput>
DEBUG 18:11:29,460 Processing response on an async result
 from 5678@192.168.5.134

As can be seen, the first node performed a write
operation, thus favoring availability over consistency. An

entry async result in the log file indicated that the
second node would not know about interim updates until the
network connection was restored.

In our next step, we repeated the same test but with a

consistency level of QUORUM. Since the first node could not
communicate with the second node to inform it about interim
updates, the first node stopped processing the write, thus
favoring consistency over availability. The cluster became
read-only.

G. Test Case 7: Performance

In this test case, we checked if consistency could be
achieved without sacrificing performance. For this purpose,
we ran Test Case 1, Test Case 2 and Test Case 3 with 100,
1000, 10000 and 100000 data iterations.

We also experimented with different consistency levels
to gain extra speed for read or write operations. For example,
when we ran the tests with 10000 and 100000 data iterations,
we were more concerned about write performance than read
performance. Therefore, we wrote data with a consistency

level of ONE (W=1) and read data with a consistency level of

ALL (R=N). As a result, each read had to access all copies of
data to determine which of them contained the latest version
of data, whereas each write had to update only one copy of
data. This time when we ran the tests with 100 and 1000 data
iterations, we were more concerned about read performance
than write performance. Therefore, we wrote data with a

consistency level of ALL (W=N) and read data with a

consistency level of ONE (R=1).
Figure 1 shows the result of our tests. As can be seen,

consistency was achieved at expense of performance because

90

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

of the need for starting and finishing a synchronization
process every time when the database was updated.

Figure 1. Performance test results.

VII. CONCLUSION

During many years clustered file systems like Gluster
and (SQL-based) relational DBMSs like MySQL and Oracle
have been the dominant technologies for providing an
efficient and reliable data store in cloud computing
environments. However, with the trend towards cloud
computing, these systems get new competitors – NoSQL
DBMSs. One of them is Cassandra, which was evaluated in
this paper.

Cassandra was claimed to be particularly well suited for
cloud computing environments. Our goal was to confirm or
deny that claim. Towards this goal, we experimented with
Cassandra. Our experiments showed that Cassandra did offer
an efficient and reliable data store in cloud computing
environments, either while favoring availability and partition
tolerance over consistency or while favoring consistency and
partition tolerance over availability.

The result of our experiments was in agreement with the
CAP (Consistency, Availability and Partition tolerance)
theorem [11]. This theorem simply states that out of
consistency, availability and partition tolerance, a distributed
system can choose to provide two but never three at the same
time, as shown in Figure 2. For example, relational DBMSs
typically provide both consistency and availability, but not
partition tolerance. By contrast, NoSQL DBMSs typically
provide both availability and partition tolerance, but not
consistency.

Figure 2. CAP theorem [12].

VIII. FUTURE WORK

In the future, we are going to increase a number of nodes
in the cluster. Eventually applying the results of our tests to
real-world applications is also part of our future work.

ACKNOWLEDGMENT

Irina Astrova’s work was supported by the Estonian
Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF).

REFERENCES

[1] Definition “NoSQL” term. http://data.story.lu/2010/11/16/definition-
nosql-term, acc. 12.02.2011.

[2] Gluster. http://www.gluster.org/, acc. 12.02.2011.

[3] R. Elmasri and S. Navathe. Fundamentals of Database Systems (5th
Edition). Addison Wesley, U.S.A, 2006.

[4] A. Lakshman and P. Malik. Cassandra - a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–
40, April 2010.

[5] Cassandra. http://cassandra.apache.org/, acc. 17.04.2011

[6] U. Dayal, M. Hsu, and R. Ladin. Business Process Coordination:
State of the Art, Trends, and Open Issues, 27th VLDB Conference,
Roma, Italy, 2001.

[7] ZooKeeper, http://zookeeper.apache.org/, acc. 10.02.2011.

[8] P. Hunt, M. Konar, F. Junqueira, and B. Reed. ZooKeeper: wait-free
coordination for internet-scale systems. 2010 USENIX conference on
USENIX annual technical conference (USENIXATC'10). USENIX
Association, Berkeley, CA, USA, 2010.

[9] ZooKeeper. http://ria101.wordpress.com/tag/zookeeper/, acc.
10.02.2011.

[10] T. Bain. Is the relational database doomed?
http://www.readwriteweb.com/enterprise/2009/02/is-the-relational-
database-doomed.php, acc. 21.10.2010.

[11] E. Brewer. Towards Robust Distributed Systems, PODC Keynote,
July 19, 2000. http://www.cs.berkeley.edu/~brewer/cs262b-
2004/PODC-keynote.pdf, , acc. 10.02.2011.

[12] M. Woodward. Caveats of Evaluating Databases.
http://blog.mattwoodward.com/caveats-of-evaluating-databases-jan-
lehnardt, acc. 21.10.2010.

91

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

