
Model-Based Migration of Legacy Software Systems to Scalable and
Resource-Efficient Cloud-Based Applications: The CloudMIG Approach

Sören Frey and Wilhelm Hasselbring
Software Engineering Group

University of Kiel
24118 Kiel, Germany

{sfr, wha}@informatik.uni-kiel.de

Abstract—The paper describes the model-based approach
CloudMIG. Cloud computing supplies software, platforms,
and infrastructures as a service (SaaS, PaaS, and IaaS, re-
spectively) over a network connection. Cloud providers fre-
quently offer the services according to the utility computing
paradigm. Therefore, cloud computing provides means for
reducing over- and under-provisioning through enabling a
highly flexible resource allocation. Running an existing software
system on a cloud computing basis usually involves exten-
sive reengineering activities during the migration. Current
migration approaches suffer from several shortcomings. For
example, they are often limited to specific cloud environments
or do not provide automated support for the alignment with
a cloud environment. We present our model-based approach
CloudMIG which addresses these shortcomings. It aims at sup-
porting SaaS providers to semi-automatically migrate existing
enterprise software systems to scalable and resource-efficient
PaaS and IaaS-based applications.

Keywords-Approach CloudMIG; Cloud Computing; Model-
based software migration to cloud-based applications;
Resource-efficient cloud-based applications.

I. INTRODUCTION

Most enterprise applications’ workload underlies substan-
tial variations over time. For example, user behavior tends
to be daytime-dependent or media coverage can lead to
rapidly increasing popularity of provided services. These
variations often result in over- or under-provisioning of data
center resources (e.g., #CPUs or storage capacity). Cloud
computing provides means for reducing over- and under-
provisioning through supplying elastic services. Thereby,
the conformance with contractually agreed service level
agreements (SLAs) has to be ensured [1]. Considering
legacy software systems, is there a way established enter-
prise applications can benefit from present cloud computing
technologies? For reasoning about this issue, it is useful to
clarify the main participants in providing and consuming
cloud computing services. According to [2], three different
roles can be distinguished. SaaS providers (cloud users) offer
software services which are being utilized by SaaS users. For
this purpose, the SaaS providers may build upon services
offered by cloud providers (cloud vendors). In the following,
we will employ the terms SaaS user, SaaS provider, and
cloud provider.

Newly developed enterprise software may easily be de-
signed for utilizing cloud computing technologies in a
greenfield project. Though, SaaS providers may also con-
sider to grant responsibility of operation and maintenance
tasks to a cloud provider for an already existing software
system. Running established enterprise software on a cloud
computing basis usually involves extensive reengineering
activities during the migration. Nevertheless, instead of
recreating the functionalities of an established software
system from scratch for being compatible with a selected
cloud provider’s environment, a migration enables the SaaS
provider to reuse substantial parts of a system. The number
of system parts which might be migrated is dependent on
the weighting of several parameters in a specific migration
project. For example, implications concerning the perfor-
mance or structural quality metrics regarding the resulting
software architecture can be taken into account. Further-
more, aligning a software system to a cloud environment’s
special properties during the migration process has the
potential to increase the software system’s efficiency. For
example, a reengineer could decide to prefer utilization of
certain resources according to their pricing. Considering
such kinds of favorable resource utilization and a cloud
environment’s specific scalability mechanisms can improve
overall resource efficiency (e.g., according to the afore-
mentioned prioritization) and scalability. However, there are
several major obstacles which can impede such migration
projects. Current approaches are often limited to specific
cloud environments or do not provide automated support
for the alignment with a cloud environment, for instance. In
this work, we propose our model-based approach CloudMIG
which addresses these shortcomings and focuses on the
SaaS provider perspective. The semi-automated approach
aims at assisting reengineers in migrating existing enterprise
software systems to scalable and resource-efficient PaaS and
IaaS-based applications (e.g., see [3]).

The remainder of the paper is structured as follows:
Section II describes the shortcomings of existing ap-
proaches. Our approach CloudMIG is presented in Section
III, before Section IV draws the conclusions and outlines
the future work.

155

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

II. CURRENT SHORTCOMINGS

Migrating typical enterprise software to a cloud-based
application usually implies an architectural restructuring
step. However, knowledge about the internal structure of the
existing software system is often insufficient and therefore
an architectural model has to be reconstructed first. The
architectural model serves as a starting point for restructur-
ing activities towards a cloud-compatible target architecture,
which most often has to be created manually. This often is
not an easy task, as construction of the advanced architecture
usually presumes profound comprehension of the exist-
ing one. Furthermore, the target architecture must comply
with the specific cloud environment’s offered resources and
imposed constraints, for example application frameworks
and limitations of programming interfaces, respectively. A
mapping model that describes the relationships between
system parts of the status quo and the target architecture
is needed as well. Future workload in combination with the
target architecture arrangement will determine resource uti-
lization of the cloud environment during operation. As most
cloud providers follow the paradigm of utility computing
and therefore charge resource utilization on a pay-as-you-
use basis, the arrangement of the target architecture has a
direct impact on the operational costs. Moreover, running an
application in a cloud environment does not solve scalability
issues per se. For example, an IaaS-based application often
needs to have built-in self-adaptive capabilities for leverag-
ing a cloud environment’s elasticity.

Shortcomings of today’s migration projects from typical
enterprise software to cloud-based applications can therefore
be summarized as follows:

S1 Applicability: Solutions for migrating enterprise soft-
ware to cloud-based applications are limited to particu-
lar cloud providers.

S2 Level of automation: The target architecture and the
mapping model often have to be built entirely manual.
Additionally, the target architecture’s violations against
the cloud environment’s constraints are not identified
automatically at design time.

S3 Resource efficiency: Various migrated software sys-
tems are not designed to be resource-efficient and do
not leverage the cloud environments’ elasticity, because
even transfering an established application to a new
cloud environment is a challenging task itself. Fur-
thermore, means for evaluating a target architecture’s
dynamic resource utilization at design time are most
often inadequate.

S4 Scalability: Automated support for evaluating a target
architecture’s scalability at design time is rare in the
cloud computing context.

Existing
System

A2

Actual
Architecture

A1

Utilization
Model

Cloud Environment
Model

Target
Architecture

Mapping
Model

A1

?

?

Constraint
Violations

A3

A4,A3

A5

Rating

A

B
C

A6
Migrated
System

A4,A3

Legend:

A1: Extraction
A2: Selection
A3: Generation
A4: Adaptation
A5: Evaluation
A6: Transformation

Optional

Mandatory

Figure 1. CloudMIG Overview.

III. THE APPROACH CLOUDMIG

CloudMIG is composed of six activities for migrating an
enterprise system to a cloud environment. It provides model-
driven generation of considerable parts of the system’s target
architecture. Feedback loops allow for further alignment
with the specific cloud environment’s properties and foster
resource efficiency and scalability on an architectural level.
Fig. 1 outlines the approach. Its activities (A1-A6) are briefly
described in the following including the involved models.

A. Activity A1 - Extraction

CloudMIG aims at the migration of established enterprise
applications. Usually, the architecture of software systems
tends to erode over time. Therefore, initially envisioned
architectures frequently diverge from actual implementa-
tions. The knowledge about the internal structure is often
incomplete, erroneous, or even missing. As CloudMIG uti-
lizes a model transformation during generation of its target
architecture (cf. A3), a representation of the software sys-
tem’s actual architecture has to be available first. Concerning
this issue, an appropriate model is extracted by means
of a software architecture reconstruction methodology. We
propose OMG’s Knowledge Discovery Meta-Model1 (KDM)
for building a suitable meta-model.

For leveraging the commonly applied utility computing
paradigm, the target architecture has to be laid out resource-
efficient and elastic. Therefore, CloudMIG includes the
extraction of an established software system’s utilization
model acting as a starting point. The utilization model (resp.
its meta-model) includes statistical properties concerning
user behavior like service invocation rates over time or
average submitted datagram sizes per request. Relevant

1http://www.omg.org/spec/KDM/ (Accessed August 16, 2010)

156

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

information can be retrieved from various sources. For
example, considering log files or instrumenting the given
system with our tool Kieker2 for setting up a monitoring step
constitute possible techniques. Furthermore, the utilization
model contains application-inherent information related to
proportional resource consumption. Metrics of interest could
be a method’s cyclomatic complexity or memory footprint.
We propose OMG’s Software Metrics Meta-Model3 (SMM)
as a foundation for building the related meta-model.

B. Activity A2 - Selection

Common properties of different cloud environments are
described in a cloud environment meta-model. Selecting a
cloud provider specific environment as a target platform for
the migration activities therefore implies the selection of
a specific instance of this meta-model. For example, this
meta-model comprises entities like VM instances or worker
threads for IaaS and PaaS-based cloud environments, respec-
tively. As a result, for every cloud environment which shall
be targeted with CloudMIG a corresponding meta-model
instance has to be created once beforehand. Transformation
rules define possible relationships to the architecture meta-
model.

We plan to attach further information related to scalability
issues to the included entities, which can be configured by
the reengineer in activity A4. For example, VM instances
could provide hooks for controlling their lifetime dependent
on dynamic resource utilization during runtime. Further-
more, the meta-model includes constraints imposed by cloud
environments restricting the reengineering activities. For
example, the opening of sockets, the manual spawning of
threads, or the access to the file system are often constrained.

C. Activity A3 - Generation

The generation activity produces three artefacts, namely
a target architecture, a mapping model, and a model
characterizing the target architecture’s violations of the
cloud environment constraints. The latter lists the features
of the target architecture which are non-conform with
the cloud environment’s specification. These constraint
violations explicitly highlight the target architecture’s parts
which have to be redesigned manually by the reengineer
(cf. A6). The mapping model assigns elements from
the actual architecture to those included in the target
architecture. Finally, the target architecture constitutes a
primary artefact. It is realized as an instance of the cloud
environment meta-model. We propose three phases P1-P3
for the generation of the target architecture.

P1 - Model transformation: The phase P1 produces an
initial assignment from features of the existing architecture
to cloud-specific features available in the cloud environment

2http://kieker.sourceforge.net/ (Accessed August 16, 2010)
3http://www.omg.org/spec/SMM/ (Accessed August 16, 2010)

model. The initial assignment is created applying a model-
to-model transformation according to the transformation
rules included in the cloud environment model (cf. activ-
ity A2).

P2 - Configuration: The phase P2 serves as a configuration
of the algorithm used for obtaining a resource-efficient
feature allocation in phase P3. During P2, a reengineer
may adjust rules and assertions for heuristic computation
(cf. P3). A rule could be formulated like the following
examples: “Distribute the five most frequently used services
to own virtual machines” or “The server methods responsible
for at least 10% of overall consumption of the CPU time
shall be moved to client side components if they do not
need access to the database”. An exemplary assertion could
be: “An existing component must not be divided in more
than 3 resulting components”. It is intended to provide a
set of default rules and assertions. In addition to that, the
reengineer will be given the possibility to modify them either
via altering the regarding numerical values or applying a
corresponding DSL. In both cases, the rules and assertions
have to be prioritized after their selection. Hereby, the
reengineer determines their significance during execution
of P3. This means that architectural features which are
related to higher-weighted rules will be considered priorly
for assignment and therefore have a stronger impact on the
further composition of the target architecture. Furthermore,
a reengineer may pin architectural features. This prevents
the reallocation of previously assigned architectural features
to other target architecture components in phase P3.

P3 - Resource-efficient feature allocation: The phase P3
improves the initial assignment of architectural features
generated in phase P1 referring to resource-efficiency. There-
fore, the formulated rules are utilized and the compliance
of the resulting architecture with the defined assertions is
considered. There exists an enormous number of possible
combinations for assigning architectural features. Efficiency
improvements for one resource can lead to degradation for
other resources or impair some design quality attributes. For
example, splitting a component’s parts towards different
virtual machines can improve relative CPU utilization, but
may lead to increased network traffic for intra-component
communication and a decreased cohesion. Additionally,
those effects do not necessarily have to move on linearly
and moreover, the interrelations are often ambiguous as well.
Therefore, we propose application of a heuristic rule-based
approach to achieve an overall improvement. A potential
algorithm is sketched in Fig. 2 and it works as follows.

The rules are considered successively according to their
priority. Thus, rules with higher priorities are weighted
higher and have a stronger impact on the generated target
architecture. The selection criterion of a rule is defined to
deliver a set of scalar architectural features. All possible
subsets of the set are rated respective to the quality of

157

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

1: FPinned ← Pinned architectural features
2: R← All rules
3: A← All assertions
4: RSort ← Sort R descending by priority
5: FAllAffected ← FPinned

6: for all r in RSort do
7: Fr ← All architectural features delivered by r’s

selection criterion
8: PF

r ← Power set of Fr

9: Score← New associative array
10: for all pF

r in PF
r do

11: Score[pF
r]← Rate pF

r

12: end for
13: ScoreSort ← Sort Score descending by score
14: ScoreKeys

Sort ← Keys of ScoreSort

15: for all pF
r in ScoreKeys

Sort do
16: FFormerlyAffected ← pF

r ∩ FAllAffected

17: FNeedReallocation ← Elements of
FFormerlyAffected that need reallocation conc. r

18: if FNeedReallocation == ∅ then
19: AHigherPrio ← All a ∈ A with higher priority

than r
20: if @a ∈ AHigherPrio with r violates a then
21: Apply rule r to all features in pF

r

22: FAllAffected = FAllAffected ∪ pF
r

23: end if
24: end if
25: end for
26: end for

Figure 2. Rule-based heuristics for creating a resource-efficient feature
allocation.

the target architecture that would result, if the features in
the subset would be assigned correspondingly. This aims
at considering interdependencies at the level of a single
rule. For regarding interdependencies on an inter-rule level,
the formulated assertions are taken into account. A rule is
only applied if the reengineer did not formulate an assertion
with a higher priority that would be violated after the rule’s
execution. Furthermore, the rule is applied to all mentioned
subsets in order of their score. However, the rule is only
utilized if no rearrangement of features is necessary whose
subset was rated higher. The same applies to assignments
that would lead to rearrangement of features that were placed
by rules of higher priority or formerly pinned features.

D. Activity A4 - Adaptation

The activity A4 allows the reengineer to adjust the target
architecture manually towards case-specific requirements
that could not be fulfilled during generation activity A3. For
example, the generation process might not have yielded an
expected assignment of a critical component. Furthermore,
for leveraging the elasticity of a cloud environment, the

reengineer might configure a capacity management strategy
by means of utilizing the hooks provided by entities con-
tained in the cloud environment meta-model (cf. A2).

E. Activity A5 - Evaluation

For being able to judge about the produced target archi-
tecture and the configured capacity management strategy,
A5 evaluates the outcomes of the activities A3 and A4.
The evaluation involves static and dynamic analyses of
the target architecture. For example, the metrics LCOM or
WMC can be utilized for static analyses. Considering the
target architecture’s expected runtime behavior, we propose
to apply a simulation on the basis of CloudSim [4]. Thus,
we intend to contribute a transformation from CloudMIG’s
cloud environment meta-model to CloudSim’s simulation
model.

F. Activity A6 - Transformation

This activity comprises the actual transformation of the
enterprise system from the generated and improved target
architecture to the aimed cloud environment. No further
support for actually accomplishing the implementation is
planned at this time.

IV. CONCLUSION AND FUTURE WORK

We presented an early work concerning our model-based
approach CloudMIG for migrating legacy software systems
to scalable and resource-efficient cloud-based applications. It
concentrates on the SaaS provider perspective and facilitates
the migration of enterprise software systems towards generic
IaaS and PaaS-based cloud environments. CloudMIG is in-
tended to generate considerable parts of a resource-efficient
target architecture utilizing a rule-based heuristics. The
future work focuses on the realization, improvement, and
evaluation of CloudMIG’s target architecture generation and
evaluation activities (A3 and A5, respectively).

REFERENCES

[1] W. Iqbal, M. Dailey, and D. Carrera, “SLA-Driven Adaptive
Resource Management for Web Applications on a Heteroge-
neous Compute Cloud,” in CloudCom, ser. Lecture Notes in
Computer Science, M. G. Jaatun, G. Zhao, and C. Rong, Eds.,
vol. 5931. Springer, 2009, pp. 243–253.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the Clouds: A Berkeley View of
Cloud Computing,” EECS Department, University of Califor-
nia, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009.

[3] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner,
“A break in the clouds: towards a cloud definition,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2009.

[4] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya,
“CloudSim: A Novel Framework for Modeling and Simulation
of Cloud Computing Infrastructures and Services,” CoRR, vol.
abs/0903.2525, 2009.

158

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

