
Handling Confidential Data on the Untrusted Cloud: An Agent-based Approach

Ernesto Damiani
Department of Information Technology

Università degli Studi di Milano
Milano, Italy

ernesto.damiani@unimi.it

Francesco Pagano
Department of Information Technology

Università degli Studi di Milano
Milano, Italy

francesco.pagano@unimi.it

Abstract— Cloud computing allows shared computer and
storage facilities to be used by a multitude of clients. While
cloud management is centralized, the information resides in
the cloud and information sharing can be implemented via off-
the-shelf techniques for multiuser databases. Users, however,
are very diffident for not having full control over their
sensitive data. Untrusted database-as-a-server techniques are
neither readily extendable to the cloud environment nor easily
understandable by non-technical users. To solve this problem,
we present an approach where agents share reserved data in a
secure manner by the use of simple grant and revoke
permissions on shared data.

Keywords - Information sharing; privacy; distributed data;
cloud computing; multi-agent systems.

I. INTRODUCTION

Cloud computing is the commercial evolution of grid
computing [21]; it provides users with readily available, pay-
as-you-go computing and storage power, allowing them to
dynamically adapt their IT (Information Technology) costs
to their needs. In this fashion, users need neither costly
competence in IT system management or huge investments
in the start-up phase in preparation for future growth.

While the cloud computing concept is drawing much
interest, several obstacles remain to its widespread adoption
including:

• Current limits of ICT infrastructure: availability,
reliability and quality of service;

• Different paradigm of development of web
applications with respect to those used for desktop
applications;

• Privacy risks for confidential information residing in
the cloud.

Hopefully, the first obstacle will diminish over time,
thanks to the increasingly widespread availability of the
network; the second will progressively disappear by training
new developers and retraining the older; the third issue
however, is far from being solved and may impair very
seriously the real prospects of cloud computing.

In this paper, we illustrate some techniques for providing
data protection and confidentiality in outsourced databases
(Section II) and then we analyze some possible pitfalls of
these techniques in Cloud Computing (Section III), which
bring us to propose a new solution based on multi-agent
systems (Section IV).

II. THE PROBLEM OF PRIVACY

The cloud infrastructure can be accessible to public users
(Public Cloud) or only to those operating within an
organization (Private Cloud) [1]. Generally speaking,
external access to shared data held by the cloud goes through
the usual authentication authorization and communication
phases. The access control problem is well-known in the
database literature and available solutions guarantee a high
degree of confidence.

However, the requirement that outsourced data cannot be
accessed or altered by the maintainer of the datastore is not
met as easily, especially on public clouds like Google App
Engine for Business, Microsoft Azure Platform or Amazon
EC2 platform.

Indeed, existing techniques for managing the outsourcing
of data on untrusted database servers [11] [12] cannot be
straightforwardly applied to public clouds, due to several
reasons:

• The physical structure of the cloud is, by definition,
undetectable from the outside: who is really storing
the data?

• The user often has no control over data replication,
i.e., how many copies exist (including backups) and
how are they managed?

• The lack of information on the geographical location
of data (or its variation over time) may lead to
jurisdiction conflicts when different national laws
apply.

In the next section, we will briefly summarize the
available techniques for data protection on untrusted servers,
and show how they are affected by the problems outlined
above.

A. Data Protection

To ensure data protection in outsourcing, the literature
reports three main techniques [4]:

• Data encryption [13];
• Data fragmentation and encryption [14];

o non-communicating servers [15][16];
o unlinkable fragments [17];

• Data fragmentation with owner involvement [18].
1) Data encryption
To prevent unauthorized access by the datastore manager

(DM) managing the outsourced RDBMS (Relational Data
Base Management Systems), the data is stored encrypted.

61

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Obviously, the encryption keys are not known to the DM and
they are stored apart from the data. The RDBMS receives an
encrypted database and it works on meaningless bit-streams
that only the clients, who hold the decryption keys, can
interpret correctly.

Note that decryption keys are generated and distributed
to trusted clients by the data owner or by a trusted delegate.

Encryption can occur with different levels of granularity:
field, record, table, db. For efficiency reasons, normally, the
level adopted is the record (tuple in relational databases).

Of course, because the data is encrypted, the DBMS
cannot index it based on plaintext and therefore it cannot
resolve all queries. Available proposals tackle this problem
by providing, for each (encrypted) field to be indexed, an
additional indexable field, obtained by applying a non-
injective transformation f to plaintext values (e.g., a hashing
of the field's content). This way, queries can be performed
easily and with equality constraints, although with a
precision < 1 (to prevent statistical data mining). The trusted
client, after receiving the encrypted result set for the query,
will decrypt and exclude spurious tuples. In this setting,
however, it is difficult to answer range queries, since f in
general will not preserve the order relations of the original
plaintext data. Specifically, it will be impossible for the
outsourced RDBMS to answer range queries that cannot be
reduced to multiple equality conditions (e.g., 1<=x<=3 can
be translated into x=1 or x=2 or x=3). In literature, there are
several proposals for f, including:

1. Domain partitioning [22]: the domain is partitioned
into equivalence classes, each corresponding to a single
value in the codomain of f;

2. Secure hashing [11]: secure one-way hash function,
which takes as input the clear values of an attribute and
returns the corresponding index values. f must be
deterministic and non-injective.

To handle range queries, a solution, among others, is to
use an encrypted version of a B ± tree to store plaintext
values, and maintain the values order. Because the values
have to be encrypted, the tree is managed at the Client side
and it is read-only in the Server side.

2) Data fragmentation
Normally, of all the outsourced data, only some columns

and/or some relations are confidential, so it is possible to
split the outsourced information in two parts, one for
confidential and one for public data. Its aim is to minimize
the computational load of encryption/decryption.

a) Non-communicating servers
In this technique, two split databases are stored, each in a

different untrusted server (called, say, S1 and S2). The two
untrusted servers have to be independent and non-
communicating, so they cannot ally themselves to
reconstruct the complete information. In such situation, the
information may be stored in plaintext in each server.

With this approach, each Client query need be
decomposed in two subqueries: one for S1 and one for S2.
The resulting sets have to be related and filtered, later, at
Client level.

b) Unlinkable fragments
In reality, it is not easy to ensure that split servers do not

communicate; therefore the previous technique may be
inapplicable. A possible remedy is to divide information in
two or more fragments. Each fragment contains all the fields
of original information, but some are in clear while the
others are encrypted. To protect encrypted values from
frequency attacks, a suitable salt is applied to each
encryption. Fragments are guaranteed to be unlinkable (i.e.,
it is impossible to reconstruct the original relation and to
determine the sensitive values and associations without the
decrypting key). These fragments may be stored in one or
more servers.

Each query is then decomposed in two subqueries:
• The first, on the Server, chooses a fragment (all

fragments contain the entire information) and selects
tuples from it according to clear values and returns a
result set where some fields are encrypted;

• The second, on Client (only if encrypted fields are
involved in the query), decrypts the information and
removes the spurious tuples according to encrypted
values.

3) Data fragmentation with owner involvement
Another adaptation of non-communicating servers

consists of storing locally the sensitive data and relations,
while outsourcing the storage of the generic data. So, each
tuple is split in a server part and in a local part, with the
primary key in common. The query is then resolved as
shown above.

B. Selective access

In many scenarios, access to data is selective, with
different users enjoying different views over the data. Access
can discriminate between read and write of a single record or
only a part of it.

An intuitive way to handle this problem is to encrypt
different portions of data with different keys that are then
distributed to users according to their access privileges. To
minimize overhead we want that:

• No more than one key is released to each user;
• Each resource is encrypted not more than once.
To achieve these objectives, we can use a hierarchical

organization of keys. Basically, users with the same access
privileges are grouped and each resource is encrypted with
the key associated with the set of users that can access it. In
this way, a single key can be possibly used to encrypt more
than one resource.

1) Dynamic rights management
Should the user’s rights change over time (e.g., the user

changes department) it is necessary to remove that user from
a group/role as follows:

• Encrypt data by a new key;
• Remove the original encrypted data;
• Send the new key to the rest of the group.
Note that these operations must be performed by data

owner because the untrusted DBMS has no access to the
keys. This active role of the data owner goes somewhat

62

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

against the reasons for choosing to outsource data in the first
place.

a) Temporal key management
An important issue, common to many access control

policies, concerns time-dependent constraints of access
permissions. In many real situations, it is likely that a user
may be assigned to a certain role or class for only a certain
period of time. In such case, users need a different key for
each time period. A time-bound hierarchical key assignment
scheme is a method to assign time-dependent encryption
keys and private information to each class in the hierarchy in
such a way that key derivation also depends on temporal
constraints. Once a time period expires, users in a class
should not be able to access any subsequent keys if not
authorized to do so [7].

b) Database replica
In [5], the authors, exploiting the never ending lower

price-per-byte, propose to replicate n times the source
database, where n is the number of different roles having
access to the database. Each database replica is a view,
entirely encrypted using the key created for the
corresponding role. Each time that a role is created, the
corresponding view is generated and encrypted with a new
key expressly generated for the newly created role. Users do
not own the real key, but receive a token that allows them to
address a cipher demand to a set KS of key servers on the
cloud.

C. A document base sample: Crypstore

An example of data protection implementation by data
encryption is Crypstore. It is a non-transactional architecture
for the distribution of confidential data. The Storage Server
contains data in encrypted form, so it cannot read them. User
who wants to access data is authenticated at the Key Servers
with the certificate issued by the Data Administrator and
requires the decryption key. The Key Servers are N and, to
ensure that none of them knows the whole decryption key,
each of them contains only a part of the encryption key. To
rebuild the key, only M (<N) parts of key are needed;
redundancy provides greater robustness to failures and
attacks (e.g., Denial of Service attacks).

In practice, it is an application of the time-honored
"divide and conquer" technique, where data is separated
from decryption keys.

Here the privacy is not entirely guaranteed because,
theoretically at least, the owner of Key Servers and the
Storage Server may agree to overcome the limitations of the
system. The only way to exclude the (remote) possibility is
to have trusted Key Servers, but if so, it would be useless to
distinguish the two structures and we could take data
directly, as plaintext, to a trusted storage. Such criticism
applies however only in theory because, in practice, the
probability of such an agreement decreases with the number
of players involved.

III. PRIVACY WITHIN THE CLOUD

All techniques discussed above are based on data
encryption and/or data fragmentation using full separation of

roles and of execution environments between the user and
the datastore (and possibly the keystore) used to manage the
outsourced data.

Let us now compare the assumptions behind such
techniques with two of the basic tenets of current cloud
computing architectures: data and applications being on the
“same side of the wall”, and data being managed via
semantic datastores rather than by a conventional RDBMS.

A. On the same side of the wall

Ubiquitous access is a major feature of cloud computing
architectures. It guarantees that cloud application users will
be unrestrained by their physical location (with internet
access) and unrestrained by the physical device they use to
access the cloud.

To satisfy the above requirements (in particular the
second), we normally use thin clients, which run cloud
applications remotely via a web user interface.

The three main suppliers of Public Cloud Infrastructure
(Google App Engine for Business, Amazon Elastic Compute
Cloud and Windows Azure Platform) all include a datastore,
and an environment for remote execution summarized in
Tables I and II:

TABLE I. DATASTORE SOLUTIONS USED BY PUBLIC CLOUDS

Environment Datastore
Google Bigtable
Amazon IBM DB2

IBM Informix Dynamic Server
Microsoft SQLServer Standard 2005
MySQL Enterprise
Oracle Database 11g
Others installed by users

Microsoft Microsoft SQL Azure

TABLE II. EXECUTION ENVIRONMENTS USED BY PUBLIC CLOUDS

Environment Execution environment
Google J2EE (Tomcat + GWT)

Python
Amazon J2EE (IBM WAS, Oracle WebLogic Server)

and others installed by users
Microsoft .Net

In all practical scenarios, public cloud suppliers handle
both data and application management.

Figure 1. The wall

63

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

If the cloud supplier is untrustworthy, she can intercept
communications, modify executable software components
(e.g., using aspect programming), monitor the user
application memory, etc.

Hence, available techniques for safely outsourcing data
to untrusted DBMS no longer guarantees the confidentiality
of data outsourced to the cloud.

The essential point consists in having the data and the
user interface application logic on the same side of the wall.
This is a major difference w.r.t. the outsourced database
scenarios, where presentation was handled by trusted clients.
In the end, the data must be presented to the user in an
intelligible and clear form; that is the moment when a
malicious agent operating in the cloud has more
opportunities to intercept the data. To prevent unwanted
access to the data at presentation time, it would be
appropriate moving the presentation logics off the cloud to a
trusted environment that may be an intranet or, at the bottom
level, a personal computer.

However, separating data (which would stay in the
cloud) from the presentation logics may enable the creation
of local copies of data, and lead to an inefficient cooperation
between the two parts.

B. Semantic datastore

Cloud computing solutions largely rely on semantic
(non-relational) DBMS. These systems do not store data in
tabular format, but following the natural structure of objects.
After more than twenty years of experimentation (see, for
instance, [8] for the Galileo system developed at the
University of Pisa), today, the lower performance of these
systems is no longer a problem. In the field of cloud
computing, there is a particular attention to Google Bigtable.

"Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large size:
petabytes of data across thousands of commodity servers. In
many ways, Bigtable resembles a database: it shares many
implementation strategies with databases." [9]

With a semantic datastore like Bigtable, there is a more
strict integration between in-memory data and stored-data;
they are almost indistinguishable from programmer
viewpoint. There are not distinct phases when the program
loads data from disk into main memory or, in the opposite
direction, when program serialize data on disk. Applications
do not even know where data is stored, as it is scattered over
the cloud.

In such a situation, the data outsourcing techniques
discussed before cannot be applied directly, because they
were designed for untrusted RDBMS.

IV. OUR APPROACH

We are now ready to discuss our new approach to the
problem of cloud data privacy. We build over the notion
introduced in [5] of defining a view for every user
group/role, but we prevent performance degradation by
keeping all data views in the user environment.

 Specifically, we atomize the couple
application/database, providing a copy per user. Every

instance runs locally, and maintains only authorized data that
is replicated and synchronized among all authorized users.

In the following subsections we will analyze our solution
in detail.

A. Information sharing by multi-agent system

We will consider a system composed of:
1. Local agents distributed at client side;
2. A central synchronization point.

1) The model
In the following, we will use the term dossier to indicate

a set of correlated information. Our data model may be
informally represented by the diagram in Figure 4.

Figure 2. The model

In the model, each node represents a local, single-user
application/database dedicated to an individual user (un). The
node stores only the dossiers that un owns. Shared dossiers
(in this example, d1) are replicated on each node. When a
node modifies a shared dossier, it must synchronize, also
using heuristics and learning algorithms, with the other
nodes that hold a copy of it. Below we give a simple SWOT
analysis of this idea.

2) Strength/Opportunities
• Unrestrained individual nodes, that can also work

offline (with deferred synchronization);
• Simplicity of data management (single user);
• Completeness of local information.
To understand the last point, suppose that the user un

wants to know the number of the dossier she is treating. In a
classic intranet solution, where dossiers would reside on their
owners' servers, in addition to its database, un should
examine the data stores of all other collaborating users. With
our solution, instead, un can simply perform a local query
because the dossiers are replicated at each client.

3) Weaknesses/Threats
• Complexity of deferred synchronization schemes

[19];
• Necessity to implement a mechanism for

grant/revoke and access control permissions.
This last point is particularly important and it deserves

further discussion:
• As each user (except the data owner) may have

partial access to a dossier, each node contains only
the allowed portion of the information;

64

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

• Authorization, i.e., granting to a user uj access to a
dossier dk, can be achieved by the data owner simply
by transmitting to the corresponding node only the
data it is allowed to access;

• The inverse operation will be made in the case of a
(partial or complete) revocation of access rights. An
obvious difficulty lies in ensuring that data, once
revoked, is no longer available to the revoked node.
This is indeed a moot point, as it is impossible –
whatever the approach - to prevent trusted users
from creating local copies of data while they are
authorized and use them after revocation.

B. Proposed solution

We are now ready to analyze in detail our solution. To
simplify the discussion, we introduce the following
assumptions:

• Each dossier has only one owner;
• Only the dossier's owner can change it.
Those assumptions allow the use of an elementary

cascade synchronization in which the owner will submit the
changes to the receivers.

Figure 3. Deployment diagram of multi-agent system

Our solution consists of two parts: a trusted client agent
and a remote untrusted synchronizer.

The client maintains local data storage where:
• The dossiers whom he owns are (or at least can be)

stored as plaintext;
• The others, instead, are encrypted, each with a

different key.
The Synchronizer stores the keys to decrypt the shared

dossiers owned by the local client and the modified dossiers
to synchronize.

When another client needs to decrypt a dossier, he must
connect to the Synchronizer and obtain the corresponding
decryption key.

The data and the keys are stored in two separate entities
and therefore none can access information without the
collaboration of the other part.

1) Structure
From the architectural point of view, we divide our

components into two packages, a local (client agent), which

contains the dossier and additional information such as
access lists, and a remote (global synchronizer), which
contains the list of dossiers to synchronize, their decryption
keys and the public keys of clients.

Figure 4. Class view

2) Grant
An owner willing to grant rights on a dossier must follow

the following sequence:

Figure 5. Grant sequence

Namely, for each receiver, the owner:
• generates the decryption key
• encrypts it with the public key of the receiver to

ensure that others cannot read it
• signs it with its private key to ensure its origin
• sends it to the Synchronizer, which verifies the

origin and adds it to the storage of the decoding

65

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

keys. The key is still encrypted with the public key
of the receiver, so only the receiver can read it.

3) Send
When an owner modifies a dossier, she sends it to the

Synchronizer following this sequence:

Figure 6. Send sequence

For each receiver, the owner:
• generates a "pending dossier" by removing

information that the receiver should not have access
to;

• encrypts it with the public key of the receiver to
ensure that others cannot read it;

• signs with his own private key to certificate its
origin;

• sends it to the Synchronizer, which verifies the
origin and adds it to the storage of "pending
dossiers”. Again, the dossier is still encrypted with
the public key of the receiver, so only the receiver
can read it.

4) Receive
Periodically, each client updates un-owned dossiers by

following this sequence:

Figure 7. Receive sequence

Each client:
• requests the Synchronizer the "pending dossiers";
• modifies the local storage;
• removes from the Synchronizer the received

dossiers.
5) Use
When a client needs to use an unowned (encrypted)

dossier, the following sequence is used:

Figure 8. Use sequence

The client:
• asks the Synchronizer for the decryption key (that is

encrypted by his public key);
• decrypts it with its private key;
• decrypts the dossier by the resulting decryption key.
If the decryption key does not exist, two options are

available:
• the record is deleted from the local datastore because

a revoke happened;
• the record remains cached (encrypted) into the local

datastore because the access rights could be restored.
6) Revoke
To revoke access to a receiver, it is sufficient to delete

the corresponding decryption key from the Synchronizer:

Figure 9. Revoke sequence

7) Implementation
We are currently implementing the proposed solution

using an IMDB (in-memory database), such HyperSql
(www.hsqldb.org). An in-memory database (IMDB also
known as main memory database system or MMDB) is a
database management system that primarily relies on main
memory for computer data storage.

A HyperSql db consists of a text file containing sql
instructions to:

• create structure (tables, indexes, etc.);
• populate tables.
At DBMS startup, this file is read and HyperSql creates a

data model of the db into memory. At closing, the data

66

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

model is serialized on the disk (actually also intermediate
writes in a log file occur, to minimize the risk of data loss for
sudden failure). The implementation of our solution,
therefore, will consist in rewriting the load and save
operations. The load function need implement the above-
mentioned sequence.

8) Future work
In the next future, we must deepen the synchronization

algorithm [23], benchmark the performance in a system
under stress and use a cache of decoding time-bounded keys
[6] to allow users to work offline.

V. CONCLUSIONS AND OUTLOOK

In this paper, we discussed the applicability of
outsourced DBMS solutions to the cloud and provided the
outline of a simple yet complete solution for managing
confidential data in public clouds.

We are fully aware that a number of problems remain to
be solved. A major weakness of any data outsourcing
scheme is the creation of local copies of data after it has been
decrypted. If a malicious client decrypts data and then it
stores the resulting plaintext data in a private location, the
protection is broken, as the client will be available to access
its local copy after being revoked. In [20], obfuscated web
presentation logic is introduced to prevent client from
harvesting data. This technique, however, exposes plaintext
data to cloud provider. The manager of plaintext data is
always the weak link in the chain and any solution must
choose whether to trust the client-side or the server-side.

Another issue concerns the degree of trustworthiness of
the participants. Indeed, untrusted Synchronizer never holds
plaintext data; therefore it does not introduce an additional
Trusted Third Party (TTP) with respect to the solutions
described at the beginning of the paper. However, we need to
trust the Synchronizer to execute correctly the protocols
explained in the paper. This is a determining factor that our
technique shares with competing solutions and, although an
interesting topic, it lies beyond the scope of this paper.

ACKNOWLEDGMENT

We would like to thanks Sabrina De Capitani di
Vimercati and Pierangela Samarati for providing us with
their seminal paper [4].

This work was partly founded by the European
Commission under the project SecureSCM (contract n. FP7-
213531).

REFERENCES
[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy H. Katz, Andy Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia: “A view of cloud
computing”, Commun. ACM 53(4), pp. 50-58 (2010)

[2] C. Jackson, D. Boneh, and J.C. Mitchell: “Protecting Browser State
from Web Privacy Attacks”, 15th International World Wide Web
Conference (WWW 2006), Edinburgh, May, 2006.

[3] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis,
John Mylopoulos, Luciano Serafini, and Ilya Zaihrayeu: “Data
Management for Peer-to-Peer Computing : A Vision”, WebDB 2002,
pp. 89-94

[4] Pierangela Samarati and Sabrina De Capitani di Vimercati: “Data
protection in outsourcing scenarios: issues and directions”, ASIACCS
2010, pp. 1-14

[5] Nadia Bennani, Ernesto Damiani, and Stelvio Cimato: “Toward
cloud-based key management for outsourced databases”, SAPSE
2010, draft

[6] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken:
“Incorporating Temporal Capabilities in Existing Key Management
Schemes”, ESORICS 2007, pp. 515-530

[7] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci: “New
constructions for provably-secure time-bound hierarchical key
assignment schemes”, Theor. Comput. Sci. 407, pp.213-230 (2008)

[8] Antonio Albano, Giorgio Ghelli, M. Eugenia Occhiuto, and Renzo
Orsini: “Object-Oriented Galileo”, On Object-Oriented Database
System 1991, pp. 87-104

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew
Fikes, and Robert Gruber: “Bigtable: A Distributed Storage System
for Structured Data”, OSDI 2006, pp. 205-218

[10] Victor R. Lesser: “Encyclopedia of Computer Science”, 4th edition.
John Wiley and Sons Ltd. 2003, pp.1194–1196

[11] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati:“Balancing
confidentiality and efficiency in untrusted relational DBMSs”,ACM
Conference on Computer and Comm. Security 2003, pp.93-102

[12] Ernesto Damiani, Sabrina De Capitani di Vimercati, Mario Finetti,
Stefano Paraboschi, Pierangela Samarati, and Sushil Jajodia:
“Implementation of a Storage Mechanism for Untrusted DBMSs”,
IEEE Security in Storage Workshop 2003, pp. 38-46

[13] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi,
and Pierangela Samarati: “Privacy of outsourced data”, In Alessandro
Acquisti, Stefanos Gritzalis, Costos Lambrinoudakis, and Sabrina De
Capitani di Vimercati: Digital Privacy: Theory, Technologies and
Practices. Auerbach Publications (Taylor and Francis Group) 2007

[14] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati:
“Fragmentation and Encryption to Enforce Privacy in Data Storage”,
ESORICS 2007, pp. 171-186

[15] Richard Brinkman, Jeroen Doumen, and Willem Jonker: “Using
Secret Sharing for Searching”, in Encrypted Data. Secure Data
Management 2004, pp. 18-27

[16] Ping Lin and K. Selçuk Candan: “Secure and Privacy Preserving
Outsourcing of Tree Structured Data”, Secure Data Management
2004, pp. 1-17

[17] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati:
“Combining fragmentation and encryption to protect privacy in data
storage”, ACM Trans. Inf. Syst. Secur. 13(3): (2010)

[18] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati: “Keep a
Few: Outsourcing Data While Maintaining Confidentiality”,
ESORICS 2009, pp. 440-455

[19] Miseon Choi, Wonik Park, and Young-Kuk Kim: “A split
synchronizing mobile transaction model”, ICUIMC 2008, pp.196-201

[20] Henk C. A. van Tilborg: “Encyclopedia of Cryptography and
Security”, Springer 2005

[21] Ian T. Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu: “Cloud
Computing and Grid Computing 360-Degree Compared CoRR”,
abs/0901.0131: (2009)

[22] Hakan Hacigümüs, Balakrishna R. Iyer, and Chen Li, Sharad
Mehrotra: “Executing SQL over encrypted data in the database-
service-provider model”, SIGMOD Conference 2002, pp. 216-227

[23] Dirk Düllmann, Wolfgang Hoschek, Francisco Javier Jaén-Martínez,
Ben Segal, Heinz Stockinger, Kurt Stockinger, and Asad Samar:
“Models for Replica Synchronisation and Consistency in a Data
Grid”, HPDC 2001, pp. 67-75

67

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

