
Developing Context-Based Applications Using Visual Programming

Case Studies on Mobile Apps and Humanoid Robot Applications

Martin Zimmermann

Department of Economics

Offenburg University

Offenburg, Germany

e-mail: m.zimmermann@hs-offenburg.de

Abstract— Sensors and actuators enable creation of context-

aware applications in which applications can discover and take

advantage of contextual information, such as user location,

nearby people and objects. In this work, we use a general

context definition, which can be applied to various devices, e.g.,

robots and mobile devices. Developing context-based software

applications is considered as one of the most challenging

application domains due to the sensors and actuators as part of

a device. We introduce a new development approach for

context-based applications by using use-case descriptions and

Visual Programming Languages (VPL). The introduction of

web-based VPLs, such as Scratch and Snap, has reinvigorated

the usefulness of VPLs. We provide an in-depth discussion of

our new VPL based method, a step by step development

process to enable development of context-based applications.

Two case studies illustrate how to apply our approach to

different problem domains: Context-based mobile apps and

context-based humanoid robot applications.

Keywords-Context-based Services; Sensors; Actuators;

Mobile Applications; Location-based Services; Robot

Applications; Humanoid Robots; Visual Programming.

I. INTRODUCTION

The main privilege of context-aware applications is to
provide tailored services by analyzing the environmental
context, such as location, time, weather condition, and
seasons, and adapting their functionality according to the
changing situations in context data without explicit user
interaction. For example, mobile devices can obtain the
context information in various ways in order to provide more
adaptable, flexible and user-friendly services. In case of a
tourist app, a tourist would like to see relevant tourist
attractions on a map together with distance information,
depending on its current location. Human robots, require
sensors to gather information about the conditions of the
environment to allow the robot to make necessary decisions
about its position or certain actions that the situation
requires. As a consequence, context-aware applications can
sense clues about the situational environment making
applications more intelligent, adaptive, and personalized.

Sensors and actuators as part of devises enable creation
of context-aware applications in which applications can
discover and take advantage of contextual information, such
as user location, nearby people and objects. A general
definition of context was given by Dey and Abowd [1]:
“Any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between a user
and an application, including the user and applications
themselves.”

Categories of context information that are practically
significant are [1]:

• Environmental Context: Include all the surrounding
environmental conditions of current location (like
air quality, temperature, humidity, noise level and
light condition).

• Temporal Context: Consists of temporal factor such
as current time, date, and season of the year.

• Personal (identity) Context: Specifies user’s
characteristics and preferences like name, age, sex,
contact number, user’s hobbies and interest.

• Spatial context: Involves any information regarding
to position of entity (person and object) for instance
orientation, location, acceleration, speed.

Combination of spatial, temporal, activity and personal
contexts makes the primary context to understand the current
situation of entities, these types of contexts can response
basic question about when, where, what, who.

Visual Programming Languages (VPL) and hybrid visual
programming languages are considered to be innovative
approaches to address the inherent complexity of developing
programs [2][3]. In this work, we introduce an in-depth
discussion of a new VPL based method, to enable even
programming beginners the creation of context aware
applications.

The rest of the paper is organized as follows: Section 2
introduces visual programming concepts, especially flow-
based and object-oriented approaches. To illustrate how to
apply our approach to different problem domains, context-
based mobile apps and context based humanoid robot
applications serve as case studies in Sections 3 and 4.

57Copyright (c) IARIA, 2024. ISBN: 978-1-68558-100-8

CENTRIC 2023 : The Sixteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Finally, the limitations of the VPL approach, as well as
directions for future research are presented in Section 5.

II. VISUAL PROGRAMMING

VPLs let users develop software programs by combining
visual program elements, like sensor and actuator objects,
loops or conditional statements rather than by specifying
them textually [1].

A. VPL Concepts

A comprehensive analysis of various VPLs including the
strengths and weaknesses of VPLs, as well as guidelines to
choose the most suitable VPL for the task in hand is
described in [2]. There are two popular categories of VPLs:
Flow-based VPLs and object-oriented VPLs.

In case of object-oriented VPLs, visual program elements
are based on an object-oriented paradigm, i.e.,
decomposition of a system into a number of entities called
objects and then ties properties and function to these objects.
An object’s property can be accessed only by the functions
associated with that object but functions of one object can
access the function of other objects in the same cases using
access specifiers. Figure 1 shows the visual elements for a
simple function call, following the representation of visual
elements used in MIT AppInventor [4]. Objects, method
calls, arguments and results of method calls are represented
by visual elements with different shapes and colors. Clicking
a button, touching a map, and tilting the phone are examples
for user-initiated events.

Figure 1. Object-oriented Visual Programming.

In general, flow-based VPLs offer different categories of
elements, e.g., function calls, as well as control elements,
like conditional statements. Programs are developed by
placing them one after the other. For a parallel execution,
more than one element may be used. Figure 2 illustrates the
basic idea of a flow-based VPL-based program following the
representation of visual elements used in Choregraphe [5].
First, the function f1 is called, then f2 and f3 are executed in
parallel. Function elements are connected by using entry and
exit ports. This is similar to BPMN, which stands for
Business Process Model and Notation. BPMN is a
standardized graphical modeling language used to represent
and visualize business processes [6]. It is a widely adopted
industry standard for modeling and documenting business
processes, as it provides a consistent and easy-to-understand

visual representation of a process. Flow elements are
elements that connect with each other to form business
workflows similarly to the visual building blocks of
Choregraphe.

Figure 2. Flow-based Visual Programming.

Examples for flow-based systems are Flowgorithm [7],
Microsoft VPL [8], and Choregraphe [5]. Flowgorithm is a
general-purpose VPL that can be used to create flowchart
representations of computing algorithms. It can translate a
visual flowchart into eleven different textual programming
languages, including C++ and Java. Flowgorithm is language
independent but is not platform-independent; it is available
only for Microsoft Windows operating system. Although it is
not open source but is free for use.

Microsoft VPL is a programming environment based on
graphical data-flows. It is aimed at engaging hobbyist
programmers, as well as professionals. Furthermore, novice
programmers can use it to learn programming, and
experienced programmers can employ it for rapid
prototyping. Microsoft VPL is a part of Microsoft Robotics
Developers Studio (MRDS) used to develop software to
guide robots. Choregraphe [5] represents also a flow-based
visual programming environment which offers visual
program elements for to easily develop complex robot
applications, but Choregraphe also offers limited operations
for the localization, mapping, as well as simple navigation
functions.

B. Use Case Driven Development

 Requirements engineering is done in two steps:
Development of a use case diagram and specification of the
use cases (each with input, output, steps). Based on the
developed use cases, the VPL based application coding
process is also use case driven and done in three steps:

• Development of a user interface for each use case
(optional part).

• Selection of components (e.g., location sensor, QR
code scanner, etc.).

• Flow-based or object-oriented visual programming

In Section 3, we show how our approach is applied to
two very different problem domains, namely context-based
mobile applications and robot applications.

58Copyright (c) IARIA, 2024. ISBN: 978-1-68558-100-8

CENTRIC 2023 : The Sixteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

III. CASE STUDY: HUMANOID ROBOT APPLICATIONS

In this section, we present a case study of a context-based
application for a humanoid robot. First, the sensors and
actuators are analyzed, then the visual program elements are
explained and finally the VPL based implementation of a
context-based use case is described.

A. Sensors and Actuators

As an example, we use the popular humanoid robot
Pepper (by SoftBank Robotics) [9][10], see Figure 3, a
wheeled humanoid robot with sensors and actuators, i.e.,
torso, a head, two arms, with 20 degrees of freedom for
motion in the body (17 joints for body language) and three
omnidirectional navigation wheels to move around smoothly.
It contains a set of various sensors to allow it to perceive
objects and humans in its environment [11]:

Figure 3. Sensors of the Pepper platform.

Pepper is able to localize a person talking to it, can
distinguish multiple faces, determine eye contact or even
recognize and react to basic emotions of the person it is
talking with. Additionally, the humanoid robot is able to
recognize someone’s emotion not only by voice, but also by
parameterizing facial expressions of interlocutors by using
machine vision.

B. Visual Program Elements

Choregraphe is a visual programming environment for
the Pepper platform. It offers visual program elements for
different categories to easily develop complex robot
applications, but Choregraphe also offers limited operations
for the localization, mapping, as well as simple navigation
functions [11].

Table I illustrates examples for the different categories of
visual program elements, e.g., visual building blocks for
speech creation, camera actions, or human face detection.
Additional AI-based building blocks returns the gender, the

age or the detected facial expression of the person in front of
the robot. Building blocks include also logic functions and
conditional statements, i.e., a condition and stimulate the
then or else outputs depending on the boolean value of the
condition.

TABLE I. VISUAL PROGRAM ELEMENT EXAMPLES.

C. Context-based Application: “Recognize and Greet

People Scenario”

In the following, we introduce a simple use case
"Recognize & Greet People" as an example of a context-
based application. The robot greets a person standing in front
of it (after the robot has identified a face). Optionally (if
questions are asked), the robot answers a question in the
second use case "answer question" (not shown). The use case
specification for the base use case is described in Table II.
Based on a loop, four steps have to be executed: Detect face,
determine gender, determine age and finally an animated say
depending on the results of the previous blocks.

TABLE II. USE CASE: “RECOGNIZE & GREET PEOPLE”.

59Copyright (c) IARIA, 2024. ISBN: 978-1-68558-100-8

CENTRIC 2023 : The Sixteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Based on the results of the requirements engineering, the
implementation is also use case driven in three steps:

• Selection of visual program elements: Sensors,
actuators and control elements

• Setting parameters of the visual programming
building blocks (e.g., set the language of the
“Animated Say” building block or the text to be
spoken).

• Connection of visual programming building blocks,
i.e., connecting their inputs and outputs, e.g., the
output of “Face Detection” element must be
connected to the input of the “Get Gender” element

Figure 4. Sensors and Actuators for the Use Case.

For the use case “Recognize & Greet People”, the

following sensors and actuators are required: Face Detection,
GetAge, GetGender, and AnimatedSay (Figure 4). For
example, GetGender returns the gender of the person in front
of the robot. It is possible to set up the confidence threshold
and the timeout.

Figure 5. Flow-based implementation of the Use Case.

Figure 5 illustrates the flow-based implementation of the
use case.

IV. CASE STUDY: MOBILE APPLICATIONS

In this section, we present a case study of a location-
based mobile application (spatial context). First, the sensors
and actuators are analyzed, then the visual program elements
are explained and finally the VPL based implementation of a
concrete location-based service is described.

A. Sensors and Actuators

Sensors in mobile devices measure various
environmental parameters, such as ambient air temperature
and pressure, illumination, and humidity (Figure 6). This
includes orientation sensors, magnetometers, but also
barometers, photometers, and thermometers. Actuators
mainly perform vibration-related functions, such as vibration
and sound generation.

Figure 6. Sensors and Actuators of Mobile Devices.

B. Visual Program Elements

We use App Inventor [4] and Thunkable [12], which are
both cloud-based visual development environments for
mobile applications (Android and iOS). App Inventor and
Thunkable provide the application developer with many
different components to use while building a mobile app.
Properties of these components such as color, font, speed,
etc. can be changed by the developer. Available element
categories are user interface elements, media, storage,
location-based services etc. Elements can be clicked on and
dragged onto the development screen area.

There are two main types of components: Visible and
non-visible. Visible components such as buttons, text boxes,
labels, etc. are part of the user interface whereas non-visible
components such as the location sensor, QR Code scanner,
sound, orientation sensor are not seen and thus not a part of
the user interface screen, but they provide access to built-in
functions of the mobile device.

TABLE III. VISUAL PROGRAM ELEMENT EXAMPLES.

60Copyright (c) IARIA, 2024. ISBN: 978-1-68558-100-8

CENTRIC 2023 : The Sixteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Table III illustrates examples for the different categories
of visual building blocks. The location sensor provides
location information, including longitude, latitude, altitude
(if supported by the device), speed (if supported by the
device). The Bluetooth Low Energy (BLE) component
allows an application to find and connect to BLE devices and
to communicate directly with them. The vibration actuator
will vibrate the device for a specified time unit. The foreach
element applies a set of functions to each element of a list,
e.g., a list of tourist locations, part of a tourist app.

C. Context-based Application: Location-based Service

Scenario

The use case in Table IV describes a location-based
service [13] pattern in terms of input, output and steps to be
executed. The template can be applied for instance to
visualize some tourist attractions and the current position of
a mobile user on a map. Filters are used to display certain
tourist attractions, e.g., museums.

TABLE IV. USE CASE TEMPLATE “SHOW OBJECT(S)”.

Use Case Show <object(s)> on a map

Input Filter

Steps 1: Determine the current geo position

 of the user

2: Show a map with the user's current position as

 the center point

3: Search the <object(s)> according to the

 specified filter (in a list of <object>)

 if found →

 Create marker(s) for the <object(s)>

Output Map with markers:

→ marker for the current position of the user

→ marker(s) representing the <object(s)>

The implementation based on an object-oriented VPL,
like MIT AppInventor, follows three steps:

• Selection of visual program building blocks: User-
interface elements, sensors, actuators and control
elements (e.g., if, switch elements).

• Definition of events (e.g., when button click, on map
loaded)

• Calling methods (e.g., calling a method to get the
current location of a user).

Event handler blocks specify how a program should

respond to certain events. After, before, or when the event
happens can all call different event handlers. There are two
types of events: user-initiated and automatic.

Clicking a button, touching a map, and tilting the phone
are user-initiated events. Sprites colliding with each other or
with canvas edges are automatic events. Timer events are
another type of automatic event. Sensor events function also

as user-initiated events. For example, orientation sensor,
accelerometer, and location sensor all have events that get
called when the user moves the phone in a certain way or to
a certain place.

Figure 7 shows the visual elements of the event-based
programming part for the use case in Table IV, a simple
location-based service. Objects, method calls, arguments and
results of method calls are represented by visual elements
with different shapes and colors. In a first step the current
position of a user is determined by calling the method
GetCurrentLocation. The resulting values (latitude and
longitude) are used in the next step for the specification of
the map center (two set operations). By calling the method
addMarker, a marker is created in a third step. The
arguments for the last method call are again visual elements
(previously calculated values for the current latitude and
longitude of the user).

Finally, a corresponding marker is generated for all
objects of a list (by using a “for each item loop”), according
to the specification in the use case description (Table IV).

Figure 7. Implementation of a Use Case by Using an Object-Oriented VPL.

Creation of the object list could be based on a local list

(as part of a mobile app) or a cloud-based object list. The
creation / access to an object list in encapsulated in a
separate function createObjectList. Finally, the objects
behind a marker have to be visualized. For example, exhibits,
like paintings in a gallery could be equipped with qr codes.

61Copyright (c) IARIA, 2024. ISBN: 978-1-68558-100-8

CENTRIC 2023 : The Sixteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Object visualization in this case could mean to create a link
to a video (painter explaining interesting background
information) or a link to allow a tourist buying a print.

V. CONCLUSION

 The main privilege of context-aware applications is to
provide an effective, usable, rapid service by considering the
environmental context (such as location, time, weather
condition, and other attributes) and adapting their
functionality according to the changing situations in context
data. Use cases and visual programming are particularly well
suited for programming beginners. However, visual
programming environments are increasingly used in
demanding problem domains, e.g., Internet Of Things (IoT)
applications [14]. The development of use cases (in the sense
of requirements engineering) as the starting point of an
context-based application project has proven to be very
advantageous.

Benefits of VPLs are short development times, low costs
and increased efficiency and productivity [15]. VPL tools
enable users with low technical skills to develop advanced
software. Both VPL approaches, flow-based and object-
oriented programming have their application areas. If parallel
activities in particular are to be programmed, then flow-
based systems are usually better suited. Our experience is
that object-oriented VPLs seem to be more intuitive
(especially for with low technical skills) due to the visual
representation of objects, methods and the set and get
operations.

A main drawback of the used programming
environments is the identification and handing of runtime
errors due to the lack of integrated debugging functions.
However, our use case centered approach leads normally to
manageable runtime error because each use case is
developed and tested as a separate unit.

Future work will focus on the development of patterns
and model-driven development [16]. Patterns are a well-
known concept in the traditional software engineering. An
architectural pattern is a general, reusable solution to a
commonly occurring problem in software architecture. An
architectural pattern becomes a reusable solution for a
common set of problems in software development,
addressing issues like high availability, performance, and
risk minimization. Additionally, we focus on development of
a repository of use case templates and visual code templates
to improve design and implementation of context-based
applications [17].

REFERENCES

[1] A. K. Dey and G. D. Abowd, "Towards a Better
Understanding of Context and Contextawareness," CHI 2000
Workshop on The What, Who, Where, When, Why and How
of Context-awareness, pp. 1–6, 2000.

[2] M. Idrees and F. Aslam, "A Comprehensive Survey and
Analysis of Diverse Visual Programming Languages,"
VFAST Transactions on Software Engineering, vol.10, no. 2,
pp. 47–60, 2022.

[3] R. Daskalov, G. Pashev, and S. Gaftandzhieva, "Hybrid
Visual Programming Language Environment for
Programming Training," TEM Journal, vol. 10 Issue 2, pp.
981–986, 2021.

[4] MIT App Inventor. https://appinventor.mit.edu,
[retrieved: September, 2023].

[5] Choregraphe,
http://doc.aldebaran.com/2-4/software/choregraphe/,
[retrieved: October, 2023].

[6] BPMN, https://www.omg.org/bpmn, [retrieved: October,
2023].

[7] Flowgorithm, http://www.flowgorithm.org/, [retrieved:
October, 2023].

[8] Microsoft vpl,
https://msdn.microsoft.com/enus/library/bb483088.aspx,
[retrieved: October, 2023].

[9] Pepper, http://doc.aldebaran.com/2-4/home_pepper.html
[retrieved: October, 2023].

[10] C. Gómez, M. Mattamala, T. Resink, and J. Ruiz-Del-Solar,
“Visual SLAM-Based Localization and Navigation for
Service Robots”: The Pepper Case. In Robot World Cup;
Springer: Cham, Switzerland, pp. 32–44, 2018

[11] A. M. Marei, et al., “A SLAM-Based Localization and
Navigation System for Social Robots: The Pepper Robot
Case”, Machines 2023, 11(2), pp. 47–60.

[12] Thunkable. https://thunkable.com, accessed: 2023-07-10.

[13] T D’Roza and G Bilchev, "An overview of location-based
services," BT Technology Journal, vol. 21, no. 1, pp. 20–27,
2003

[14] M. Silva, J. P. Dias, A. Restivo, and H. S. Ferreira, “A
Review on Visual Programming for Distributed Computation
in IoT”, Springer Nature Switzerland AG 2021, M. Paszynski
et al. (Eds.): ICCS 2021, LNCS 12745, pp. 443–457, 2021

[15] D. Pinho, A. Aguiar, and V. Amaral, "What about the
usability in low-code platforms? A systematic literature
review", Journal of Computer Languages, Volume 74, pp.
1959–1981, 2023

[16] Md. Shamsujjoha, J. Grundy, Li Li, H. Khalajzadeh, and Q.
Lu, Developing Mobile Applications Via Model Driven
Development: A Systematic Literature Review, Information
and Software Technology, Volume 140, December 2021.

[17] M. Zimmermann, “Location and Object-Based Mobile
Applications”, UBICOMM - International Conference on
Mobile Ubiquitous Computing, Systems, Services and
Technologies, pp. 34-39, 2023.

62Copyright (c) IARIA, 2024. ISBN: 978-1-68558-100-8

CENTRIC 2023 : The Sixteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

