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Abstract—Stress is a feeling of emotional and physical tension,
that poses as a risk factor in many diseases, for example
the nervous, musculoskeletal, cardiovascular or gastrointestinal
system. Fast and easy detection could be a first step in order
to help people manage their stress-levels. This paper depicts an
ongoing work in the domain of stress prediction with Heart Rate
Variability related features by classifying two different levels on
the Stress-Predict Dataset. The performance of different clas-
sifiers was tested with Leave-One-Subject-Out Cross Validation
and compared to each other. The best performance was reached
with the Aggregated Mondrian Forest Classifier and a mean
balanced accuracy of 97.87%.

Index Terms—Heart rate variability; stress prediction; Machine
Learning.

I. INTRODUCTION

There are manifold definitions of stress in humans. Maybe
the most generic and well-known definition is the one by Hans
Seyle, stating that ”Stress is the non-specific response of the
body to any demand” [1]. This demands can be of physical or
psychological nature [2] [3]. Especially psychological stress,
which can be defined as “stress that occurs when an individual
perceives that environmental demands tax or exceed his or her
adaptive capacity” [4], is a topic of great interest in healthcare.
While both stressors, psychological and physiological, are of
very different nature and by thus, have different effects on
the body, they also share a subset of comparable effects on
the body [5]. Not only do they cause similar subjective and
hormonal responses, it has also been suggested that they also
share common neural substrates [6]. Long term effects of both
stressors seem to show more differing symptoms on the body.
While effects of too much psychological stress are well docu-
mented and mostly about harm of the nervous, musculoskele-
tal, respiratory, cardiovascular, gastrointestinal, reproductive,
and other systems [7], the influences of physical stress are
not so clearly outlined. Nevertheless there are studies, which
observed effects like increased luminal permeability [8] or dif-
ferences in corticosterone serum-levels [9]. Short term effects
of both stressors tend to be more similar, but still differing.
Both stress types cause a rise in physiological parameters like
Heart Rate (HR), Breathing Rate or Oxygen Consumption,
but differ in severity. Like this, the Oxygen Consumption and
Breathing Rate is higher in physical than in psychological
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stress. The HR, on the other hand, is higher in psychological
stress. [11]

The possible damages outline the necessity of a reliable
stress detection method. Can et al. state, that researchers found
out that stress should be handled when the symptoms first
come out to avoid the long-term consequences [12]. This can
be important in different settings like the workplace, traffic
and generally in healthcare.

Because of its importance, automated stress detection is
not a new topic in the area of Machine Learning (ML).
There are already many different approaches in terms of
using psychophysiological signals, selected features, and ma-
chine or deep learning methods. Can et al. used different
ML methods, such as Linear-Discriminant Analysis (LDA),
Support-Vector-Machine (SVM), k-nearest-Neighbors (kNN),
Logistic Regression (LR), Random Forest (RF) and Multi
Layer Perceptron (MLP) to detect 3 psychological stress-
classes with the help of HR, Electrodermal Activity (EDA),
Inter Beat Intervalls (IBI), Skin Temperature (ST) and Ac-
celeration [12]. Costin et al. used Heart Rate Vsariability
(HRV) related features from the Electrocardiogram (ECG), to
train a Minimum Distance Classifier (MDC) and detect three
psychological levels of stress [13]. Garg et al. used ECG, body
temperature (TEMP), Respiration (RESP), Electromyogram
(EMG), and EDA to classify two or three physiological
conditions - neutral (baseline), psychological stress and neutral
(baseline), psychological stress, amusement with the help of
kNN, LDA, RF, AdaBoost (AB), and SVM [14]. Their best

TABLE 1
SELECTION OF PAPERS DETECTING STRESS WITH ML.
Paper Details
Signals ML-Method Best Results
[12] HR, EDA, IBI, LDA, SVM, kNN, LR, | Accuracy of
ST, Acceleration RF, MLP 97.92%
[13] ECG (HRV) Minimum Distance Accuracy of
Classifier 89.36%
[14] ECG, TEMP, RESP kNN, LDA, RF Accuracy of
EMG, EDA AB, SVM 84.17%
[15] ECG (HRV) kNN, SVM, MLP F1 of
RF, GB 79%
[16] ECG(HRV) SVM, MLP, IBK Accuracy of
DT, LDA 94%
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classification results were reached in the binary classification
task with RF and 84.17% Accuracy, while in the three class
problem they reached 67.56% Accuracy, also with RF [14].
Dalmeida et al. classified psychological stress in two classes
with ECG-derived HRV-Features and different ML methods
such as kNN, SVM, MLP, RF and Gradient Boosting (GB)
[15]. Castaldo et al. classified two classes of psychological
stress by using ECG derived HRV-Features with SVM, MLP,
Neighbor Search (IBK), DT and LDA [16].

It becomes clear that the classification of stress can be
done with the help of many psychophysiological features.
And although using HRV traits alone does not appear to be
as accurate as combining multiple signals, it is nevertheless
an interesting approach for minimal applications. This paper
can be seen as a starting point in creating a minimalist
stress classification method, which is robust and practical for
the in use real world scenarios. This paper is structured as
follows: In Section II the used materials, the Dataset and
it’s preparation, the chosen features and the ML methods and
validation procedure are explained. Section III describes the
validation results, while Section IV draws conclusions out of
the results and lists future plans for the project, as this paper
depicts an ongoing work.

II. METHODS AND MATERIALS

The Stress-Predict Dataset (SPD) was used to train different
ML classifiers in a binary classification task, classifying a
stressed and a rest state. To make training possible, steps such
as preparing the dataset, feature extraction and choosing the
ML methods had to be done. These steps, and also the used
materials, are described in here.

A. The Dataset

The relatively new SPD from Igbal et al. consists of bio-
signals from 35 participants, 25 men and 10 women. Stressors
were forced Hyperventilation, the Trier Social Stress Test and
Stroop Color Test. An E4 watch from Empatica was used to
measure individual physiological changes based on PPG. The
signal was filtered to get a clean Blood Volume Pulse (BVP),
which was used to obtain the HR, IBI and Respiration Rate
(RESP) by an estimation algorithm. [18]

To the authors knowledge this dataset was not used before to
detect stress from HRV features.

B. Preparation of the dataset and preprocessing

Because the dataset was not mainly composed to detect
stress from HRV-Features, but from HR and RESP, an own
assignment of labels, timestamps and physiological parameters
had to be done. Igbal et al. original distribute one “processed”
data folder and one with raw data. The first folder contains a
list, with merged patient label, HR, RESP a stress-label and
a timestamp for every second, given in ms with one decimal
place. The raw data contains separate lists of the physiological
signals with the passed time since the start, given in ms with
6 decimal places, and the starting time of the experiment in
ms as header, for every subject.
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Fig. 1. Dataset preparation

It was important to assign labels to the IBIs. At the start,
subject data was sorted into dataframes. It could be seen, that
subject one has no matching labeled data, so it was deleted.
The raw condition of the IBI dataframes just contains the IBI"s
and the passed time in ms from the respective starting time. To
facilitate sorting labels to IBI s, a new column for the absolute
passed time since start, as given in the processed filed, was
added. The starting time was given in the raw header file, by
this the columns could be filled with an iterative addition of the
start time and the passed time. Also, the processed data is time-
wise longer than the raw IBI data. Processed data which could
not be associated to any IBI data was therefore deleted. From
there on, the labeled data was sorted to each IBI by rounding
the IBI-times: Each raw timestamp, given in ms, was rounded
to match a processed timestamp given in seconds, and by this
sorted to one Stress-Label. The process can be seen in Figure
1. In a next step, the IBI-signals were windowed into 60-sec-
windows. Since the windowing sometimes produced windows
with two different labels, the window was labeled according
to the majority of stress-labels. Windows with less than 30
IBI’s were sorted out as it would not be physiological.

C. HRV Features

To extract HRV Features from IBI-signals the pyhrv-toolkit
was used [17]. The chosen features can be sorted in time-
and frequency-domain-, but also nonlinear features.

1) Time Domain Features: Time domain features included
”NN” Parameters, which denote the time between two
consecutive R-peaks in an ECG signal [19]. Different
statistical features like the NN-Counter, mean, minimum and
maximum of the time window and differences in the time
window were taken. Furthermore the standard deviation of the
NN s was taken, the standard deviation (SD) of the average
NN, the root mean square of successive differences, the
number of pairs of successive NN “s that differ by more than
50 ms (nn50) and 20ms (nn20), the proportion of NN50 and
NN20 divided by total number of NN “s (pNN50 and pNN20).

2) Frequency Domain Features: To obtain frequency
domain features, Welch s Power Spectral Density was used.
For the classification task, the absolute powers of the very
low (0.00Hz - 0.04Hz), low (0.04Hz - 0.15Hz) and high
frequency (0.15Hz - 0.40Hz) band was used. Also, the total
power of all frequency bands and the ratio of the power of
the low and high frequency bands.
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TABLE II
TESTED ML METHODS

Parameters
strategy = most frequent
max_iter=45, hidden_layers=45, 20,
batch_size=15
C=0.0, fit_intercept=False,
early_stop=True, max_iter=50
penalty="12", alpha=0.01, max_iter=100,
eta0=0.1, epsilon=0.01, early_stop=True
C=100.0,
degree=10
All standard
criterion=entropy

Classifier
Dummy Classifier
Multi Layer Perceptron

Passive Aggressive Classifier

SGD Classifier

Support Vector Machine
One Vs. Rest
Gaussian Naive Bayes
Decision Tree

Random Forest All standard
Support Vector Machine C=100.0,
One Vs. One degree=10

Hoeftding Adaptive Tree grace_period=100, delta=1e-5, seed=0
leaf_prediction="nb’, nb_threshold=10
grace_period=100, delta=1e-5,
binary_split=True
n_estimators=5, seed=45
n_models=7, seed=45

Hoeftding Tree

Aggregated Mondrian Forest
Adaptive Random Forest

3) Nonlinear Features: Chosen nonlinear features were
SD1 and SD2, which are the SD of the data series along the
minor axis and the major axis of the Poincaré-Plot.

D. ML-Methods and Learning

A variety of ML methods were used to find the best method
for this use case. Used classifiers with their parameters can be
found in Table II. The first nine classifiers are from scikit-learn
[20], while the last four were taken from river [21]. There was
no Hyperparameter Tuning, parameters were rather chosen by
experience or trial runs. To gain a better understanding of the
robustness of each classifier with respect to completely unseen
data, a Leave-One-Subject-Out Cross Validation (LOSOCYV)
algorithm was written. This own implementation was mainly
necessary, because the online learning behaviour of the clas-
sifiers based on the river library is hardly compatible with
scikit-learn. Before training and testing the data was artificially
balanced with Synthetic Minority Oversampling and scaled
with a Standard-Scaler.

III. EXPERIMENTAL RESULTS

Boxplots of the mean balanced accuracies are shown in
Figure 2. The x-axis shows used classifiers, the y-axis shows
the mean balanced accuracies across all subjects. Detailed
results can be seen in Table III. Listed are the means over all
subjects. It is obvious, that the Aggregated Mondrian Forest
(AMF) outperforms the other classifiers by far and keeps up
with the state of the art seen in [16].

Lessons learned are that ensemble methods, like RF or the
SVM-Methods performed better than non-ensemble learners.
Also, non-linear methods, like the Ensemble-SVM ’s with
radial basis function-kernels, outperformed linear methods,
like the Passive Aggressive- or SGD-Classifier. It is generally
known that both methods perform better on a large number
of samples and/or characteristics, so this is not surprising.
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Fig. 2. Boxplots of balanced accuracies

The Dummy Classifier performed as expected with one outlier
being a subject that only expresses the state of no stress,
because of the out-sorting of windows with less than 30 IBI ’s.

IV. CONCLUSION AND FUTURE WORK

The AMF was able to classify the two states "No Stress” and
”Stress” with nearly perfect results. Why exactly this classifier
outperforms others by a large margin, has to be investigated.
To this moment at least incorrect infusion of the output label
in the testing data has been ruled out. Because (A)MFs are
relatively new [21], there is not much literature about best
use cases or pro and contra. Generally, MFs seem to prefer
sparse feature spaces [21], which is the case here. The authors
hope to generate an answer about reasons for the excellent
performance in the near future.

To receive an answer regarding the unusal good performance
of the AMFs, a future task would be to test the same classifiers
on a different dataset. Currently, efforts are being made to use
”"MIT DriveDB” [23] to gain more knowledge about AMFs,
while also testing classification accuracy with more than two
classes. The aim of more than two stress classes is to split
up them in various intermediate stress levels, as it better fits
real-world applications.

An additional goal is to investigate more than one time
window, because different window lengths seem to result in
varying accuracies. At the moment, 5 minute windows still
seem to be the recommended ones [24]. In addition, the use
of an individual baseline could be useful: Since each person
has slightly different characteristics of HRV related to factors
such as age, health, etc., it could lead to better comparability.
Furthermore a classical Hyperparameter Tuning could lead to
better results for all methods. Finally, as in [7], a long-term
goal would be to distinguish between the causes for stress,
psychological or physical, to gain better insight into the causes
and possible effects of stressful events.
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APPENDIX
TABLE III
CLASSIFICATION PERFORMANCES (LOSOCV)
Classifier Performance
Dummy Classifier Accuracy: 62.65%

Balanced Accuracy: 52.94%
Precision: 34.26%

Recall: 52.94%

Multi Layer Perceptron Accuracy: 65.62%
Balanced Accuracy: 65.63%
Precision: 63.30%

Recall: 64.30%

Passive Aggressive Accuracy: 59.62%
Classifier Balanced Accuracy: 59.53%
Precision: 56.02%

Recall: 57.97%

SGD Classifier Accuracy: 55.03%
Balanced Accuracy: 56.20%
Precision: 53.43%

Recall: 55.71%

Support Vector Machine | Accuracy: 67.00%

One Vs. Rest Balanced Accuracy: 66.42%
Precision: 63.13%

Recall: 65.08%

Gaussian Naive Bayes Accuracy: 53.55%
Balanced Accuracy: 56.58%
Precision: 50.24%

Recall: 55.38%

Decision Tree Accuracy: 63.96%
Balanced Accuracy: 63.13%
Precision: 63.15%

Recall: 62.06%

Random Forest Accuracy: 71.67%
Balanced Accuracy: 71.96%
Precision: 69.68%

Recall: 71.96%

Support Vector Machine Accuracy: 67.21%

One Vs. One Balanced Accuracy: 67.21%
Precision: 63.54%

Recall: 65.43%

Hoeffding Adaptive Tree | Accuracy: 53.81%
Balanced Accuracy: 57.37%
Precision: 48.34%

Recall: 56.88%

Hoeffding Tree Accuracy: 61.27%
Balanced Accuracy: 65.12%
Precision: 62.61%

Recall: 63.30%

Aggregated Mondrian Accuracy: 97.79 %

Forest Balanced Accuracy: 97.87 %
Precision: 97.50%

Recall: 97.87%

Adaptive Random Forest | Accuracy: 69.58%
Balanced Accuracy: 73.89%
Precision: 68.12%

Recall: 72.19%
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