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Abstract—This paper represents the outcome of an empirical
study conducted with Large Language Models (LLM) on the
question whether or not we can expect current and future
Artificial Intelligence to assist engineers in the development
of embedded software systems for safety-critical applications.
Experiments with GPT-4 and other LLMs suggest that current
models are capable of assisting developers in part in the design of
Human-Machine-Interfaces (HMI) for instruments and displays
used in aircrafts without the need to manually write a single
line of source code (no-code development) while maintaining the
highest level of safety and reliability demanded by authorities
and customers. The study does not present generally accepted
quantitative measures in answering the question how well suited
current language models are for this task, but rather provides
a qualitative assessment of the capabilities of state of the art
AI. It also sheds a light on the deficiencies of today’s LLMs
in fully understanding technical systems in depth. Instead of
completely replacing human engineers we should rather strongly
rely on human-in-the-loop policies for the most critical phase
of the progressively automated development process, even with
more sophisticated and powerful LLMs on the horizon. It
should be noted that providing objective evidence to support
the argumentation and the findings in this short paper will be
the subject of future work.

Keywords—AI; requirements engineering; safety critical em-
bedded software; model-based software design; automatic code
generation.

I. INTRODUCTION

This section briefly presents the development process of
embedded software systems typically employed these days and
problem with AI when used in safety critical applications. It is
then argued that AI can still be used sensibly instead of doing
without it completely.

A. State of the Art

Outsourcing certain steps in the development process of
software systems to the machine assistant has recently gained
popularity, since it has shown to be beneficial with respect
to coding tasks (e.g., GitHub Copilot). For many years prior
to the advent of large language models like Chat-GPT and
others, extensive automation of the development process of
complex software systems has been the goal of many tools
and procedures. For instance, the translation process from
the source-code in a high-level programming language to the
binary executable program (machine code or object code)
with compilers like the GNU Compiler Collection (GCC) is a

fairly complex and demanding task and leads to solutions that
one could attribute in a certain way to an intelligent agent,
even though no AI algorithm or machine learning strategy
has been traditionally employed of course. This observation is
typically made by students of computers science when asked
to thoroughly analyze the results of the compilation process
for certain single statements in the C programming language
by comparing them to the equivalent in the assembly language.
The machine based translation of such statements is sometimes
more efficient and elegant than the human counterpart, at
least for assembly language beginners. Other tasks in the
development process have been automated since many years as
well, e.g., documentation generation by extracting information
from comments within source code snippets (e.g., Doxygen)
and static code analysis to name just a few.

Now that LLMs like GPT-4 [1], CodeLlaMa [2], StarCoder
[3] or CodeGen [4] are capable of generating source code
for dozens of different programming languages (depending on
the model and the training), it seems logical to let the AI do
the coding job, at least for small portions of a program. An
supposedly increasing number of software engineers is using
these models as a starting point for their software projects by
diving the task into smaller modules which then get completed
by hand in a repeated manner (module by module). Putting
everything together and making the whole software system
work as expected is certainly something that must still be done
by human hand. A future seems possible, in which more and
more of this work can be outsourced to AI agents (chat bots
specialized in coding), not only for small modules or just as
an assistant for code completion.

B. LLMs and the problem with safety

The phenomenon of hallucination (better referred to as
“confabulation”) raises concerns about reliability and trust into
this development process, especially when targeted at safety-
critical systems in aircrafts or other machinery that must be
100% safe (e.g., medical devices). For this reason, letting
today’s and even future AI write the code for safe-critical
systems is not advisable, no matter how good they are or how
promising the outcome will be. Even using LLM generated
code for certain smaller parts of a safety-critical system is
not recommended, mainly for practical reasons: The source
code must be qualified/certified by authorities like the Federal

8Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-100-8

CENTRIC 2023 : The Sixteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services



Increasing degree of automationDecreasing alignment effort

System concept
discussion, decision-

making, etc.

S/W requirements
e.g. IBM DOORS,

MS Office, etc.

S/W design
e.g. Ansys SCADE,

Matlab/Simulink,
IBM Rhapsody, etc.

S/W coding
e.g. SCADE KCG,
Matlab Coder, etc.

RTOS Adaption
building executable(s)

System requirements allocated to S/W

High-level requirements

Graphical and/or
functional model

Source code

change requests

change requests

change requests

change requests

LLM

LLM

Figure 1. Development process of a safety-critical embedded software system according to DO-178C and ARP 4754A. The process resembles the left side of
the famous V-model down to the implementation phase. To the right the process continues with integration, test and verification and validation (not shown).

Aviation Administration (FAA) in the US, the European Union
Aviation Safety Agency (EASA) or other specialized institu-
tions acting as certification instances. This certification process
is tedious, expensive and ultimately superfluous. Instead of
certifying the code every time for every software product or
even every version of one and the same software product, we
should move from the artifact (the software) to the process
and the tools involved. If the tools in the development process
are certified to be safe and to comply with safety standards
and regulations (e.g., ISO 26262, DO-178C, etc.), we can rely
on automation to a greater extent.

Unfortunately, such certification will be hard to achieve in
case of LLMs writing source code due to their stochastic
nature and the huge amount of training data that defines the ca-
pabilities and limits of the tool. The problem of confabulation
stems from this design principle. In others word, neither the
ever changing code generated by LLMs nor the LLM itself as
a tool are good candidates for certification and the target to put
trust into. Instead, we can solely rely on the code generation
powers of specialized tools, such as Ansys SCADE Suite KCG
and SCADE Display KCG, which produce C (ISO-C and
MISRA-C [5][6] compliant) or ADA source code. According
to the company’s website, Ansys SCADE Suite and SCADE
Display KCG have been qualified to comply with all relevant
safety standards.

C. LLMs at the level of requirements

As argued in the previous subsection, we should not employ
LLMs at the coding level in the development process. As
their name “large language model” implies, this kind of AI
is suited for interpreting natural language and for human-
machine conversations (chats). In the development process

of embedded software systems natural language plays an
important role at the very start of the process. Developers
and management discuss the concept of the system, i.e., its
capabilities, fundamental properties and limitations. At the end
of this step, decisions have to be made and translated into a
set of requirements that break down all characteristics of the
system. In case of a software system, the requirements are
a subset of the complete requirements, of course. In Figure
1, the whole process is depicted with the software require-
ments being the starting point for a possible integration and
adaption of LLMs. The terms “requirements management” and
“requirements engineering” represent the underlying tasks and
procedures, which can be supported by specialized tools like
IBM DOORS or just by simple office software (e.g., Microsoft
Office). Most engineering activities in a company on these
upper two levels are centered around requirements as more
or less formal agreement upon fundamental properties of a
system or product, which can get further refined (indicated by
the arrows labeled “change request”), if not detailed enough,
misleading or ambiguous. Engineers all over the world employ
this methodology of requirements engineering as a means
to establish a common understanding about the product to
be developed. Of course, this understanding is achieved by
natural language communication between humans. This step
typically takes a significant amount of time and effort and
eventually leads to a database of ideally precise, consistent,
comprehensive and in terms of technicality detailed phrases
in a natural language like English.

At the level of requirements, AI can come into play and
support engineers taking the next step. Traditionally it was the
developer’s job to translate all the requirements into a model
of the system, either rather informal as a sketch inside the en-
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gineer’s brain or workbook or more formal as an architectural
schematic, flowchart or state diagram. In the context of safety-
critical applications in the mobility sector and other fields, it
has become state of the art to use SysML/UML to model
the system, using tools like Matlab Simulink, IBM Rational
Rhapsody or Ansys SCADE Suite [7][8]. This modeling task
can be quite sophisticated or even error-prone, if done by
unexperienced engineers, but the hypothesis is that it can
be aided by LLMs which play the role of an assistant. In
this scenario the LLM is given the requirements as input
(together with a certain prompt) and the output is a first
and basic version of the model of the system (sub-system
or module) to be developed. Here, the engineer is still needed
not only to supervise this translation process, but also to edit,
complete and essentially examine the model itself to see if
it is properly aligned to the requirements defined by human.
Change requests will still be needed frequently in order to keep
humans in the loop and are essential to guarantee a system of
check and balances.

Picking H/W basis

Adapting OS and com-
pliling/integrating code

Generating C/Ada source code

Modeling S/W funtion-
ality (using SysML)

Editing graphical repre-
sentation (model) of HMI

Writing requirements

Establishing common understanding
about system properties

Figure 2. Leeway in decision-making for tasks in the development process of a
safety-critical embedded software system. As the number of options decreases
from top to bottom, the level of trust increases due to certified tools/products
and proven engineering practices.

D. Alignment of automated processes with the human-centric
perspective

One can observe a decreasing degree of alignment ef-
fort with human-formulated standards and specifications as
automation is increasingly incorporated. Generally speak-
ing, mankind should emphasize the importance of (wo)man-
machine alignment at the highest level of each development
process and will more and more get along with highly auto-
mated procedures and tools at the lower end of the process,
even for safety-critical sectors. This increasing degree of au-
tomation does not mean that we should use LLMs to generate
software code, but support us in the design or modeling
phase while still keeping control of the model itself. This
way engineers can focus on the human-centric viewpoint, i.e.,
defining what behavior is desirable, and let proven tools like
traditional code generators (e.g., SCADE KCG) do the tedious
and costly job. This observation is summarized in Figure 2
and further detailed for the use case which was studied for
this paper.

At the top level of the whole process humans can choose
between a vast variety of options and have to discuss and argue
within a group and with the outside world about fundamental
characteristics of the product. Writing down the requirements
narrows the leeway in decision-making quite a bit, since
many options and features turn out to be unfeasible, costly or
otherwise undesired. In the case of a system with a Human-
Machine-Interface (HMI) or User-Interface (UI) respectively,
the requirements get broken down into a model of the graph-
ical representation, which typically consists of a set of basic
shapes (primitives like circles, rectangles, text and others)
and their properties. This means that, again, many options
are omitted and things get further concretized. Modeling the
functionality in the next step using SysML is another way of
narrowing the leeway. In case of the MBSE approach (Model-
Based System Engineering) employed by the SCADE tool
family, the SysML model needs to be technically precise and
comply with certain modeling principles in order to use the
SCADE Code Generator (KCG) for automated code genera-
tion. We have the choice between C or Ada and can steer
the code generation process to a small extend, but the range
of options is rather limited. At the bottom of this diagram
we can see that compiling the source code and integrating it
into a software ecosystem (usually a real-time OS/RTOS) is a
matter of choosing between very few software products (e.g.,
VxWorks, INTEGRITY-178B or PikeOS).

The same applies to the hardware basis of the system.
Obviously, the leeway of decision-making is so narrow that
we cannot choose freely between all sorts of hardware and
computing platforms, e.g., Raspberry Pi or Arduino. We have
to get along with what has been proven to fulfill the highest
standards of safety. Specialized hardware offers features and
certain safety measures to ensure this (e.g., lockstep mode of
operation, majority vote principle, watchdog timers, etc.).
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II. METHODOLOGY

In this section, the overall scenario is presented and the
procedure for investigating the possible applications of AI in
the development process of saftey-critical embedded software
is explained.

A. Use case

In the scope of this work, the following scenario has been
studied: Large language models which have been trained
extensively with programming language code (OpenAI GPT-
3.5, GPT-4 [1], Salesforce CodeGen [4], StarCoder [3] and
CodeLlaMA [9]) are instructed to take the requirements for
the display (HMI) of an aircraft instrument as input prompt
(together with the system prompt, if applicable) and translate
them into a model that is fed into the Ansys SCADE develop-
ment environment. The model should reflect the requirements
as precisely as possible and thus demonstrate the capabilities
in understanding natural language from the standpoint of a
technical assistant. The aircraft instrument to model is a so-
called Primary Flight Display (PFD), which is used by pilots as
an indication of the aircrafts attitude in relation to the horizon.
This instrument is therefore also called “artificial horizon”. It
usually also provides information about the aircraft’s speed
and its altitude (above mean sea level).

Figure 3. Hierarchy of layers (on the right) with graphical primitives like
lines and groups of shapes in SCADE Display for the PFD in Figure 4.
These shapes originate from the list of primitives on the icon bar on the left.

B. Limitations

Two limitations apply to this use case as it has been tested
for this paper:

• the model is limited to the visual display, i.e., no func-
tionality should be part of the model

• the model should be written in Python using an appro-
priate UI framework or in PGF/TikZ (i.e., LATEX).

The latter is a limitation that results from the limitation of the
LLMs type of output. Even though GPT-4 has some multi-
modal capabilities and can also process images as input, it
cannot produce SysML models directly, but only text-based
descriptions of a model. In SCADE and other tools such
SysML models look like schematics in the editor of the tool,
but the underlying database is saved in XML format. By
this means, LLMs could output the model as an XML file,
rather than outputting a graphics file representing the SysML
model. For this to work, a prerequisite would be that the
LLM has been trained for outputting XML and using domain-
specific (tool specific) designators, naming rules and other
rules to obey. It seems to be plausible that such training
could be accomplished in principle. However, there are much
simpler ways to connect the LLMs to the MBSE development
environment: In Ansys SCADE, users can write Python code
to automate all kinds of tasks using an Application Program-
ming Interface (API). This way the LLM can hook into the
development environment and generate the model directly
without any file based detour. Using this API simplifies the
modeling task for an AI that cannot generate images or draw
schematics on its own. For the scope of this paper, even using
the API would not be feasible, since using the API would
afford pre-training or at least fine-tuning of the LLM. Instead,
the LLMs was instructed to use Python and let it generate the
graphics with the help of an appropriate framework like Qt or
Tkinter that contain all visual elements (widgets) needed. As
an alternative, also PGF/TikZ instructions for processing with
LATEXhave been proposed to the LLM.

The first limitation further simplifies the task for the LLMs:
In order to generate a graphical model of the HMI of the
PFD, no knowledge of SysML is needed. Instead, the LLM
can use the API in SCADE Display to instantiate graphical
primitives from a palette of basic shapes and edit their
graphical properties and appearance (see Figure 3). SCADE
Display also allows to implement basic functionality using
logic expressions and setting properties of the shapes (e.g.,
visibility, color or text strings) in a way that resembles
conditional statements in a programming language, but this
feature cannot be known to the LLM without proper training
and thus was not expected to be used by the LLM in this
study.

C. Example

Figure 4 shows an example of an PFD as provided by
SCADE Display for demonstration purposes. It contains some
of the elements typically associated with the digital version
of an artificial horizon (so-called “glass cockpit”), but there
is no standardized layout and no mandatory information to
be shown besides the horizon and scales for the attitude of
the airplane. In those days of analog cockpits the artificial
horizon did not provide information about altitude and speed
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and was far less cluttered with additional flight information
and warning/caution indicators. Nowadays a variety of such
information can be found additionally on a digital PFD.

Figure 4. Graphical model of the PFD in SCADE Display as provided by
the tool as an example.

In this paper, the example in Figure 4 serves as a benchmark
for evaluating the degree of precision the LLMs achieve when
comparing it to each generated display model. As stated in
the beginning of this paper, no generally accepted quantitative
measures can be used to rate the quality of the outcome.
The evaluation is based on the visual assessment on how
closely related the generated results are if compared to the
PFD example and serves as a performance estimate. Generally
accepted benchmarks for evaluating the performance of LLMs
like HELM [10] or ARC [11] are not suited for this kind of
evaluation. Even the very broad and comprehensive collection
of tests and benchmarks BIG-bench [12] does not provide
a method of measuring the model building capabilities from
requirements as needed for this paper. In [13] the author exam-
ines over 100 benchmarks for commonsense reasoning in AI.
His conclusion is that many of them are incomplete or contain
flaws. As of today, there is no proven method of measuring the
skills of LLMs reliably (moreover, commonsense-reasoning is
different from model-building).

D. Requirements

The starting point for the LLMs is the set of requirements
that specify the display of the PFD HMI as described in the
previous subsection. These requirements should be made by
the human engineer, as depicted in Figure 1. These require-
ments have been tailored to more or less match the design
and structure of the PFD example in Figure 4. It represents
the instrument in the supposedly simplest form and omits those

types of information which may be specific to certain models
of aircraft or manufacturers.

a) Full list of requirements: This list has been used for
GPT-3.5 and GPT-4, but not in full length for CodeLlaMA,
StarCoder and CodeGen. Only OpenAIs leading-edge products
could use such a long list of requirements as single, contiguous
input (together with the system prompt or instruction). For the
other LLMs a shorted version has been used (see below).

1) General Layout & Dimensions:

• The PFD shall have a rectangular aspect
ratio suitable for installation in standard
cockpit instrument panels.

• The sky and earth shall be perfectly
aligned at the horizon line.

• The horizon line shall be centered
horizontally on the PFD, and its vertical
placement shall adjust based on the
aircraft’s pitch angle.

2) Color and Appearance:

• The PFD shall represent the sky in blue.
• The PFD shall represent the earth in brown.
• The horizon line shall be a distinct, bold

white line for easy visibility against both
the sky and earth backdrops.

3) Aircraft Attitude Indicator:

• An aircraft symbol, representing the
relative pitch and roll of the aircraft,
shall be fixed centrally on the PFD.

• The aircraft symbol shall be displayed in a
contrasting color (e.g., white) to ensure
it is distinct against both sky and earth.

4) Altitude Tape:

• The PFD shall display an altitude tape
vertically on the right side, showing the
current altitude of the aircraft.

• The altitude values shall be displayed in
white digits with a black outline for easy
readability.

• An arrow or pointer shall indicate the
current altitude on the tape.

5) Airspeed Tape:

• The PFD shall display an airspeed tape
vertically on the left side, showing the
current airspeed of the aircraft.

• The airspeed values shall be displayed in
white digits with a black outline.

• An arrow or pointer shall indicate the
current airspeed on the tape.

6) Heading Indicator:

• The PFD shall display a horizontal heading
tape or compass rose at the bottom of the
display.

• The current heading shall be indicated
by a fixed pointer or triangle, with the
tape/rose rotating behind it.

7) Turn Coordinator:

• The PFD shall incorporate a turn
coordinator, represented by a curved line
or other suitable graphical representation,
to show the rate and direction of turn.

8) Additional Flight Information:

• The PFD shall display other pertinent
flight data such as vertical speed, angle
of attack, and barometric pressure.

• This information should be arranged in a
manner that does not clutter the primary
attitude information.
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9) Warning and Caution Indicators:
• The PFD shall have provisions for

displaying warning (red) and caution
(amber) indications for critical flight
parameters, such as stall warnings or
autopilot disengagement.

b) Short list of requirements: The full list of require-
ments was too long for CodeLlaMA, StarCoder and Code-
Gen. CodeLlaMA did not finish the code generation process
properly and stopped the output in the middle of the code
- unfinished and not ready to run on the Python interpreter.
StarCoder and CodeGen did not output anything, the process
stopped with a time-out error. For this reason, a short list
of requirements was used. This way, the modeling task was
shorter also and could be finished with less tokens for the
output. The short list consists of all requirements from above
up to and including requirement no. 5.

E. Prompt engineering
Of course, the raw list of requirements is not enough

to instruct LLMs to generate any code. Even though the
requirements made up the greatest part of the input prompt,
the LLMs needed to get instructions on how to code and in
what language. The prompt was also used to describe the
scenario and the role the LLM was expected to play when
generating the code. The prompt was therefore separated into
a first part which was labeled as “Instruction” and a second
part which was named “Requirements”. Such labeling and
structuring is considered to be good practice and generally
improves the outcome. Substantially better results could be
expected, if instead of this “zero-shot learning” approach, at
least a single example of the code to be generated would be
presented to the LLM (“few-shot learning”) as part of the
input prompt [14]. This would have meant that a corpus of
instructions was used along with an example of HMI related
graphic routines. However, it was the focus of this work to
only study the potential of LLMs in understanding typical
(traditional) requirements in natural language and to add only
a minimal amount of instructions beforehand (often referred
to as “system prompt”). The following paragraph depicts the
input prompt used:

### Instruction ###
You are a software developer who writes
code for the user interface of a Primary
Flight Display (PFD) used in an airplane’s
cockpit.
Your language of choice is Python. Use
the following list of requirements as
a specification of the properties and
appearance of the user interface.
All requirements must be met. Output the
code for generating the graphics of the
user interface.
### Requirements ###
...

Minor changes to this input prompt were used occasionally,
e.g., to instruct the LLM to use a different programming
language instead of Python. For instance, GPT-4 was asked
to output the code for the HMI of the primary flight display
using the TikZ package of LATEX. The advantage of this
variation was, that it was perfectly clear that only static
code to generate the visuals was asked for, instead of func-
tional code that would compute changes in the aircraft’s
attitude from sensor inputs. In fact, the code generated by
CodeLlama for the right PFD in Figure 7 comprises func-
tion calls like getPitchAngle(), getRollAngle(),
getAltitude() and getAirspeed(), which are sup-
posed to provide sensor data from real-time measurements. For
the complete code, refer to listing 10 in the appendix. Such
functional code was not part of the assignment and therefore
the Python interpreter aborts execution after drawing the basic
layout of the display, thus omitting any adjustments to be made
to the indicated attitude of the aircraft or changes in altitude
or speed.

No instruction finetuning was used to further improve the
outcome. Chain-of-thought finetuning was also not employed,
even though it should lead to substantially better results [15]–
[20], given that the task of model building from requirements
requires engineers to also think in a “divide and conquer”
fashion and the build the system step-by-step from bottom-
up. A single requirement (single sentence in natural language)
in this way could be quite challenging and sophisticated
and require many complex technical considerations, but be
still quite feasible, if divided conceptually into sub-tasks and
solved sequentially.

III. FINDINGS

This section explains the results of a comparison of the
suitability of different language models for the use case
presented.

A. GPT-3.5 and GPT-4 are ahead

GPT-3.5 and GPT-4 could handle the full list of require-
ments, whereas the other LLMs tested in this work failed.
Besides these two, only CodeLlama (CodeLlama-34b-Instruct)
could at least handle the shorter list of requirements, primarily
due to the limited context length of the LLM (4096 tokens for
CodeLlama, see [2]).

The StarChat LLM is advertised to be the “fine-tuned
versions of the StarCoder family to act as helpful coding
assistants” (taken from Hugging Face website). And further:
“The base model has 16B parameters and was pretrained on
one trillion tokens sourced from 80+ programming languages.”
As StarCode offers a context window of 8K tokens [3], it was
expected to actually generate some code, irrespective of the
quality and the achievements. The same applies to CodeGen
(codegen25-7b-instruct) from Salesforce [4]. However, run-
ning the models on Hugging Face playground led to extremely
long runtimes and eventually was aborted on the server side.
For this reason, the table shows 0% fulfillment rate. It remains
unclear of these two LLMs would be able to process the full
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(or shorted) list of requirements if run on a dedicated, powerful
server. Answering this question is left for future work.

In a paper titled “Sparks of Artificial General Intelligence:
Early experiments with GPT-4” [21] the authors examine the
capabilities of GPT-4 in graphical user interface programming.
They claim that “... GPT-4 is also an expert in GUI program-
ming, knowing how to create an accurate layout and handle
complicated input events”.

With this in mind, expectations were high that at least the
leading-edge LLM GPT-4 could satisfactorily fulfill the task
of translating requirements written in natural language into
programming language code for the static display of HMI
showcases. As Table I shows for the full list of requirements
listed in the preceding section, GPT-4 is indeed capable of
completing this task in a way that it can assist a human
engineer in building a first, basic graphic model of a HMI
for further processing with tools like SCADE Display and
subsequent code generation with SCADE Display KCG or
similar. In Figure 5, two of the best results are shown. The
code for the PFD on the right is given in Figure 8 (code for
the other on the left omitted to save space).

The metrics in Table I should be understood as meaning
that the respective language model was used for several runs
under the same conditions, resulting in different code variants
for each run. These were then analyzed in terms of their degree
of fulfillment and the dispersion characterized by the lower and
upper bounds as well as the median.

The numbers indicate that in at least one case GPT-4 could
successfully meet all requirements listed in Section II-D and
the minimum number of requirements that could be satisfied
is twice as high as in the case of GPT-3 (37% vs. 16%).
The median is also almost twice as high and GPT-4 always
produced code that could be run by the interpreter (Python or
LATEX) right from the start (no code fiddling needed). GPT-3.5
produced code that was erroneous in one case, but it could be
corrected by the LLM itself after being instructed to do so.

Figure 5. PFD with highest degree of fulfillment (100%, left) for the full list
of requirements as generated by GPT-4 using the TikZ (LATEX) language (see
Table I). The PFD on the right side achieved 84% fulfillment.

It should be noted that the variability of the code is quite
high considering all instances, despite the fact that no input

TABLE I
EVALUATION OF LLMS FOR THE FULL LIST OF REQUIREMENTS

Full list of requirements (no. 1 to 9)
Degree of
fulfillment

# of error-free
code variantes

# of correctable
code variants

GPT-4
Min. 37%

Median 74%
Max. 100%

14 of 14 N/A

GPT-3.5
Min. 16%

Median 39%
Max. 68%

7 of 8 1 of 8a

CodeLlama 0% 0 of 2b 0 of 2b

StarChat 0% 0 of 2c 0 of 2c

CodeGen2.5 0% 0 of 2c 0 of 2c
acontained errors that GPT-3.5 corrected after being instructed
bcode output ended after approx. 5000 characters
ctimeout after several minutes without any output

prompt changes had been made and the requirements also were
kept untouched. The LLMs was presented one and the same
input repeatedly and the code was analyzed by comparing each
and every requirement to what could actually be seen on the
display of the (virtual) instrument when the code was executed.
The number of satisfied requirements on the static display was
counted and led to the percentage measure.

B. CodeLlama: Shorted list of requirements

The shorted list of requirements comprises requirement no.
1 to no. 5 and represents a very basic PFD. By this means the
number of code lines for the output was essentially reduced.
This enabled CodeLlama to become part of the game, i.e. it
could finish the code which was otherwise aborted. Interest-
ingly, all six runs in which CodeLlama came into operation
produced code with the same type of error concerning the
proper usage of the UI framework Qt. Correcting this error
required the manual replacement of a line of code with three
additional lines.

The complete code for the PFD on the left side of Figure 6
is given by the listing in Figure 9 in the appendix. It represents
the original code from CodeLlma without the corrections. The
same Qt related error produced CodeLlama in all six instances
of output in Table II and could be resolved analogously.

TABLE II
EVALUATION OF LLMS FOR THE SHORT LIST OF REQUIREMENTS

Short list of requirements (no. 1 to 5)
Degree of
fulfillment

# of error-free
code variantes

# of correctable
code variants

GPT-4 100% 8 of 8 N/A

GPT-3.5
Min. 64%

Median 84%
Max. 96%

4 of 4 N/A

CodeLlama
Min. 14%

Median 29%
Max. 86%

0 of 6 6 of 6a

StarChat 0% 0 of 2b 0 of 2b

CodeGen2.5 0% 0 of 2b 0 of 2b
arepeatedly the same error using Qt, but code corrected by GPT-4
btimeout after several minutes without any output
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In the table it can be seen that CodeLlama is far less
powerful in GUI programming (i.e., HMI generation from re-
quirements) than GPT-3.5 and certainly GPT-4, with a median
degree of fulfillment of 29% vs. 84% for GPT-3.5. GPT-4
could meet all requirements and produced error-free code, as
expected.

C. Visual examination and oddities
In Table II the noticeable spread between the best result

from CodeLlma and the worst corresponds to the great vari-
ability that can be seen in the output of CodeLlama in Figure 6
and Figure 7. The Qt window on the left in Figure 6 is almost
empty and seems to be a complete failure, but this stems from
the fact that on the upper half of the window an image of
the sky should be loaded from a file and in the lower half an
image of the earth. The two Python instructions for loading
these two files had been commented out, because they were
not readily available. With those images included, the window
would not look that defective and an artificial horizon would
be noticeable at the boundary between the images.

Another point to mention is the aircraft symbol, which
can hardly be seen in the upper center of the window. It is
quite small and represented by the unicode symbol “rocket”
(U+1F680), which was included in the source code as text
string.

Figure 6. PFD with lowest degree of fulfillment (14%, left side) for the short
list of requirements as generated by CodeLlama. CodeLlama also generated
variants of the PFD on the basis of a polar diagram (29%, right side).

The variability of the results from CodeLlama is quite
remarkable, as can be seen on the right side of Figure 6. In
this case the LLM tried to use a polar diagram to fit the PFD
in, but with this approach it sacrificed many requirements so
that only 29% could be met.

In those cases in which CodeLlama “decided” to chose the
right UI/GUI framework and a suitable graph paradigm, the
outcome was not so bad as can be seen in Figure 7. On one
hand, the aircraft symbol was merely a circle in the middle
of the display, but the requirements did not specify how it
should look like well enough on the other hand. It can be
stated that what is not specified thoroughly, precisely and
comprehensively in the requirements can be implemented by
the LLM modeling assistant freely and with little common-
sense knowledge and engineering experience, it will be. The
more common-sense knowledge an advanced LLM has, the
better it can fill those gaps in the specification and thereby
interpret the human will and serve the intended purpose.

For this reason, CodeLlama generated the “rubber bands”
(airspeed tape and altitude tape, requirements no. 4 and 5) on
the left and right side in such a way that it is hard to use from
a practical standpoint, but it also fulfilled the needs written
down in the requirements. It was just lacking the knowledge,
that a cluttered display with multiple symbols and text snippets
overlaying each other is basically useless.

Figure 7. PFD variants with highest degree of fulfillment (57% and 86%) for
the short list of requirements as generated by CodeLlama. Note that GPT-3.5
and GPT-4 were still much better (see Table II).

GPT-4, however, seems to be much more aware of the
implications of certain design and layout related decisions it
makes for the practical usability, as can be clearly seen in
Figure 5. It knows that the altitude is typically displayed in
quantaties of 100 feet and the speed in a finer resolution (here
5 knots). The compass rose (heading tape) in PFD on the right
correctly shows values of degree ranging from 90 to 330, but
not surpassing 360 degree. All of this was not specified by the
requirements.

Interestingly, GPT-4 did not realize that it would be better
to let the altitude increase towards the sky and sketched the
numbers the other way around (higher altitude towards the
earth). A human engineer would have done it opposed for
sure, even without a corresponding requirement. Such implicit
attributes must be derived from the requirements as part of
the engineering task. This is something that GPT-4 is not able
to do in each and every case. Its common-sense knowledge
is incomplete, otherwise GPT-4 would not provide numbers
for negative speeds on the left airspeed tape. Numbers can
be negative in many cases, but for speed it makes no sense.
It is speculative, but maybe GPT-4 would not have included
negative values if the tape and its purpose was titled “speed”
instead of “airspeed”.

Taking the speculation one step further, a single example
of a PFD with negative speed values can be found on the
internet if a search (using Google) for images for “primary
flight display” is performed. The image with negative speed
values leads to GitHub: In 2019, under the name “kouky”
an author published a project for a PFD to be used in
micro UAVs (Unmanned Aerial Vehicles) [22]. Such aerial
vehicles or multicopters can indeed exhibit negative speeds
if flown backwards. If GPT-4 included the negative speeds
intentionally, the LLM either learned from the code of this
project on GitHub or from the corresponding image.
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IV. CONCLUSION AND FUTURE WORK

The following section examines the steps that need to be
taken to advance the concept presented and summarizes the
findings of this study.

A. Next Steps

The work presented in this paper will be the starting
point for building a modelling assistant for HMI generation
from requirements based on open source LLMs like Llama 2
(i.e. CodeLlama), StarCoder (StarChat) or comparable LLMs,
provided that these can be fine-tuned to achieve similar results
as GPT-4. In [23] and [24], the authors give practical hints and
instructions on how to fine-tune OpenLlama and StarCoder,
respectively. It is an open question, whether or not these open
LLMs can be fine-tuned in that way or training from scratch
is needed. The fact that StarChat (and CodeGen) could not
be included in the comparative study in this paper in a proper
way due to the long runtimes and the timeout on HuggingFace
does not imply that these LLMs should be not suited at all.
On specialized hardware with enough capacity for running the
LLMs exclusively, it should be possible to actually produce an
outcome.

The finetuning task should in the intermediate run also
include the training on the proper usage of the Python API
of the SCADE MBSE framework (Model Based Systems
Engineering) or similar development platforms (IBM Rational
Rhapsody or Mathworks MATLAB/Simulink, depending on
API suitability). This way the LLMs could produce the code
for the HMI model directly. In SCADE Display this model
would then be revised by the human engineer as depicted in
Figure 1, before the code generator KCG would generate the
actual C or Ada code. In the case of SCADE Display KCG,
the tool uses the OpenGL SC subset of the graphic library
explicitly targeted at safety critical applications (“SC” standing
for “safety critical”).

In the long run the whole concept should be rolled out
on model building in general, i.e., SysML based models of
functional components, not only HMI/GUI/UI use cases. This
will be the hardest part and requires a deep understanding of
the system or subsystem to be developed. In in the scope of
this work it was not possible to show the feasibility of such a
modeling task. Presumably, it is a very long way from graphi-
cal model models for displaying purposes to functional models
in a broad sense. Future work should examine the chances that
such AI based assistants could support tomorrow’s engineers
in the development process for software systems in general.
Safety critical applications will not impose barriers if the AI
assistant comes into play in the right phase of the process, as
suggested by this paper.

B. Summary

In this paper it was shown that an AI/LLM assisted software
development process without the need for manual coding is
possible, if - instead of generating the final C/Ada source
code - the LLM is instructed to create a model of the
system. The term “system” in this respect refers to a specific

system for displaying information and human interaction as
in HMI applications or for GUI/UI use cases. No modeling
capabilities for functional components were included in this
study, primarily due to the lack of an appropriate output
format for the model itself (XML/SysML). In this scenario,
the LLM was given a collection of requirements for the
visual component of a software system and then instructed
to translate these requirements into a graphical model of the
HMI to be displayed, including basic colored shapes (rect-
angles, circles, etc.), text insets, call-outs, etc. - all arranged
and adjusted to the fulfill the requirements. The results five
from different LLMs were studied. However, only three of
the LLMs produced comparable results (due to limitations
concerning the computing platform).

Comparing the results, it was shown that GPT-4 is superior
in performance and accuracy. The outcome in general shows a
great amount of variability including visual forms of confabu-
lation if details are left out or specified in an unprecise manner.
GPT-4 does not produce contradictory objects with respect to
the requirements, but also needs more self-explanatory, tech-
nically explicit guidelines than the requirements typically used
by today’s engineers provide. The LLMs have deficiencies in
common-sense reasoning and fill gaps in background knowl-
edge either by figures stemming from misleading training data
or by other unknown influencing factors. For this reason,
a set of requirements with a fine granularity is important,
i.e., the level of detail is crucial. However, the number of
requirements that can be processed by the LLM in one single
run is very limited. Because of this, techniques like Chain-Of-
Thought (COT) prompt enigneering should be employed in the
instructions in which the requirements are embedded. LLMs
benefit from a large context window (tokens to be processed in
a single run) and the capabilities to process long documents
(the requirements) must be improved by current techniques
and future enhancements of the language models in order to
fulfill the expectations and the practical usability of this whole
concept.

It has been argued that the usage of LLM assistants for a no-
code software development process is not prohibitive even for
safety critical fields of application like cockpit instruments in
aircrafts. The phase in which the LLM is employed and what
task it is instructed to perform (i.e., model building instead of
source code generation) is crucial and the human engineers
always needs to stay in the loop by checking and revising the
models. The use case studied was a Primary Flight Display
(PFD) as used by pilots and served as an indicative measure
for the performance of selected LLMs with coding capabilities.
The study was performed on an empirical basis on this single
use case, so no universal validity for other scenarios is claimed.
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APPENDIX

C. Source code examples

GPT-4
import pygame
import sys

# Initialize pygame
pygame.init()

# Set dimensions
WIDTH, HEIGHT = 600, 800

# Colors
BLUE = (0, 102, 204)
BROWN = (153, 76, 0)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
AMBER = (255, 191, 0)

# Create screen and clock
screen = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption("Primary Flight Display")
clock = pygame.time.Clock()

def draw_horizon(pitch_angle=0):
pygame.draw.rect(screen, BLUE, (0, 0, WIDTH, HEIGHT // 2 -
pitch_angle))
pygame.draw.rect(screen, BROWN, (0, HEIGHT // 2 - pitch_angle,
WIDTH, HEIGHT))
pygame.draw.line(screen, WHITE, (0, HEIGHT // 2 - pitch_angle),
(WIDTH, HEIGHT // 2 - pitch_angle), 2)

def draw_aircraft_symbol():
pygame.draw.line(screen, WHITE, (WIDTH//2 - 20, HEIGHT//2),
(WIDTH//2 + 20, HEIGHT//2), 3)
pygame.draw.line(screen, WHITE, (WIDTH//2, HEIGHT//2 - 20),
(WIDTH//2, HEIGHT//2 + 20), 3)

def draw_altitude_tape(altitude=10000):
start_y = 100
end_y = 700
pygame.draw.rect(screen, BLACK, (WIDTH - 60, start_y, 50, end_y
- start_y))
pygame.draw.polygon(screen, WHITE, [(WIDTH-10, HEIGHT//2-10),
(WIDTH-10, HEIGHT//2+10), (WIDTH, HEIGHT//2)])
for y in range(start_y, end_y + 1, 40):

altitude_value = altitude - (HEIGHT//2 - y) * 10
text_surface = pygame.font.SysFont('arial',
20).render(str(altitude_value), True, WHITE, BLACK)
screen.blit(text_surface, (WIDTH - 60, y))

def draw_airspeed_tape(speed=200):
start_y = 100
end_y = 700
pygame.draw.rect(screen, BLACK, (10, start_y, 50, end_y -
start_y))
pygame.draw.polygon(screen, WHITE, [(10, HEIGHT//2-10), (10,
HEIGHT//2+10), (0, HEIGHT//2)])
for y in range(start_y, end_y + 1, 40):

speed_value = speed - (HEIGHT//2 - y) * 2
text_surface = pygame.font.SysFont('arial',
20).render(str(speed_value), True, WHITE, BLACK)
screen.blit(text_surface, (10, y))

def draw_heading_indicator(heading=90):
pygame.draw.rect(screen, BLACK, (100, HEIGHT - 60, WIDTH - 200,
50))
for i in range(0, 360, 30):

x_offset = (i - heading) * (WIDTH-200) / 360
if 100 + x_offset > 90 and 100 + x_offset < WIDTH - 90:

text_surface = pygame.font.SysFont('arial',
20).render(str(i), True, WHITE, BLACK)
screen.blit(text_surface, (100 + x_offset, HEIGHT -
60))

def display_warning(message):
text_surface = pygame.font.SysFont('arial', 25).render(message,
True, WHITE, RED)
screen.blit(text_surface, (WIDTH // 2 - 50, HEIGHT // 8))

def display_caution(message):
text_surface = pygame.font.SysFont('arial', 25).render(message,
True, BLACK, AMBER)
screen.blit(text_surface, (WIDTH // 2 - 50, 2 * HEIGHT // 8))

# Main loop
while True:

for event in pygame.event.get():
if event.type == pygame.QUIT:

pygame.quit()
sys.exit()

screen.fill(BLACK)

draw_horizon()
draw_aircraft_symbol()
draw_altitude_tape()
draw_airspeed_tape()
draw_heading_indicator()

display_warning("STALL")
display_caution("AUTOPILOT")

pygame.display.flip()
clock.tick(60)

Figure 8. Python code generated by GPT-4 for the full list of requirements
for the HMI of a PFD. It represents the code for the right PFD in Figure 5.
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CodeLlama-34b-Instruct
import matplotlib.pyplot as plt
from PyQt5 import QtWidgets

class PrimaryFlightDisplay(QtWidgets.QMainWindow):
def __init__(self):

super().__init__()

# Set up the main window
self.setGeometry(0, 0, 800, 600)
self.setWindowTitle("Primary Flight Display")

# Create the layout
self.layout = QtWidgets.QVBoxLayout()
self.setCentralWidget(self.layout)

# Add the sky and earth images
self.sky_image = plt.imread('sky.png')
self.earth_image = plt.imread('earth.png')
self.sky_widget = QtWidgets.QLabel()
self.earth_widget = QtWidgets.QLabel()
self.sky_widget.setPixmap(self.sky_image)
self.earth_widget.setPixmap(self.earth_image)
self.layout.addWidget(self.sky_widget)
self.layout.addWidget(self.earth_widget)

# Add the horizon line
self.horizon_line = QtWidgets.QFrame()
self.horizon_line.setStyleSheet("background-color: white;
border: none; height: 2px;")
self.layout.addWidget(self.horizon_line)

# Add the aircraft attitude indicator
self.aircraft_symbol = QtWidgets.QLabel()

self.aircraft_symbol.setText(" ")
self.aircraft_symbol.setAlignment(QtCore.Qt.AlignCenter)
self.aircraft_symbol.setFontSize(24)
self.layout.addWidget(self.aircraft_symbol)

# Add the altitude tape
self.altitude_tape = QtWidgets.QScrollArea()
self.altitude_tape.setVerticalScrollBarPolicy(

QtCore.Qt.ScrollBarAsNeeded)
self.altitude_tape.setHorizontalScrollBarPolicy(

QtCore.Qt.ScrollBarAlwaysOff)
self.altitude_tape.setWidgetResizable(True)
self.altitude_tape.setFixedWidth(100)
self.altitude_tape.setMinimumHeight(100)
self.altitude_tape.setMaximumHeight(300)
self.altitude_tape.setBackgroundRole(QtGui.QPalette.Base)
self.altitude_tape.setAutoFillBackground(True)
self.altitude_tape.show()
self.layout.addWidget(self.altitude_tape)

# Add the airspeed tape
self.airspeed_tape = QtWidgets.QScrollArea()
self.airspeed_tape.setVerticalScrollBarPolicy(

QtCore.Qt.ScrollBarAsNeeded)
self.airspeed_tape.setHorizontalScrollBarPolicy(

QtCore.Qt.ScrollBarAlwaysOff)
self.airspeed_tape.setWidgetResizable(True)
self.airspeed_tape.setFixedWidth(100)
self.airspeed_tape.setMinimumHeight(100)
self.airspeed_tape.setMaximumHeight(300)
self.airspeed_tape.setBackgroundRole(QtGui.QPalette.Base)
self.airspeed_tape.setAutoFillBackground(True)
self.airspeed_tape.show()
self.layout.addWidget(self.airspeed_tape)

def update_display(self, aircraft_pitch, aircraft_roll,
altitude, airspeed):

# Update the aircraft attitude indicator
self.aircraft_symbol.move(self.width() / 2 -
self.aircraft_symbol.width() / 2, self.height() / 2 -
self.aircraft_symbol.height() / 2 + aircraft_pitch * 10)
self.aircraft_symbol.rotate(-aircraft_roll)

# Update the altitude tape
self.altitude_tape.verticalScrollBar().setValue(altitude)

# Update the airspeed tape
self.airspeed_tape.verticalScrollBar().setValue(airspeed)

if __name__ == "__main__":
app = QtWidgets.QApplication([])
pfd = PrimaryFlightDisplay()
pfd.show()

Figure 9. Python code generated by CodeLlama for the short list of
requirements for the HMI of a PFD. Note that it contained flaws (wrong
usage of Qt and missing image files) that could be corrected manually. The
(corrected) code refers to the left side in Figure 6.

CodeLlama-34b-Instruct
import tkinter as tk
from math import sin, cos, radians

# Define constants for the dimensions and colors of the PFD
WIDTH = 800
HEIGHT = 600
SKY_COLOR = "#7ec0ee" # light blue
EARTH_COLOR = "#9c6f4a" # dark brown
HORIZON_LINE_COLOR = "white"
ALTITUDE_TAPE_COLOR = "white"
AIRSPEED_TAPE_COLOR = "white"
ARROW_COLOR = "black"

# Create a canvas object to draw on
canvas = tk.Canvas(width=WIDTH, height=HEIGHT, bg="gray")
canvas.pack()

# Draw the sky and earth
sky = canvas.create_rectangle(0, 0, WIDTH, HEIGHT//2,
fill=SKY_COLOR)
earth = canvas.create_rectangle(0, HEIGHT//2, WIDTH, HEIGHT,
fill=EARTH_COLOR)

# Draw the horizon line
horizon_line = canvas.create_line(0, HEIGHT//2, WIDTH, HEIGHT//2,
fill=HORIZON_LINE_COLOR)

# Draw the aircraft attitude indicator
aircraft_symbol = canvas.create_oval(WIDTH//2-50, HEIGHT//2-50,
WIDTH//2+50, HEIGHT//2+50, fill="#fff", outline="#000")

# Draw the altitude tape
altitude_tape = canvas.create_text(WIDTH*0.8, HEIGHT*0.5,
text="Altitude: ", font=("Helvetica", 16),
fill=ALTITUDE_TAPE_COLOR)
altitude_value = canvas.create_text(WIDTH*0.8, HEIGHT*0.5 + 20,
text="0 ft", font=("Helvetica", 16), fill=ALTITUDE_TAPE_COLOR)
arrow = canvas.create_polygon((WIDTH*0.8 - 10, HEIGHT*0.5 + 20),
(WIDTH*0.8 + 10, HEIGHT*0.5 + 20), (WIDTH*0.8, HEIGHT*0.5 + 30),
fill=ARROW_COLOR)

# Draw the airspeed tape
airspeed_tape = canvas.create_text(WIDTH*0.2, HEIGHT*0.5,
text="Airspeed: ", font=("Helvetica", 16),
fill=AIRSPEED_TAPE_COLOR)
airspeed_value = canvas.create_text(WIDTH*0.2, HEIGHT*0.5 + 20,
text="0 knots", font=("Helvetica", 16), fill=AIRSPEED_TAPE_COLOR)
arrow = canvas.create_polygon((WIDTH*0.2 - 10, HEIGHT*0.5 + 20),
(WIDTH*0.2 + 10, HEIGHT*0.5 + 20), (WIDTH*0.2, HEIGHT*0.5 + 30),
fill=ARROW_COLOR)

def update():
# Update the position of the aircraft symbol based on the
aircraft's pitch and roll angles
pitch = getPitchAngle() * radians(180)/pi
roll = getRollAngle() * radians(180)/pi
x = WIDTH//2 + 50 * sin(pitch)
y = HEIGHT//2 + 50 * cos(roll)
aircraft_symbol.coords(x, y)

# Update the altitude value on the altitude tape
altitude = getAltitude()
altitude_value.set_text("%d feet" % altitude)
arrow.moveTo(WIDTH*0.8, HEIGHT*0.5 + 20)

# Update the airspeed value on the airspeed tape
airspeed = getAirspeed()
airspeed_value.set_text("%d knots" % airspeed)
arrow.moveTo(WIDTH*0.2, HEIGHT*0.5 + 20)

root.after(1000, update)

Figure 10. Variation of the Python code generated by CodeLlama for the
short list of requirements. The code refers to the right side in Figure 7 and
gets aborted by the Python interpreter after initial drawing of the basic layout
due to missing sensor data.
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