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Abstract—While many speech synthesis systems based on deep 

neural networks are thoroughly evaluated and released for free 

use in English, models for languages with far less active speakers 

like German are scarcely trained and most often not published 

for common use. This work covers specific challenges in training 

text to speech models for the German language, including 

dataset selection and data preprocessing, and presents the 

training process for multiple models of an end-to-end text to 

speech system based on a combination of Tacotron 2 and Multi-

Band MelGAN. All model compositions were evaluated against 

the mean opinion score, which revealed comparable results to 

models in literature that are trained and evaluated on English 

datasets. In addition, empirical analyses identified distinct 

aspects influencing the quality of such systems, based on 

subjective user experience. All trained models are released for 

public use. 

Keywords: Text-To-Speech; German; Tacotron 2; Multi-Band 

MelGAN.  

I.  INTRODUCTION 

The quality of speech synthesis or Text To Speech (TTS) 

systems has leaped since deep neural networks are being 

leveraged. Whereas such systems acted as a niche technology 

a few years ago, today every voice assistant and a large 

number of car models are equipped with their own, 

manufacturer-specific, synthetic but increasingly natural-

sounding voices. However, smaller companies interested in 

using TTS in their products or services mostly have to rely 

on large-scale software providers, or alternatively, freely 

available models as investments in in-house solutions would 

often be financially unfeasible. 

Since state-of-the-art models with permissive licenses 

exist almost exclusively for English, several model 

compositions based on Tacotron 2 [1] and Multi-Band 

MelGAN [2] were trained for the German language and 

published for free use. This work describes the processes that 

were carried out to train these neural networks and provides 

a corresponding evaluation based on the Mean Opinion Score 

(MOS), setting an initial benchmark for future systems in 

German. The described models and results are part of the 

development of a smart speaker system. 

The rest of the paper is structured as follows. In Section II, 

state-of-the-art of deep neural networks used for TTS are 

presented and available datasets for German TTS are 

reviewed in section 3. In section 4, key learnings from 

training of selected network models are described further. 

Section 5 describes how the evaluation of synthetic voices 

was implemented and presents the results, which are 

interpreted in a subsequent discussion in section 6 and put 

into perspective by limitations in section 7. Lastly, the work 

is concluded with a summary and an outlook in section 8. 

II. BACKGROUND 

Most state-of-the-art systems for speech synthesis based 

on neural networks consist of two components: an acoustic 

model and a vocoder. The acoustic model generates an 

intermediate representation called mel spectrogram from 

input characters or phonemes, while the vocoder converts this 

representation into a final audio signal. The following 

subsections describe the general principles of operation of 

both components in more detail and presents several 

architectures. An overview of model compositions already 

evaluated in literature is given in TABLE II. 

A. Acoustic Model 

Acoustic modelling defines the task of encoding an input 

sequence of characters to a hidden representation and the 

subsequent prediction of mel spectrogram frames per time 

step. The formerly common models for mel spectrogram 

generation based on Hidden Markov Models (HMMs) [3] 

have been increasingly replaced by approaches based on deep 

learning in recent years. In particular, Tacotron [4] and its 

successor Tacotron 2 [1] have led to a dramatic increase of 

quality in speech synthesis research. While Tacotron still uses 

a Griffin-Lim vocoder as a second stage, only reaching a 

MOS of 3.82, Tacotron 2 succeeds in achieving a MOS value 

of 4.53, which is very close to the value of human speakers 

(4.58), by using a continuous deep learning-based process. 

For the latter, a modified version of WaveNet [5] was used as 

a vocoder. 

While Tacotron is based on Recurrent Neural Networks 

(RNNs), which are commonly used for speech synthesis, 

Transformer TTS [6] successfully applied the transformer 

architecture [7], which became well-known from the domain 

of natural language processing with models such as BERT 

[8], to speech synthesis, achieving similar or slightly better 
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scores than Tacotron 2. Transformer TTS [9] achieves a MOS 

value of 4.39 compared to 4.44 of human speakers and is thus 

on par with Tacotron 2.  

Autoregressive models such as Tacotron 2 and 

Transformer TTS achieve state-of-the-art quality but can 

hardly be parallelized, leading to longer processing times. A 

few minutes of audio quickly take hours to generate [10]. 

Therefore, most of the research in 2019 and 2020 has focused 

on exploring architectures that are significantly faster and 

provide similarly good MOS values, rather than continuing 

to work on even better speech quality. Both Tacotron2 and 

TransformerTTS also incorporate certain attention 

mechanisms, which can lead to word omissions or even 

repetitions in outputs. 

Non-autoregressive models can be further categorized 

into those using knowledge distillation like FastSpeech [10] 

and  others utilizing differing technologies. Flow-TTS [11] 

and Glow-TTS [12] are examples for the latter. Interestingly, 

while many of the more recent publications presenting non-

autoregressive models claim to be better than Tacotron 2 in a 

direct comparison, none of them were able to achieve 

comparably good MOS values close to the ground truth. 

Parallel Tacotron [13], Flow-TTS [11] and Fastpitch [14] are 

closest with MOS values above 4.0 and less than 0.5 worse 

than the ground truth. 

B. Vocoder 

Neural vocoders receive a mel spectrogram and predict 

audio signal frames for each spectrogram frame. A mel 

spectrogram can be generated directly from an audio file, as 

opposed to acoustic models, requiring audio-transcript-pairs. 

Therefore, it is comparably easy to generate training data, 

which results in a broad selection of well performing 

vocoders that can produce high quality audio hardly 

distinguishable from real human voices. The main reference 

is WaveNet [5], which achieved 4.21 on the MOS scale from 

1 to 5 in the original publication [5] and 4.53 MOS in a later 

publication [1]. This is very close to the ground truth of 4.58 

and still the state-of-the-art reference value up until now. 

Since WaveNet is autoregressive, it is both comparably slow 

and requires significant resources. To compensate these weak 

points, several alternatives have been suggested.  

Parallel WaveNet [15] uses knowledge distillation to 

derive a much faster network from WaveNet in a student-

teacher manner. It can generate 20s of audio in 1s (real-time 

factor RTF 0.05), whereas WaveNet requires 1,000s to 

generate 20s of audio (RTF 50).  

WaveGlow [16] is a representative of flow-based 

networks, which can be parallelized well in contrast to auto-

regressive networks like WaveNet. It achieves RTF 0.04 on 

an Nvidia Tesla V100 GPU. It is also commonly 

implemented as acoustic model, i.e., in [12], [17], [18].  

Multi-Band MelGAN [2] is also worth mentioning, 

being based on a different approach. Its architecture utilizes 

a Generative Adversarial Network (GAN) and achieved a 

MOS of 4.34 in empirical analysis. However, this was 

achieved for the Chinese language instead of English and is 

therefore not directly comparable.  

Best results based on the popular LJspeech dataset [19] 

are reported by Hifi-GAN [20] and WaveGrad [21] with 4.36 

and 4.55 respectively. The latter is identical to the ground 

truth MOS value. 

Finally, WaveRNN [22] achieves MOS 4.46 and is 

therefore the closest competitor to WaveNet and WaveGrad. 

III. DATASETS 

The selection of suitable datasets was based on metadata 

from LJSpeech. Strict criteria for the minimum length of 

audio-transcript pairs (>20 hours) and text normalization (no 

leftover digits or symbols) were set. The sampling rate of 

22.05kHz was not considered to be a hard criterion, merely 

regarded preferable, so not to further reduce the scope of the 

already limited number of existing datasets. 

Selected datasets were further processed in preparation of 

the subsequent training processes. 

A. Selection 

Besides the acoustic model and vocoder, the quality and 

quantity of the dataset used for training are the main factors 

influencing the quality of the resulting synthetic voice. The 

following datasets were evaluated regarding their suitability 

and partially selected for subsequent model training. The 

final selection of datasets is presented in TABLE I. 

 

1) M-AILABS 

The M-AILABS speech dataset is based on data from 

LibriVox [23], a platform providing free audio books by 

voluntary, mostly amateur speakers, and consists of five 

single speaker datasets. Their durations range from 19h to 

68h of speech and respective texts. Despite a comparatively 

low sampling rate of 16kHz for each recording, two speakers, 

Karlsson (male, 40h) and Eva K (female, 29h) were chosen 

for model training. Ramona (female, 68h) was discarded due 

to her subjectively unpleasant voice.  

2) Thorsten Voice 

Specifically created for the creation of TTS applications, 

the Thorsten neutral dataset  consists of more than 23 hours 

of audio-transcript pairs from a single male voice, recorded 

with a sampling rate of 22.05kHz [24]. It was first released in 

March 2021 and, to the authors’ knowledge, has not been 

evaluated in any scientific publication yet. 

3) HUI Audio Corpus 

Similar to M-AILABS, the recently released HUI audio 

corpus [25] also consists of freely available audio data from 

LibriVox and transcripts from gutenberg.org [26], but 

provides a much larger quantity of audio-transcript pairs per 

speaker and a higher sampling rate of 22.05kHz. The 

speakers Bernd Ungerer (male, 97h) as well as Hokuspokus 

full (female, 43h) and Hokuspokus clean (female, 27h; subset 

of Hokuspokus full, containing less noise) were chosen for 

model training. 
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TABLE I. DATASETS USED FOR FURTHER PROCESSING. 

Dataset Speaker 
Sampling 

Rate 

Hours 

HUI  

Audio Corpus 

Bernd Ungerer (m) 22 kHz 97 h 

Hokuspokus clean (f) 22 kHz 27 h 

Hokuspokus full (f) 22 kHz 43 h 

Thorsten neutral Thorsten Müller (m) 22 kHz 23 h 

M-AILABS 
Eva K (f) 16 kHz 29 h 

Karlsson (m) 16 kHz 40 h 

 

B. Further Processing 

To reduce the range of phrases and punctuation marks 

acoustic models receive as input, transcript sentences of all 

datasets were filtered and adjusted using several mechanisms. 

Also, since phoneme-based models generally perform better 

than character-based models due to their unambiguousness in 

terms of pronunciation, transcript data was converted to this 

type of representation beforehand. 

1) Text Modification 

Since many punctuation symbols have very similar effects 

on emphasis in German, a subset was defined onto which all 

further symbols were mapped. This resulted in a subset 

consisting only of the characters [“.”, “,”, “?”, “!”], which 

significantly reduced of the vocabulary size. 

Additionally, datasets based on LibriVox mostly consist of 

audio books of which the transcripts were written in the early 

20th century and earlier, as German licensing rights require 

authors to have been deceased for at least 70 years, before 

copyright of their works expires. Transcripts of such ages 

were written according to obsolete orthographic standards, 

but the models to be trained were intended to be used in 

modern contexts. For this reason, a dictionary has been 

created semiautomatically (partly by crawling [27], a website 

providing common mappings between orthographic 

conventions, partly through manual identification of obsolete 

phrasing inside transcript sentences). Utilizing regular 

expressions, the outdated transcripts were adapted to 

currently applicable orthographic principles. 

2) Phonemization 

As no publicly available mapping tools or dictionaries 

seemed to be performing well enough for phonemization in 

German, a custom dictionary was created by crawling 

Wiktionary German [28], a website providing over 640,000 

German word pairs with notations based on character as well 

as the International Phonetic Alphabet (IPA) including nouns 

in multiple grammatical cases and verbs in multiple tenses. 

To convert composites which are not exactly contained 

within the phoneme dictionary into phoneme notation, a 

bidirectional search algorithm was implemented, which splits 

words into substrings if no exact match is found. The longest 

substrings found are individually converted to phoneme 

symbols and merged back together afterwards. 

Since compounds and nominalizations by using different 

suffixes are widely used in the German language, a major 

proportion of the vocabulary can be covered by this approach. 

While this algorithm handles borderline cases, names and 

words from other languages rather poorly, most German 

words as well as composites can be mapped to their 

respective phoneme representation quite efficiently. To 

reduce suboptimal mappings to a minimum, a large fraction 

of unknown words contained in the selected training datasets 

was added manually to the phoneme dictionary. 

IV. MODEL TRAINING 

The following subsections present and justify the final 

selection of model architectures for both stages of a full TTS 

system and describe all conducted training workflows on a 

detailed level. Both acoustic models and vocoders were 

trained independently. 

A. Model Selection 

Since a wide range of architectures exists for both 

acoustic models and vocoders, several test trainings were 

conducted to determine a viable composition. 

Tacotron 2 and TransformerTTS were considered as acoustic 

models due to their excellent evaluations in literature as well 

as their inclusion into the ESPnet [29] framework, a toolkit 

for speech processing, offering simple mechanisms for 

building TTS training pipelines. First trainings showed that 

stop token prediction clearly performed better with Tacotron 

2 than TransformerTTS, thus the final choice was made in 

favor of this architecture. AlignTTS was considered as well, 

but preexisting implementations were badly documented and 

training with reasonable effort was unfeasible. 

For the vocoder stage, it was intended to test several 

architectures in sequence. However, Multi-Band MelGAN, 

as first architecture to be evaluated, already achieved 

subjectively satisfactory results in initial tests and was 

selected as the vocoder architecture for subsequent trainings. 

It was refrained from testing other vocoders, since 

subjectively, the quality of the acoustic model had a larger 

impact on overall output quality. 

B. Tacotron 2 

To optimize the training process, minor adjustments were 

made to the default hyperparameter configuration before the 

training process. In addition, the most suitable decoder 

configuration at inference time was determined through 

manual evaluation. 

1) Training 

The specific model architecture and training configuration 

for Tacotron 2 were derived from the existing recipe for 

LJSpeech incorporated in the ESPnet framework and adapted 

to fit the available hardware in terms of batch size (or number 

of batch bins, as implemented in ESPnet). This recipe differs 

from the original implementation of Tacotron 2 in the usage 

of guided attention loss. While training with datasets based 

on a sampling rate of 16kHz resulted in fast loss convergence, 
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models trained on 22.05kHz audio data quickly reached a 

stage of oscillating loss. This was remedied by the use of 

AMSGrad [30]. All other parameters were maintained. In 

order to utilize ESPnet, the datasets used were converted into 

the Kaldi [31] format. 

All models were trained for 200 epochs. Training processes 

took ~4 days each for 22.05kHz datasets and ~2 days each for 

16kHz datasets respectively on two Nvidia Titan RTX GPUs. 

2) Inferencing 

The decoder configuration can be dynamically adjusted at 

inference time. In order to find the best possible configuration 

for all speakers, several suitable values were defined for each 

adjustable parameter and output audio was generated for each 

combination of parameters. Any of the variables may cause 

word repetition or deletion errors, if misconfigured. 

The following parameters were determined: 

 

• Minimum Length Ratio: 0.08 

• Maximum Length Ratio: 10 

• Backwards Attention Window: 2 

• Forwards Attention Window: 3 

• Stop-Token-Threshold: 0.1 

 

While optimal values varied slightly between all 

speakers, the specified configuration generally yielded good 

results. This rendered the following model evaluations 

independent of speaker-specific decoder configurations. 

C. Mutli-Band MelGAN 

The implementation used was the publicly available 

version by Tomoki Hayashi [30] and the standard 

configuration was retained. Each model was trained 

according to this for 800,000 steps. Training took ~3 days per 

model using the same hardware as for the Tacotron 2 models. 

For the speaker Hokuspokus no separate vocoder with 

the clean subset was trained, instead the vocoder from the full 

dataset was reused. 

V. EMPIRICAL ANALYSIS 

The trained model compositions were evaluated through a 

survey, collecting MOS values for original speakers, full two-

level inferences, and inferences of vocoders based on 

algorithmically generated mel spectrograms of original 

recordings. Additionally, the survey included further 

questions regarding the “best” fully synthetic voice, 

according to individual ratings of the respondents. 

Furthermore, demographic parameters, as well as audio 

output devices used during the survey were queried. 

A. Questionnaire Design 

The core components and structure of the survey are 

described in more detail in the following subsections. 

1) MOS 

Each respondent could listen to three audio files per voice, 

which were to be rated qualitatively on a scale of 1 to 9 

without further instructions. No text labels for the individual 

numbers were provided on purpose, it was merely indicated 

that 9 meant very good and 1 very bad quality. Fully synthetic 

voices (acoustic model + vocoder), ground truths of all voices 

as well as vocoder-only inferences derived from mel 

spectrograms of ground truth data were evaluated in order to 

gain insights into the general performance of the model 

combinations as well as the sole influence of the trained 

vocoders on speech quality. The judgements of the mean 

opinion scores thus included 16 different voices and 48 audio 

recordings with 5-8 seconds length per recording. 

During the evaluation, the rating scale was rescaled to the 

range 1 to 5 (in 0.5 increments) to enable direct comparison 

to the MOS values of other publications. 

To avoid a bias regarding the order of the heard speakers, 

the sequence in which respondents were to rate them was 

randomized. 

2) Detailed “Best” Speaker 

After all MOS values had been filled in, the best-rated, 

fully synthetic voice was automatically determined, its 

corresponding recordings were played again, and more in-

depth questions were asked regarding the characteristics of 

this voice. 

 

• Did you notice any anomalies in pronunciation you found 

annoying? (Very many to None) (Q1) 

• How would you describe the effort needed to understand 

the message? (Nothing understood to Everything 

understood) (Q2) 

• How did you perceive the pace of speech? (Too slow to 

Too fast) (Q3) 

• How did you perceive the naturality of the voice? (Very 

unnatural to Very natural) (Q4) 

• Did you find certain words difficult to understand? (Very 

many to None) (Q5) 

• How would you describe the voice? (Very unpleasant to 

Very pleasant) (Q6) 

• Would you find it easy or difficult to listen to this speaker 

for an extended period of time? (Very easy to Very 

difficult) (Q7) 

 

These questions were intended to provide insight into 

which aspects of the synthetic voices were subjectively 

perceived as suboptimal. The selection of questions was 

based on [32]. Posterior characters represent references to the 

questions in TABLE V. 

3) Demographic Data 

To derive further conclusions from previously collected 

scores, participants were additionally asked regarding their 

native language and age. As described in CrowdMOS [33], 

the audio device used while answering the survey was also 

asked for. 

B. MOS Results 

The survey was conducted over the internet. Invitations 

were sent to students from the University of Applied Sciences 

Hof, the research institute employees, as well as to a network 

29Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-896-9

CENTRIC 2021 : The Fourteenth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services



of company partners. It was also circulated on the internet via 

Twitter and Linked.in.  

A total of 193 participants was recorded of which 101 

finished the survey. 94 of this subset were native German 

speakers. Answers and ratings of those were used for further 

analysis. Around half of the leftover respondents used a 

smartphone or PC with built-in speakers. 34 were using 

headphones, 11 dedicated loudspeakers. The age of 

participants was 30.1 years on average with a median of 26 

and a range from 18 to 74 years. 

TABLE III summarizes the results. Synth represents the 

MOS for the synthetic voice, created using both the trained 

acoustic model and vocoder. Vocoder represents the MOS for 

the synthetic voice that was generated based on the mel 

spectrograms derived from the ground truth. GT represents 

the MOS for the human speaker used as training data. Δ GT 

is the difference between the MOS of the ground truth and 

the MOS of the synthetic voice. TABLE IV puts the results and 

training datasets in relation to each other. 

C. Speaker-Specific Analysis 

The more detailed, speaker-specific analysis shown in 

TABLE V presents an overview of the advanced evaluation, 

including certain characteristics of speech, which primarily 

revealed a persistent deficit of naturalness in the voices, 

where no synthetic voice reached an average score over 4.0. 

This is supported by comparable scores for anomalies in 

pronunciation and how pleasant the voice is perceived. 

Comprehensibility of individual words was rated slightly 

better. Pace of speech and effort required to understand the 

message of utterances were rated very positively. Ultimately, 

scores for the difficulty of listening to a speaker over an 

extended period of time were consistently mediocre. Bernd 

Ungerer especially stood out regarding naturalness of the 

synthetic voice, whereas there was no large difference to 

other voices regarding anomalies in pronunciation and ease 

of understanding compared to Thorsten. The pace of speech 

was also similar. 

VI. DISCUSSION 

The empirical survey affirmed the preexisting subjective 

impression that the fully synthetic TTS system trained on data 

from the speaker Bernd Ungerer produced the best results 

among all evaluated model compositions. However, the 

overall scores were lower than expected. This is partly due to 

a large variation in answers with participants voting 2.3 on 

average for all 16 voices and others voting 4.6 (avg: 3.55, 

median: 3.62). With 94 qualified answers, the empirical 

survey is much larger than the ones in other TTS papers that 

frequently use less than two dozen participants.  

Interestingly, the speaker Thorsten Müller achieved best 

results for vocoder only and a similar distance between 

synthetic voice and ground truth as Bernd Ungerer, despite 

having only a quarter of the training data. This indicates that 

data quality is at least equally important, if not more 

important than total size of the dataset. The same conclusion 

can be drawn from the results of Hokuspokus clean and full. 

Although the clean subset contains only 27 hours of voice 

data, the MOS results are slightly better than those of 

networks trained on the full 43 hours of data available. Which 

amount of (qualitatively high) training data would actually be 

needed for a well performing acoustic model remains to be 

determined. Matsubara et al. [34] found that as few as one 

hour of training data is sufficient for achieving MOS values 

of 3.8 with LPCnet and 9 hours for MOS values of 4.06 with 

WaveNet, with a ground truth of only 4.18. However, this 

could not be reproduced using Tacotron 2 and Multi-Band 

MelGAN, which may be caused by the chosen model 

composition. Stop token prediction proved problematic, 

which resulted in additional babbling sounds as part of the 

generated audio files. This mainly occurred with models 

trained on less than 20 hours of audio-transcription pairs. 

The ground truth values of 4.25 and 4.27 for speakers 

Bernd Ungerer and Hokuspokus (both full and clean) are 

similar to the values reported in literature for English 

language, e.g., 4.27 for FastSpeech 2 [35] and 4.31 for 

TalkNet [36]. However, they are significantly worse than the 

4.58 reported in the Tacotron 2 paper [1] or 4.55 for Flow-

TTS [11]. This indicates that there is still potential for 

improvement since neither Bernd Ungerer nor Hokuspokus 

are professional speakers. Accordingly, the recordings were 

not professionally produced and processed, which in 

consequence lead to inconsistent narration styles and noise. 

A delta of 0.5 between ground truth MOS and synthetic voice 

(Bernd Ungerer, Thorsten Müller) is only topped by very few 

of the well-known English TTS results published. It can 

therefore be concluded that the chosen model architectures 

can generally be equally well trained on datasets in German 

as in the English language (or Chinese for Multi-Band 

MelGAN). 

Vocoder MOS values are significantly lower than 

expected for all speakers except Thorsten Müller. A delta of 

0.22 for Thorsten Müller is among the best in published 

English results. However, for Bernd Ungerer (0.50) and 

Hokuspokus (0.66), values are worse than the average 

published in English publications concerning TTS, which is 

around 0.35. For Multi-Band MelGAN, the published results 

are 4.22, which is 0.36 worse than the ground truth on the 

MOS scale. However, these results were gathered in Chinese. 

Switching the vocoder should be investigated for future 

experiments. 

Differently than suggested in literature [37], the female 

voices are not judged better than the male voices, but worse. 

This is especially unexpected for the direct comparison of 

Hokuspokus clean with Thorsten Müller. Hokuspokus has a 

better GT score and slightly more training data in the clean 

dataset (27h vs. 23h). Therefore, a better MOS value for 

Hokuspokus than for Thorsten was expected. There are two 

major differences between the datasets. The Thorsten neutral 

set consists of one (short) sentence per audio sample having 

an average duration of 3.3s with a maximum of 12s and only 

few audio files with more than 5s (see Figure 1), whereas 
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audio-transcripts from Hokuspokus (and other sets from the 

HUI audio corpus) were split based on duration with a 

minimum length of 5s and an average of 9s with some audio 

files at over 20s, regardless of sentence cohesion. 

Utterances in the Thorsten neutral dataset are continuously 

very clearly emphasized as it was specifically generated for 

the creation of TTS systems, while recordings by 

Hokuspokus do not contain any special emphasis, sounding 

generally more natural (which possibly led to comparably 

higher MOS values for ground truth). However, this aspect 

seems to render the Hokuspokus datasets less suitable for 

speech synthesis applications. Additionally, the average 

silence loudness in dB is slightly lower in the Thorsten 

neutral dataset (-58.3 dB) compared to Hokuspokus clean (-

56.6 dB, see Figure 2), indicating less noise. It would be 

interesting to see, whether a further cleansing of Thorsten 

speech samples yield better training results. Due to the 

generally low amount of training data contained in the 

Thorsten neutral dataset, no further investigation was 

conducted. 

 

 
Figure 1. Thorsten (l) and Hokuspokus (r) length of audio in seconds. 

 
Figure 2. Thorsten (l) and Hokuspokus (r) min. silence in dB. 

It is also surprising, that the speaker Karlsson achieved a 

comparably high MOS for the ground truth despite being 

based on a sampling rate of 16 kHz. Also, the vocoder MOS 

is among the best with 3.76, whereas the fully synthetic voice 

merely achieved 2.96 (-0.8 compared to the vocoder).  

Moreover, it is remarkable that the loss in MOS from GT 

to vocoder and full synthetic voice is split relatively equally 

for Thorsten Müller and Hokuspokus, whereas there is nearly 

no loss for the acoustic model for Bernd. In contrast to that, 

Karlsson and Eva have most of the loss in acoustic model and 

a much smaller one for the vocoder. Looking at published 

results for LJspeech, examples of both described 

discrepancies can be found. For an equal split, there is 

AlignTTS, FlowTTS und TalkNet with WaveGlow vocoder, 

as well as TalkNet 2 with Hifi-GAN vocoder. A larger loss 

for the vocoder can be observed for Glow-TTS and 

Fastspeech with WaveGlow vocoder, as well as Reinforce-

Aligner and Diff-TTS with Hifi-GAN vocoder. Finally, 

EFTS-CNN with Hifi-GAN has a higher loss in the acoustic 

model than the vocoder. Therefore, it could be a matter of 

tuning the hyperparameters for the training process that 

makes a difference, but it could also be characteristics of the 

dataset in this case. It is assumed that the acoustic model 

benefits more from large amounts of training data, whereas 

the vocoder benefits more from a high audio quality. 

Furthermore, speaker-specific analysis confirmed that 

basic conditions for natural speech, such as pace and correct 

as well as clear pronunciation of individual words, are 

generally met. However, fully synthetic outputs still contain 

too many irregularities, which reduces the acceptance of 

users to listen over longer periods of time. Additionally, none 

of the recordings contained in the training datasets were made 

by a professional speaker, which is reflected in the mediocre 

scores on how pleasant the different voices were perceived. 

VII. LIMITATIONS 

Audio files, which were used for the empirical analysis 

were specifically chosen to be comparable across all speakers 

as well as comparable with the ground truth. Although 

sentences that proved to be difficult during the training 

process were included, they are still somehow cherry-picked. 

When generating speech from arbitrary texts from news 

websites, some problems with the synthesized voices were 

encountered that are not reflected in the test audio. Negative 

examples can be found on the webpage, presenting results 

([38]). 

Although these cases are seldom, the quality of the 

generated speech output still needs to be double-checked, 

since Tacotron 2 performs in a non-deterministic way, which 

is intended in order to vary stylistic attributes in output mel 

spectrograms. However, this feature sometimes leads to very 

bad output quality.  

Additionally, the choice of vocoder and acoustic model are 

somewhat arbitrary. Although there was a systematic analysis 

of available models, no detailed evaluation with multiple 

candidates was performed. Instead, the first models 

subjectively producing good results were used for the 

empirical study. Finally, the vocoder should have been 

trained with the Hokuspokus clean subset as well, instead of 

reusing the one from the full subset in order to explore the 

full potential of data cleansing. 

VIII. CONCLUSION AND OUTLOOK 

In this work, the training processes of several deep neural 

networks for speech synthesis in the German language was 

reported along with an evaluation based on the MOS. A MOS 

of 3.74 was achieved for the best rated model (using the 

speaker Bernd Ungerer), which is comparable to recently 

published results for speech synthesis systems in English like 

3.79 for FastSpeech 2 [35] or 3.66 for Flowtron [18]. 
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However, they are far away from the best published results 

like 4.53 for Tactron 2 with Wavenet [1] or 4.19 for Flow-

TTS with WaveGlow [11]. On the other hand, Tacotron 2 

also achieves only 3.52 on the MOS scale in the Flow-TTS 

paper. To the best of the authors’ knowledge, results are the 

best published MOS results for German TTS and can serve 

as a benchmark for future publications. In the years before 

neural TTS systems, MaryTTS has been a well-known option 

for German [39] and multi-lingual speech synthesis [40]. 

However, even in explicit quality analysis [41], no MOS 

values are reported.  

In addition, deeper insights were gained regarding distinct 

aspects of different synthetic voices, which suggest actions 

regarding further optimization of future models. At dataset 

level, alignment of audio transcript pairs, recording quality 

and its homogeneity, as well as prosody can be improved. 

Regarding the definition of hyperparameters, values were set 

based on comparisons. A thorough hyperparameter search 

could lead to better results. In addition, the phoneme 

dictionary needs to be extended to include a larger number of 

terms in order to cover as many words as possible. 

All compared models and respective recipes for ESPnet are 

released for public use. 

For further research, it is intended to continue 

experimenting with internal voice datasets of higher quality 

but smaller size, as well as different network architectures. 

Especially for the vocoder, a broader range of alternatives to 

Multi-Band MelGAN will be considered, including Hifi-

GAN [20], WaveGrad [21] and Wave RNN [22], which all 

have published results well over 4.3 MOS in English 

language and differences to ground truth below 0.1.  

Additionally, it needs to be investigated which aspects of 

the training data differentiate a very good from an average 

dataset. A few aspects like good recording conditions and 

trained speaker are well known. However, there is little 

information regarding speaking style, choice of sentences and 

words, diversity of the vocabulary, etc. Those aspects are 

expected to influence dataset quality. Moreover, the 

preexisting processing pipeline for the generation of datasets 

from [25] will be altered to shorten the minimum and 

maximum duration of audio snippets contained in training 

data to a scope 2s minimum, 6s mean and 15s maximum.  

Curriculum learning [42] represents another promising 

method, which would be worth investigating in the context of 

TTS. It is dangerous to draw conclusions from humans to 

DNNs. Despite some similarities, DNNs still work different 

from human brains. Nevertheless, human children usually 

learn to speak short utterances first, as opposed to words like 

“Frühsommer-Meningoenzephalitis” (FSME), a complex 

German word from the medical domain, which is part of an 

internal test dataset. Therefore, it could be also helpful to run 

trainings of model architectures with audio-transcription 

pairs of short sentences or even single words and gradually 

increase the length of labeled audio files. There is already 

evidence that this method increases robustness of TTS 

models for longer input texts during inference [43]. It could 

potentially also improve loss convergence during training as 

well as output speech quality. 
The findings presented in this work will be incorporated 

into the development of an independent smart speaker, 
whereby the performance of TTS systems on edge devices, 
primarily resource requirements and RTF, will be a major 
challenge. 
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TABLE II. MOS OVERVIEW OF COMPARABLE TTS SYSTEMS. 

 Model Vocoder GT Vocoder Synth GT-MOS GT-voc Voc-synth 

Fastspeech  WaveGlow 4.41 4.00 3.84 0.57 0.41 0.16 

AlignTTS  WaveGlow 4.53 4.28 4.05 0.48 0.25 0.23 

Glow-TTS WaveGlow 4.54 4.19 4.01 0.53 0.35 0.18 

Flow-TTS  WaveGlow 4.55 4.35 4.19 0.36 0.20 0.16 

TalkNet  WaveGlow 4.31 4.04 3.74 0.57 0.27 0.3 

TalkNet 2  Hifi-GAN 4.32 4.2 4.08 0.24 0.12 0.12 

 

TABLE III. MOS COMPARISON OF ALL TRAINED SPEAKERS. 

Dataset Speaker Synth Δ GT Vocoder GT 

HUI Audio Corpus 

Bernd Ungerer 3.74 0.51 3.75 4.25 

Hokuspokus clean 2.98 1.29 x 4.27 

Hokuspokus full 2.88 1.39 3.60 4.27 

Thorsten neutral Thorsten Müller 3.49 0.50 3.78 3.99 

M-AILABS 
Eva K 2.13 1.60 3.33 3.72 

Karlsson 2.96 1.18 3.76 4.14 

 

TABLE IV. OVERVIEW OF DATASETS USED FOR MODEL TRAINING AND CORRESPONDING MOS EVALUATIONS. 

Speaker GT 
Δ GT-

synth 

Δ GT-

Vocoder 

Δ Vocoder-

synth 

Amount of data 

(hours) 

Training  

Loss 

(Acoustic 

Model) 

Sampling Rate 

Bernd Ungerer 4.25 0.51 0.50 0.01 97 0.52 22.05 kHz 

Thorsten 
Müller 

3.99 0.50 0.22 0.28 23 0.48 22.05 kHz 

Hokuspokus 

Clean 
4.27 1.29 0.66 0.62 43 0.44 22.05 kHz 

Hokuspokus 

Full 
4.27 1.39 0.66 0.72 27 0.46 22.05 kHz 

Karlsson 4.14 1.18 0.38 0.80 40 0.43 16 kHz 

Eva K. 3.72 1.60 0.39 1.20 29 0.56 16 kHz 

 

TABLE V. SPEAKER-SPECIFIC ANALYSIS (OPTIMAL SCORES IN BRACKETS). 

Speaker Votes Q1 (5.0) Q2 (5.0) Q3 (0.0) Q4 (5.0) Q5 (5.0) Q6 (5.0) Q7 (5.0) 

Bernd Ungerer 54 3.6 4.4 -0.2 4.0 4.1 3.9 3.5 

Thorsten Müller 14 3.7 4.3 -0.2 3.1 4.0 3.5 3.0 

Hokuspokus 

Clean 

3 3.2 4.2 ±0 3.2 4.2 3.3 3.5 

Hokuspokus Full 23 3.0 4.1 -0.3 3.3 3.6 3.6 3.0 

 

• Did you notice any anomalies in pronunciation you found annoying? (Very many to None) (Q1) 

• How would you describe the effort needed to understand the message? (Nothing understood to Everything understood) (Q2) 

• How did you perceive the pace of speech? (Too slow to Too fast) (Q3) 

• How did you perceive the naturality of the voice? (Very unnatural to Very natural) (Q4) 

• Did you find certain words difficult to understand? (Very many to None) (Q5) 

• How would you describe the voice? (Very unpleasant to very pleasant) (Q6) 

• Would you find it easy or difficult to listen to this speaker for an extended period of time? (Very easy to Very difficult) (Q7) 
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