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Abstract—Brain Computer Interfaces (BCIs) based on the record-
ing of electroencephalographic signals have revolutionized the
human-machine interaction. Being in presence of heterogeneous
electrophysiological data, that come with a low number of
instances and a great number of features, it is necessary to
find a solution that can achieve good performances with respect
to all the subjects, having as input a restricted feature subset.
Firstly, we propose a population-based approach that allows to
mitigate the data heterogeneity. Secondly, not wanting to make
assumptions on the feature types, we propose the application
of genetic algorithm, particle swarm optimization and simulated
annealing as evolutionary feature selection techniques. We present
the results of our proposal on a motor movement/imagery
experiment. From these results, we verified that each feature type
contributes differently depending on the task and on the sensor it
was computed on, thus giving a broader view of the different type
of analyses that can be performed to allow a better interaction
between a user-centric system like a BCI based on motor imagery
and its human user.

Keywords–Brain Computer Interface; Electroencephalography;
Evolutionary Feature Selection.

I. INTRODUCTION

The combination of Brain Computer Interfaces (BCIs) and
Electroencephalography (EEG) has allowed the development
of a plethora of applications directly based on the translation
of human brain responses into machine understandable instruc-
tions. These responses are usually due to natural neurological
processes or elicited by external stimuli and interactions and
can be easily recorded in a non-invasive way by placing
electrodes (sensors) on a volunteer’s scalp.

Each electrode returns an electroencephalographic signal
of a peculiar brain area, deputed to specific brain activities
and functions [1]. Thus, the EEG signal representing the
responses has a spatial connotation in addition to its temporal
resolution. It is also characterized by different frequency bands
[2], each of which is associated to a peculiar set of brain states,
summarized in Table I.

Moreover, the EEG signal is easily affected by noise
and is heterogeneous, having variations inter-volunteers, but
also intra-volunteer. In fact, depending on the volunteer’s
physiological and psychological conditions, on external factors
like the environmental temperature or on the type of recording
that is performed (e.g., clinical analysis, experimental setting
and so on) the EEG signal could drastically change.

The described characteristics must be taken into account
when the recorded EEG signals are used as inputs to a BCI,
which provides a user-centric system able to recognize the
brain activity patterns coming from the EEG signals and con-
sequently allows a human-machine interaction [3], following
two steps [4]: (1) offline training for system calibration and
(2) online translation of brain responses.

One of the most widely studied BCI applications is based
on Motor Imagery (MI), i.e., the imagination of movement,
mainly for rehabilitation purposes: from moving a prosthetic
arm to controlling a wheelchair. Focusing on left/right-handed
MI tasks, it has been proved that the brain activation coming
from the imagination of the left/right hand movement mimics
the one necessary to perform a real movement of the left/right
hand. This activation involves a specific brain area, called mo-
tor cortex, which in a modified 10/10 electrode configuration is
covered by the sensors highlighted (light-blue) in Figure 1 [5].
However, most of the literature works reduces the analyses on
the electrodes enclosed by the red line (Figure 1), being this
choice bounded to experimental design or made a priori. The
sensors placed on the right hemisphere records the motor left-
handed movement/imagination, while on the left, the motor
right-handed movement/imagination.

Notice that mainly two frequency bands are involved during
a motor imagery task [6]: the power spectrum in the α band
(also called µ band when observed in the motor cortex)
decreases, while in the β band increases.

Having this field knowledge in mind, the aim of the
various researches conducted on this topic is to discriminate
the left/right-handed MI tasks in order to have reliable and effi-
cient brain computer interface systems. Different classification
techniques have been applied to the electroencephalographic
signals [4] and recently deep learning models [7] [8] have been
developed to move from hand-crafted features, i.e., custom
computed signal characteristics, to learned features.

Most of the state-of-the-art works dealing with standard
classification techniques (e.g., support vector machines, neural
networks and so on), have mainly concentrated their efforts
in refining the classification performances. They also compute
hand-crafted features limited to the previously described field
knowledge. Moreover, the computed features usually take into
account only a subset of the various combinations that could be
made, especially using the spatial information, power spectra
on the frequency bands of interest or some statistical measures.
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Having a limited amount of instances per task, the pro-

TABLE I. FREQUENCY BAND BRAIN ACTIVITY ASSOCIATION [2].

Name Range (Hz) Association
δ 0.5 - 4 present during sleep
θ 4 - 7 present during sleep
α 8 - 13 present in a relaxed state while awake
β 13 - 30 present in a focused/alert state
γ 30 - < 100 present during insight/problem solving phenomena

Figure 1. Electrodes covering the motor cortex brain area.

posed approaches could be considered a good compromise to
maintain a low computational complexity while obtaining good
accuracy values without incurring in the overfitting and curse-
of-dimensionality issues.

However, some information that could have an impact on
the interpretation of the recorded brain responses could be
ignored and the various contribution of different electrodes
and feature types being lost.

A solution to this loss of information could be the com-
putation of different feature types and a subsequent feature
selection, unbiased by a priori knowledge.

Therefore, in our work we compute heterogeneous features
on the signal obtained by each available electrode and a set of
Evolutionary Feature Selection (EFS) methods, based on Ge-
netic Algorithm (GA), Particle Swarm Optimization (PSO) and
Simulated Annealing (SA). We compare the performances ob-
tained by applying different Support Vector Machines (SVMs)
models on the resulting subset of features against the classical
a priori selection and Principal Component Analysis (PCA)
computation.

Our aim is to provide a benchmark that will highlight
the contribution given by the spatial (i.e., electrode) and
feature type information and that will be exploited for the
future development of more complex and possibly efficient
classification models for a better interaction between a MI-
based BCI and its human user.
To this hand our contributions can be summarized as follows:

1) analysis of the motor left/right hand move-
ment/imagination tasks with a population-based ap-
proach instead of limiting the analysis on a single-

subject;
2) consider a combination of heterogeneous features

in the time, frequency and time-frequency domains,
through statistical measures, not wanting to be limited
by the field knowledge;

3) apply different feature selection techniques in order
to verify the efficacy of methods that do not make
assumptions on the features, passing from a priori
knowledge selection and extracting dimensions with
PCA, to the original application of EFS algorithms;

4) original analyses on the agreement between the EFS
resulting feature subset, considering both the elec-
trode and feature type contributions.

The rest of the contribution is organized as follows. Section
II provides the background information on the state-of-the-art
and the exploited characteristics of EFS algorithms. Also, the
used dataset is described. In Section III, we provide a detailed
explanation of the proposed approach, while in Section IV,
we discuss the obtained results from different tests. Section V
concludes the paper highlighting our contributions, some notes
on the obtained results and the future work.

II. BACKGROUND

The core of our proposal is the feature selection performed
by evolutionary computation algorithms. This process consists
in the search of a relevant subset of features with a multi-
objective approach: find the minimum number of features
needed to obtain the maximum classification accuracy.

Generally, an evolutionary feature selection method starts
with the initialization of its parameters and a random selection
of the features. Afterwards, the feature subset search and the
evaluation of its quality are performed until a stopping criterion
is met. The evaluation step, represented by the fitness function,
could follow different approaches [9], i.e., the wrapper and
filter approaches. In particular, we use a wrapper approach
[10], which includes a classification algorithm for the evalu-
ation of the feature subset. Therefore, we discarded the filter
approach, which ignores the classification performance, being
it not suitable for our purpose. As a final step, the obtained
results are validated.

The EFS algorithms are appealing due to the fact that
they do not require field knowledge and can return different
solutions in a single execution, without making any assumption
on the features [11].

We exploit these advantages in an offline configuration
knowing that these techniques have as major drawbacks the
high computational complexity and cost. Moreover, there could
be a stability issue due to the random nature of the processes
[11], which we mitigate by investigating the agreement be-
tween the applied EFS algorithms on the selected features.

To our knowledge, we are the first to apply three different
EFS techniques, i.e., genetic algorithm, particle swarm opti-
mization and simulated annealing, and analyze their agreement
on the selected features considering both the electrode and
feature type contributions.

In fact, some works have proposed the usage of evolution-
ary computation for feature selection in the context of BCIs,
focusing their attention on one aspect and technique at a time.
Also, the concept of feature subset is mostly considered as an
electrode set reduction.

On this topic, Atyabi et al. [12] propose the separate usage
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of GA, PSO and random search to find the best electrode
locations that guarantee the maximum classification accuracy
using a sigmoid extreme learning machine. Amarasinghe et
al. [13] also apply the GA technique on their BCI data for
robot control to obtain the best classification accuracy from a
support vector machine by selecting the minimum number of
electrodes. Instead, Gonzalez et al. [14] apply the NSGA-II
optimization technique and change the fitness function using a
combination of Kappa index and error distribution. They also
propose a feature ranking procedure to address the stability
issue, but they make an a priori choice on the sensors set.

Even though these researches have relevance in the field
of EFS, the authors test their techniques with a subject-based
approach and with a small amount of instances per class.
Here, we propose a population-based approach to assess the
possibility of having a generalized procedure, that we can
apply on a greater number of instances and subsequently use
to make some assumptions when analyzing the data coming
from a new single volunteer.

To this hand, we test our methods on the PhysioNet
EEG Motor Movement/Imagery Dataset (https://physionet.org/
content/eegmmidb/1.0.0/) [15] [16] dealing with it in three dif-
ferent ways: Non-Normalizing the Data (NN-DS), performing
a Min-Max score normalization (MM-DS) and applying the
Z-Score normalization (ZS-DS).

In this dataset are collected the EEG recordings of 109
subjects, who performed an experiment consisting of real and
imagined movements of hands and feet. We focus our attention
on the motor movement/imagery tasks of the left/right hand.
The signal was recorded from the electrodes presented in
Figure 1, with a sampling rate of 160 Hz. We reorganized
the data, obtaining 4924 instances (2469 for the left hand) for
the Motor Movement Task (MM-T) and 4915 (2479 for the
left hand) for the Motor Imagery Task (MI-T).

III. PROPOSED APPROACH

The proposed pipeline (Figure 2) is divided in three main
modules: feature computation, feature selection and classifica-
tion through different support vector machine models.

All the data that are passed to the first module have been

Figure 2. Proposed pipeline scheme.

pre-processed with a notch filter (50 Hz) to remove the direct
current interference and with a finite impulse response filter in
the range 7 - 31 Hz. In this specific case, we used the field
knowledge to retain only the frequency bands of interest (µ and
β), trying to have as less noise as possible without applying
other noise removal techniques.

Different tests are conducted on the considered PhysioNet
dataset with the previously cited configurations: NN-DS, MM-
DS, ZS-DS.

In the following, we describe the main modules in more
details.

A. Feature Computation

Our proposal includes features computed on each electrode
in the time, frequency and time-frequency domains and also
some statistical measures, in order to access the contributions
given by different type of analyses. All the procedures are
developed in MATLAB.

The Hjorth activity, mobility and complexity parameters
[17] represent respectively the EEG signal power, the pro-
portion of power spectrum standard deviation and the signal
similarity to a sine wave [18]. Thus, they characterize the EEG
signal in the time domain and they also have low computational
cost. We developed the parameters following the formulae
reported by Oh et al. [18].

Wanting to also have a representation of the data in the
frequency and time-frequency domains, we estimate the power
spectral density (PSD) using the Welch’s method [19] and the
complex Morlet wavelet [20] on the previously cited frequency
bands of interest, i.e., µ and β. The Welch’s method divides the
signal into windows on which are computed the periodograms.
Their average represents the PSD estimation. Instead, the
complex Morlet wavelet is convolved with the EEG signal,
obtaining the data power and phase. The idea underlying the
development proposed by Cohen [20] is about being able to
control the trade-off between time and frequency precision
with the cycle parameter; thus, we exploit this characteristic
and perform the feature computation with a better time-
precision (3 cycles), a better frequency precision (7 cycles)
and a trade-off between the two modalities (3 - 7 cycles).

Finally, we use the function provided by the MATLAB
tool EEGLAB [21] to compute the mean, standard deviation,
skewness, excess kurtosis, median, low/high percentile and
trimmed mean/standard deviation on the signal obtained from
each electrode.

As a final result, we obtain a vector of 1280 features: 64
electrodes × [2 frequency bands × (PSD estimate through
Welch’s method + 3 modalities × PSD extraction through
Morlet wavelets) + statistical measures].

B. Feature Selection

As described in the previous sections, the evolutionary
computation algorithms applied for feature selection have the
advantage of being decoupled from the field knowledge and
do not make any assumption on the features.

The developed EFS techniques are the genetic algorithm,
particle swarm optimization and simulated annealing. They are
Python coded and while the first two are modified versions of
pre-existing codes, we developed the SA procedure following
the pseudo-code provided by Jeong et al. [22]. Also, notice that
we update the PSO velocity and position at each iteration ex-
ploiting the cognitive, social and inertia parameters presented
by Clerc et al. [23]. All the parameters, reported in Table II,
are empirically adapted to the presented problem, starting from
the default values.

The EFS algorithms follow a wrapper approach, thus a
SVM classification with radial basis kernel [24] and gamma
scaled to 1/(Nfeatures ∗ variance(data)) is applied on the
dataset divided in training (80%) and test (20%) set. Moreover,
we developed two different fitness functions for the evaluation
step. The first one takes into consideration only the accuracy
obtained by applying a SVM as the classifier, while the second
one is meant to find the best trade-off between the number of
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TABLE II. EVOLUTIONARY FEATURE SELECTION ALGORITHM
PARAMETERS AND CONSTRUCTION COEFFICIENTS [23].

Algorithm Parameters and construction coefficients
GA iterations = 100; population size = 8; # parents = 4;

# mutations = 3
PSO construction coefficients: kappa = 1; φ1 = φ2 = 2.05;

φ = φ1 + φ2; χ = 2× kappa

|2−φ−
√
φ2−4φ|

parameters: iterations = 100; # particles = 30; # neighbors = 5;
cognitive = χ× φ1; social = χ× φ2; inertia = χ;
euclidean distance = 2

SA initial temperature = 100000; temperature reduction = 0.9

selected features and the SVM accuracy, following the function
presented by Vieira et al. [25]:

f(x) = α(1− acc) + (1− α)
(
1− Nsf

Nif

)
(1)

where α ∈ [0, 1] is a constant weighting the feature num-
ber/accuracy trade-off and is set to 0.88 after verifying that
with lower/higher values, α does not provide better results; acc
is the accuracy obtained by the SVM model; Nsf corresponds
to the number of selected features, while Nif corresponds to
the initial number of features.

The final result obtained by the EFS algorithms is a binary
vector 1 × Nif , where 1s represent the selected features, 0s
otherwise.

C. SVM Classifiers
The last main module is the one that performs the binary

classification of left/right hand motor movement/imagination
by applying the SVM models (Linear, Quadratic, Cubic,
Fine/Medium/Coarse Gaussian) provided by the Classification
Learner MATLAB application [26]. The SVMs are trained
using a 5-fold cross-validation.

We use as benchmarks the models performed on the dataset
retaining (1) all the computed features, (2) the feature subset
selected a priori, consisting of the feature computed on the
electrodes C5, C3, Cz, C2, C4 (highlighted by the red line
in Figure 1) and (3) the dimensions explaining at least the
95% of the data variance obtained by the principal component
analysis, a standard procedure to reduce the feature number.

Afterwards, we apply the SVM models on the datasets
obtained by the EFS techniques and using the feature subset
representing the agreement between the evolutionary compu-
tation algorithms.

Finally, we compute the accuracy obtained by the various
models.

IV. DISCUSSION

Following the previously described pipeline, we conducted
11 tests, whose best results are summarized in Table III and in
Table IV. The benchmark corresponds to the first three entries
of the tables, while the tests on the proposed EFS methods are
reported in the remaining rows.

The benchmark consists of the results obtained by applying
the Classification Learner SVM models to all the dataset types,
i.e., non-normalized (NN-DS), min-max score (MM-DS) and
z-score (ZS-DS) normalized.

Notice that the best result achieved by the benchmark
(67.8% of accuracy) for the motor left/right hand movement
task (from now on called MM-T) is obtained by the cubic SVM

on the ZS-DS retaining all the computed features. The dataset
consisting of the features selected a priori and of the dimension
extracted by the PCA do not have comparable results.

Comparable accuracy values are achieved by some of the
evolutionary feature selection models, which are computed
only on the normalized dataset, noticing that the best results
achieved by the benchmark tests are on ZS-DS and MM-DS. In
particular, the GA and SA algorithms obtained the same result
as the best benchmark test using as fitness function the trade-
off between the feature number and accuracy value, while the
PSO using the trade-off function exceeds the best result with
the 68.0% of accuracy. Even though the SA with the only
accuracy fitness function achieves the best result (68.3%) on
MM-T, we highlight the fact that the technique retains 1117
of the 1280 total features. Thus, we consider the SA result
not fitting our purpose, i.e., having a minimum feature subset
that can guarantee a comparable/better accuracy on the original
dataset. Therefore, we elect the GA and PSO with the trade-off
function as the best methods.

As a final remark on MM-T, we highlight that the results
obtained by the SVM models applied on the feature subset
generated by the EFS algorithms approach the best accuracy
values returned by the previous tests. Also, notice that the ZS-
DS is the most present dataset in Table III, suggesting that in
a population-based analysis a z-score normalization seems to
be the best approach.

Concerning the motor left/right hand imagination task
(from now on called MI-T), surprisingly the best accuracy
(64.3%) is obtained by the linear SVM on the NN-DS retaining
all the computed features. The observations on the a priori
feature selection and PCA tests for MI-T are the same reported
for the MM-T.

A comparable result is achieved by PSO with the trade-
off function (64.0% of accuracy), which selects 714 of the
1280 features on the ZS-DS. On the feature agreement, the
quadratic SVM model obtains 63.3% of accuracy when applied
on the ZS-DS with the trade-off fitness function. The z-score
normalization seems to be confirmed as the best approach in
a population-based analysis.

A possible reason behind the decrease in all the accuracy
values on MI-T compared with MM-T, is represented by the
inability of accessing if the subject performed correctly the
imagination of the left/right hand movement, thus causing an
uncontrolled introduction of outliers.

However, notice that there are numerous similarities in

TABLE III. BEST RESULTS OBTAINED IN EACH TEST ON MOTOR
LEFT/RIGHT HAND MOVEMENT (MM-T).

Test SVM model Dataset # features Accuracy (%)
all features cubic ZS-DS 1280 67.8
a priori mean Gaussian ZS-DS 100 62.7
PCA quadratic MM-DS 43 62.3
GA accuracy cubic ZS-DS 662 67.2
GA trade-off cubic ZS-DS 646 67.8
PSO accuracy cubic ZS-DS 620 67.3
PSO trade-off quadratic ZS-DS 675 68.0
SA accuracy cubic ZS-DS 1117 68.3
SA trade-off cubic ZS-DS 1116 67.8
agreement accuracy quadratic ZS-DS 264 66.4
agreement trade-off cubic ZS-DS 308 67.5

the results obtained on both tasks. Focusing on the bench-
mark, the a priori feature selection and the PCA dimensions
are unable to provide an accuracy comparable to the result
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TABLE IV. BEST RESULTS OBTAINED IN EACH TEST ON MOTOR
LEFT/RIGHT HAND IMAGINATION (MI-T).

Test SVM model Dataset # features Accuracy (%)
all features linear NN-DS 1280 64.3
a priori linear ZS-DS 100 59.7
PCA quadratic MM-DS 41 59.5
GA accuracy cubic ZS-DS 641 63.8
GA trade-off quadratic ZS-DS 608 63.7
PSO accuracy cubic MM-DS 622 61.7
PSO trade-off quadratic ZS-DS 714 64.0
SA accuracy cubic ZS-DS 1114 63.6
SA trade-off cubic ZS-DS 1117 63.8
agreement accuracy cubic ZS-DS 272 62.4
agreement trade-off quadratic ZS-DS 313 63.3

obtained by the test retaining all the features. Moving to
the proposed EFS techniques, observe that: (1) the various
models generally achieve the best accuracy on the ZS-DS;
(2) the activation function exploiting the trade-off between
the number of selected features and the accuracy, allows the
EFS methods to achieve a better accuracy compared to the
accuracy-only activation function; (3) the best methods are
GA and PSO, which maintain good performances with a
restricted feature subset; (4) the SA technique retains about the
87% of the original features on average, thus not representing
a good solution for the feature minimization and accuracy
maximization problem.

Having a general description of the best results, we now
focus our attention on the EFS agreement; in particular on the
feature subset selected through the trade-off fitness function.

Figure 3 and Figure 4 report the number of features selected
for each electrode on MM-T and MI-T respectively. Table V
summarizes how frequently a specific feature type is selected
in the EFS feature selection agreement on the motor left/right
hand movement/imagination tasks.

Observe that the set of electrodes that are usually selected
a priori (C5, C3, Cz, C2, C4) contribute minimally to the
classification in both tasks. Their contribution is also not
symmetrical, i.e., if one of these electrodes is selected in the
left hemisphere of the brain, most probably the correspond-
ing one in the right hemisphere is not selected. This could
actually be an optimal configuration, knowing that each of
these electrodes is at least coupled with a feature in the time-
frequency domain. As stated in the introduction, we know that
the power spectrum decreases on the µ band, while it increases
in the β band when dealing with a motor related task and
also it has a spatial connotation depending on the fact that the
movement/imagination is intended for the left/right hand.

Concerning the other electrodes related to the motor cortex
(light-blue highlighted in Figure 1), the number of contribu-
tions is greater for MI-T than for MM-T, which reports some
specifically localized contributions.

The frontal (Fp, AF, F) sensors are involved in the motor
tasks, probably due to the experimental settings. In fact,
a subject had to perform the motor left/right hand move-
ment/imagination following a visual cue, thus involving the
specific brain area coupled with the previously cited electrodes.

The parietal (P) sensors make some contributions, espe-
cially with the statistical features. This brain area is deputed
to sensory information and thus could be involved in the motor
tasks.

Finally, the temporal, parieto-occipital and occipital (T, PO,
O) electrodes give some information, mostly through Hjorth

parameters and statistical measures. This could be due to their
brain area activities concerning memory and visual processing.

We finally report the selection frequency of the various

Figure 3. Agreement electrode contributions for the motor left/right hand
movement (MM-T) task.

Figure 4. Agreement electrode contributions for the motor left/right hand
imagination (MI-T) task.

feature types (Table V).
In MM-T there is a balanced selection of the features

involving the information in the frequency domain. Between
the Morlet wavelet related features, the most selected is the
power spectral density extracted using this technique on the
µ band with a time-frequency trade-off. There is also a good
balance in the same type of features selected for MI-T.

The Hjorth parameters have a big impact especially for MI-
T, where the activity parameter appears 27 times and thus with
the highest frequency in respect to the other feature types.

The standard deviation and median features give a great
contribution especially for MM-T.

The rest of the feature types are balanced for both tasks.
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TABLE V. FREQUENCY OF FEATURE TYPE SELECTION FOR MM-T AND
MI-T.

Feature type Frequency on MM-T Frequency on MI-T
Hjorth activity 13 27
Hjorth mobility 13 14
Hjorth complexity 15 8
PSD Welch on µ 17 17
PSD Welch on β 14 12
PSD Morlet time-prec on µ 13 11
PSD Morlet time-prec on β 14 15
PSD Morlet freq-prec on µ 15 16
PSD Morlet freq-prec on β 14 16
PSD Morlet trade-off on µ 17 13
PSD Morlet trade-off on β 10 16
Mean 16 15
Standard deviation 20 18
Skewness 15 19
Excess kurtosis 16 17
Median 25 17
Low percentile 17 16
High percentile 14 18
Trimmed mean 18 15
Trimmed standard deviation 11 12

V. CONCLUSION AND FUTURE WORK

In this work we investigated the possibility of conducting a
preliminary analysis on the data provided by a MI-based BCI,
to improve the interaction between this peculiar kind of system
and its users. In particular, we concentrated our efforts on
the PhysioNet EEG Motor Movement/Imagery Dataset tasks
concerning the motor left/right hand movement/imagination.

Firstly, we noticed that most of the data normalized by
the z-score normalization technique achieves better results and
thus allow a population-based analysis. We can assume that by
applying the data normalization, the data heterogeneity due to
inter- and intra-subject variability is mitigated. Therefore, we
can exploit this results to have a higher number of instances
per class when dealing with a MI-based BCI.

Secondly, we computed different feature types in the time,
frequency and time-frequency domains and also as statistical
measures, wanting to have a broad insight on their contribu-
tions.

We verify on this specific dataset that the feature types con-
tribute in the task discrimination depending on the electrodes
on which they are computed. Thus, the brain area localization
is an important information.

We notice that not only the electrodes covering the motor
cortex are involved in the motor tasks with their time-frequency
related features, but also the other brain areas contribute with
different types of features, especially the Hjorth parameters
and the statistical measures.

The evolutionary feature selection algorithms represented
great allies in the optimal feature subset search. In particular,
the genetic and particle swarm optimization algorithm obtained
the best results, having the support vector machine models
(applied on the reduced datasets) obtained comparable or better
results in respect to the benchmark ones.

Finally, the agreement of the EFS techniques on the se-
lected features has highlighted the various contribution from
each electrode and from each feature type, without decreasing
drastically the accuracy values.

As future work, we would like to test the EFS techniques
with different fitness functions and on different datasets. Using
data obtained by experimental protocols that do not only in-
volve the motor imagery, but also cognitive workload, emotion

recognition and so on, we could simulate a real-life scenario
and verify if our approach is generalizable.

We would also like to define our own experimental protocol
for a live MI-based BCI, taking into account the ergonomic
issues that could be involved in this user-centric system
modeling. In fact, as stated by Baek et al. [27], most of the BCI
related works do not consider the importance of having user-
friendly, flexible and accessible systems, which could allow a
better EEG recording in absence of stress and discomfort.
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