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Abstract—Accurate location information collected during a trip
is crucial for many post-travel activities. In the digitalized
world, many of these activities (such as annotating pictures) are
supported by different location-aware applications. Since these
applications are also used in non-travel related scenarios, the
applications cannot “know” in advance, what the appropriate
location accuracy level is. In this paper, we analyze a couple of
general purpose Google ecosystem applications in the context of
post-travel activities with the use of real data collected during a
one week trip. We examine the possible scenarios where location
accuracy is not high enough to fulfill the user requirements,
and propose a novel approach, which allows the location-aware
application receiving more accurate location data according
to policies set by the user. In our model (which is naturally
applicable not only to Google ecosystem applications), we combine
a general-purpose application with an assistant application aimed
at managing location data quality. We describe the implemen-
tation of a prototype companion application and demonstrate
that this application allows travelers to continue using regular
applications (such as Google Timeline) with achieving the desired
level of location accuracy.

Keywords–Mobile application; Intelligent assistant; User behav-
ior modeling; Location data; Accuracy; Human-centered design.

I. INTRODUCTION

Digitalization significantly affects the domain of services
and tools for travelers, including web services and mobile
applications. Emerging solutions are currently addressing the
process of creating applications, which are not about simple
time-budget optimization: the users expect to get features
allowing travelers to develop and share their own emotionally
intense and memorable experience [1].

Traveling is much more than simply moving from one point
to another with visiting some attractions and sightseeing spots.
While traveling, people are involved in numerous activities
connected to a variety of ubiquitous digital services and
applications available via mobile devices. At the different stages
of a journey, the travelers require different kinds of assistance.

Before the trip, the “high-level plans” (what countries or
cities we want to visit) meet the “low-level” arrangements (what
are the particular places to be visited in a city or its district,
how should we book such visits, are there visa requirements,
etc.), as well as some minor (but still important) organizational
matters (packing your camera, buying electric power converters,
reading tourist guides, etc.).

There are many desktop, mobile and web applications for
trip preparation. For example, in [2], the authors combine a
recommendation algorithm with interactive route visualization
for creating and managing personalized itineraries. In [3], the

authors address the needs of those professional and amateur
guides who are interested to be creators of the tours and
excursions accessible from travelers’ devices. In [4], the system
for planning multi-day personalized travel tours is described.
This system uses information gathered from a travel-centric
social network.

In the course of a journey, an emphasis is shifted to the
on-the-fly planning aspects. They include public transportation
itineraries, navigation, checking opening hours, finding good
places for eating, making arrangements conditioned by possible
schedule changes (such as missing the train, decisions to
stay longer, experiencing flight delays, unexpected business
meetings, strikes, etc.). There is also an important aspect of
discovering places which are worth visiting during a desired
period of time. In [5], the authors described a trip builder
application, which uses a collection of geo-tagged photos
from Flickr [6] as a spatiotemporal information source for
planning personalized sightseeing tours in cities. Kachkaev and
Wood [7] advanced an approach to creating walking tours
lasting during a desired time slot. They also used crowd-
sourced photography contents with paying attention to non-
trivial algorithms of photo qualitative analysis and suggested a
filtering method for removing irrelevant images from the dataset
with the use of anomaly detection in spatial and temporal
distribution of photographs. Using geotagged photos for trip
planning and location recommendation can also be found in a
number of other works [8][9]. To sum up, most of the above-
mentioned tools are focused on better user personalization,
travel itinerary customization, as well as leveraging experience
of other travelers.

There is a reasonable number of after-journey activities
including sorting pictures, recordings, notes and other material
and media artifacts that one wants to store or share.

In regards to post-travel experience, most of the traveler-
oriented scenarios are about timing and location. Surprisingly,
exact and accurate location data might sometimes become
even more important in after-journey activities than during
the trip. Indeed, if we have precise information about the
traveler’s locations in time, many other parameters (like a place
name, city, country, etc.) can be calculated. Subsequently, these
calculated parameters can be used to annotate pictures, notes or
other records, including those, which are produced by location-
unaware legacy devices, e.g., by cameras with no built-in or
installed GPS (Global Positioning System) sensor.

In this paper, we specifically address such a post-travel
experience, with a particular attention on the problem of
collecting user location information and using it for travel-
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oriented use cases. The objective of this work is to describe
a design pattern aimed at improving behavior of existing
location-aware applications. The pattern includes a companion
application, which is aware about user context (e. g., “the
user is traveling”) and any number of other applications. The
companion takes care about location data accuracy, while the
other applications are focused on their major usage scenarios
(like putting pictures on the map or building photo albums
for each visited place). We separate concerns of the different
components. In so doing, we expect to improve user experience
by assuring collecting more accurate location data when they
are really needed, and conserving battery energy when they
are not.

The remaining text is organized as follows. In Section II,
we analyze the problem of collecting user location data and
describe the state-of-the-art approaches addressing a tradeoff
between accuracy and energy consumption. In Section III, we
examine a sample use case of annotating pictures (taken during
a trip) with location and sightseeing information. In Section IV,
we introduce a sample dataset (including location data and
photograph metadata for one week trip). In Section V, we
demonstrate (with the help of our sample dataset) that the
data collected by a general purpose application might not be
enough to reconstruct tourist route with an accuracy suitable
for annotating collected records (e.g., pictures). Section VI
introduces a companion application, which enables general
purpose location-aware applications to receive location data
with higher accuracy according to policies set by the user.
Section VII concludes the paper.

II. RELATED WORK

Though the problem of collecting user location data is
not new, it is still an issue for mobile software development.
A tradeoff between accuracy and energy consumption is
an important factor of the location data collection process:
nowadays smart device users search more for power plugs than
for network connections [10]. This consideration is important
for electronic tourist diary collection systems as well: additional
pressure on the battery (conditioned by GPS sensors) “can lead
to an unacceptable battery consumption for users” [11]. There
are three major approaches used to handle this issue.

The first approach is to optimize the quality of service
for given power consumption level (aimed at getting better
accuracy with no additional pressure on the battery). For
example, in [12], the authors suggest using smartphone’s built-in
accelerometer, gyroscope and magnetometer to improve location
accuracy. Calibration is implemented by using a number of
distinguishable patterns (such as going up/down, stopping at
traffic lights, etc.). Though the major focus of that work is
on location accuracy, the authors reported that in addition to
location accuracy improvement they succeeded to reduce power
consumption. This became possible because of an algorithm
used to disable the GPS sensor under certain conditions, while
keeping tracking locations with the use of inertial sensors only.

The second approach is to optimize power consumption
for a given quality of service requirements. This approach
usually suggests the use of alternative (less power consuming)
sensors for obtaining user’s locations (e. g., wi-fi, mobile
networks, and others). The main idea is to use an intelligent
algorithm in order to select an appropriate source of location
data, based on current accuracy requirements. For example,

cell-towers visibility fingerprints or triangulation can be used
to obtain coarse location [13]. One more way to optimize
power consumption is to detect the user’s current activity.
Expensive location sensors can be disabled if it is known
(e. g., by analyzing less expensive accelerometer data) that the
device is actually not moving [14][15], or its GPS signal is
blocked indoors.

The third approach is to optimize applications and algo-
rithms by relaxing location accuracy requirements (e. g., by
using coarse location instead of fine location whenever possible).
Such an optimization normally happens on a case-by-case basis.
For example, in [16], the authors describe a number of search-
oriented use cases (like “find pizza stores nearby”). In order
to fulfill the request, an application needs to know the user’s
location. Location accuracy requirements might depend on
geographical density of the searched objects. For the “pizza-
case”, it means that in a populated area with many pizza stores,
accuracy demands are more strict (100–200 meters) in contrast
to far away environments with only few pizza stores (where
accuracy of 1–2 kilometers is sufficient to locate the nearest
shop).

In [14], the authors suggest shifting focus from the
coordinates-oriented locations to place-oriented locations. In
other words, the users are normally not interested in raw
coordinates (longitude and latitude), but in the places they
visit (such as “my office”, or “5th floor cafe”). As a result, we
can identify the places by using so-called fingerprint techniques
(which do not only include wi-fi, Bluetooth or cellular signals,
but also FM radio fingerprints [12] or ambient fingerprints such
as sound, light or color [14]).

In this paper, we follow the third approach with a few
important adjustments:

• Our primary goal is not to save energy, but to collect
location data with an accuracy acceptable for post-
travel scenarios.

• Currently we delegate the decision making about
“acceptable” accuracy to the owner of the device. Our
application only enforces the policies already set by
the user.

• We want that other applications (not ours) running on
the device to receive location data with an acceptable
accuracy.

The objective of this contribution is to bridge the gap
between the existing services and the users’ needs, and,
therefore, to enable the existing general-purpose services (like
Google Timeline) supporting better user experience in post-
travel activities. We want to give travelers an opportunity
to control the captured travel route accuracy with respect
to particularities of real travel-related use cases. The main
challenge is not to collect data, but to share them: collected
GPS coordinates should be “sharable” among other applications
supporting travel use cases (including photo albums, maps with
landmarks, social networks, etc.).

III. CASE STUDY: ANNOTATING PICTURES COLLECTED
DURING A TRIP

In this section, we present a use case of “annotating pictures”
as one example of common post-travel activities. Suppose that
the user is travelling with a camera and a smartphone. The

2Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-670-5

CENTRIC 2018 : The Eleventh International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services



Figure 1. Google Timeline for one travel day.
Figure 2. Google Timeline for one travel day

(automatically recognized route with raw data).

latter is used for navigation and timetable information, whereas
a camera is (naturally) used to take pictures of the different
sightseeing places. We assume that pictures produced by the
camera do not have location information, but do have timestamp
information. After the user completes the journey, he or she
might be interested in annotating the pictures with location
metadata containing country, city and/or tourist attraction
names.

To be exact, we assume that the user has an Android-
based smartphone device (this is not a significant limitation
nor constraint: any modern mobile operating system offers the
services discussed hereafter). To proceed with attaching the
corresponding place-related metadata, the user could combine
Google Photos and Google Maps Timeline applications.

There are two basic options to annotate pictures with the
location data:

1) Raw data can be exported from the Google Timeline
in KML (Keyhole Markup Language [17]) or JSON
(JavaScript Object Notation [18]) formats. Then GPS
information in all the pictures can be updated using
the tool exiftool with -geotag flag [19].

2) Upload all photos to the Google Photos service and
let the service putting the pictures on the map. In this
case, the user can see the pictures associated with a
particular sightseeing place just inside the Timeline
application (as Figure 1 demonstrates), or in the album
of “places” in Google Photos application.

Unfortunately, due to possibly inaccurate location informa-
tion, the pictures might be attributed to wrong sightseeing places.
The location accuracy might be low for the reason that the
Timeline application is very “conservative” in terms of battery
usage. Custom GPS tracker applications would show better
accuracy at a price of higher battery usage (in a short trip, such
a compromise often inherently meets user expectations). The
major drawback of the custom location tracking applications
is that they might be not integrated well with other user’s

favorite applications. For example, the GPS tracker might be
not integrated with a cloud photo album, therefore, the user
might need finding a way to transfer location data from the
tracker to the album application at his or her own (in many
practical cases, no action to “transfer” location data is required,
because the operating system shares location data with the
other applications automatically, as we explain in Section VI).

IV. EXPERIMENTAL DATA

In this section, we present and compare some metrics
received from the Google Timeline application and a number
of photographs taken during one single journey. Here is the
brief summary of this journey:

• Travel dates: 10-Oct-2016 till 17-Oct-2016 (inclusive).
• Country: Japan.
• Regions: Fukushima, Fukui, Ishikawa, Kyoto, Ya-

manashi, and Chiba prefectures.
• Pictures total: 1112. Each picture has timestamp

information and does not have any location metadata
associated.

• Places visited: ≥ 13 (some places with few pictures
are collapsed into bigger local areas).

• Timeline data: 3044 GPS points are collected from a
smartphone. The smartphone was used to navigate
in the area and to learn historical facts about the
sightseeing places.

• Journey metrics:
1) Average time interval between GPS points:

8days ·24 hours
day ·60 min

hour

3044points
< 4min/point

2) Average interval of taking photographs:

8days ·24 hours
day ·60 min

hour

1112pictures
> 10min/picture

3Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-670-5

CENTRIC 2018 : The Eleventh International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services



Figure 3. Distribution of timestamp intervals between subsequent GPS points
recorded by the Google Timeline.

Figure 4. Distribution of timestamp intervals between subsequent photographs
taken by a traveller during the trip.

As you can see, the GPS points are collected almost twice
as frequent as the photographs are. One more interesting
observation is on data collection frequency distribution: we
sorted all the timestamps for the collected GPS points and
calculated the time intervals between the subsequent timestamps.
The same operation was applied to the timestamps from the
collected photographs. Figures 3 and 4 show the results.

Let us note that the most pictures were taken in a series of
shots made in less than 60 seconds, and there is a peak around
200 seconds. The timeline application shows nearly the same
distribution: the most points are collected within the interval
between 20 to 200 seconds.

Though the statistical results presented in Figures 3 and
4 seem promising, and the Timeline application is definitely
very useful for post-travel experience, there is a number of
interesting issues to be resolved.

Figure 5. Distribution of accuracies of GPS points recorded by the Google
Timeline.

The major issue is the significant difference between actual
traveler’s route (Figure 6) and track shown on the map by the
Timeline application (Figure 2). We address this issue in the
following section.

V. ANALYSIS OF DIFFERENCES BETWEEN ACTUAL AND
GOOGLE TIMELINE ROUTES

Let us take a closer look at the above mentioned journey
in Fukui prefecture, Japan, from Tsuruga to Eiheiji (Figure 1).
By enabling “show raw data” mode, we can analyze actual
points received from the location sensor (red dots in Figure 2):
we can see that many points are not mapped to the route.

In principle, the Timeline application provides high-level
tools that can be accessed by those who wish to fix inaccurate
attribution of the visited points placed to the route (as Figure 6
illustrates).

The original (automatically recognized) route was as fol-
lows: Tsuruga–[driving]–Shihi–[driving]–Ichijodani Asakura
Family Historic Ruins–[moving]–unconfirmed place–[moving].
Figure 6 shows the manually revised route. As you can see,
this revised itinerary includes many places which are missing
in the original track, including Fukui station, Shimokudo trace,
Kasuga Shrine, Remains of Nishiyama Kousyoji temple, and
Ichijodani Station.

After such a correction, the raw data (red dots in Figure 6)
fit the route (blue lines in Figure 6) much better. However, it
is still impossible to recognize properly, whether, for example,
the Remains of Nishiyama Kousyoji temple were visited or
not. In the trip dataset, we can find 5 pictures of the Remains
of Nishiyama Kousyoji temple within the timeframe between
08:35:48 AM GMT to 08:37:51 AM GMT. The Google timeline
contains one point within the extended timeframe between
08:33:48 AM GMT to 08:39:51 AM GMT. Nevertheless, the
timeline raw data (see Figure 6) do not show that the traveler
visited the temple. This issue can be explained if we analyze
the raw timeline values:

{ "time": 8:34:25,
"longitudeE7": 1363465709,
"latitudeE7": 360585156,
"accuracy": 3400 }

The location accuracy is an estimated horizontal accuracy
of the location (radial, in meters), and its value is 3.4km
(around 40 minutes walking distance). Since the points of
interest are located close to each other (it is about only 200m
from Ichijodani station to Nishiyama Kousyoji temple, and
500m to Kasuga shrine), the accuracy less than 200m is not
much helpful for reliable identification of the visited places.

Figure 5 shows the overall distribution of the Timeline accu-
racy (during the whole trip). There are two well-distinguishable
peaks: the first one is within the range [0m,30m] (about 38%
of all the points fall into this range), and the second one is
within the range [1km,+∞) (about 52% of all the points).

VI. GOOGLE TIMELINE COMPANION APPLICATION

Although Android is an open-source operating system, the
Google Services are not. Hence, we do not know the Google
Maps and Timeline internal implementation details and the
algorithms they use. We expect that they are based on Google
Play Services API (application programming interface) [20] for
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Figure 6. Google Timeline for one travel day (manually fixed route).

Figure 7. Side effects from turning navigation application on and off:
point (a) – turned on; point (b) – turned off.

Figure 8. 40-minutes city trip (driving): (a) standard accuracy of the Google
Timeline and (b) increased accuracy enabled by the companion application.

location data processing. With respect to positioning accuracy,
this API provides capabilities allowing developers to proceed
with fine-grained control over location accuracy, in order to
save the device battery. Our assumption is that the Timeline
application subscribes for all the location events if they are
available (it does not activate any additional sensors), while
seldom requiring coarse location and even rarely requiring fine
location, which activates the GPS sensor. To be specific, in
Google Services API this mode is handled via combination
of priority, interval and fastestInterval properties
of LocationRequest object [21]. In other words, if one
application activates the GPS sensor, the Timeline application

becomes getting aware of the user’s location as well. Figure 7
illustrates this issue: the segment (a) to (b) corresponds to the
case when a separate navigation application (Yandex.Navigator,
in our case) is turned on, while the track outside this segment
corresponds to the case when a separate navigation application
is turned off.

Our idea is to develop a companion application, which
enables the Timeline application to collect user location data
more accurately. This assisting application is aware of the
context: it “knows” that the user is traveling, not simply moving
from one place to another. Therefore, we can subscribe for
location events with an appropriate accuracy.

What makes the companion specific is that it is not
aimed at receiving location information only, but it makes
this information available to other location-aware applications
running on the device. In fact, the companion may even ignore
the received location updates without additional processing
or storage, because these location events are handled by the
Timeline application. The Timeline application stores location
information locally, and transfers it to the cloud when the
device gets online. In fact, such a companion application might
not have any user interface, since it works as a service mostly.
Figure 8 provides a hint on how the map timeline accuracy
can be increased. Figure 8 (a) shows a Timeline track captured
with no companion application running, while Figure 8 (b)
shows a track captured by the Timeline application when the
companion is configured to receive location updates at a higher
rate (every 2 minutes).

VII. CONCLUSIONS

In this paper, we examine a use case when an (assisting)
application is developed in order to improve a number of quality
properties of another application. Particularly, we implemented
a model of the combined usage of Google Timeline application
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and our companion application aimed at assuring a required
level of location accuracy. It is important to note that these
two applications do not interact directly with each other, but
one application (Google Timeline) benefits from the fact that
another one (the companion) is running.

Despite our software implementation targets the Android
platform, the approach is not limited to only one platform. In
present-day operating systems, the applications do not connect
to any sensor directly, they use services, provided by the
operating system, which shares the same data (received from
a certain physical sensor) among different applications. Often
(not only in Android, but also in Windows, iOS, and some
others) a location service is an abstract service, which receives
information from the different sources and provides a “user
location”, not simply “GPS coordinates”.

Because of the nature of location data, there are applications
that “want” to receive location information only if such
information is available with no additional pressure on battery
and central processing unit (CPU) usage. For example, Google
Now, Siri, Cortana, and social networking applications produce
outputs based on the user locations. Since these applications are
popular, operating system API (anyway) supports such kind of
subscribers in order to provide a balanced policy with respect to
both power saving and leveraging the desired user experience.

Among the problems to be addressed in the future, we can
mention a problem of finding a tradeoff between location data
accuracy and battery life automatically: the location accuracy
requirements might depend on the density of tourist attractions
in the particular area, on the user speed, as well as on many
other factors. In our current prototype, the only option to
manage this issue is to configure a companion manually by
using the configuration user interface we provided.
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