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Abstract—We propose a system to make complex production
machines more user-friendly by giving the operator recom-
mendations, such as “in the last 10 occurrences of this event
the operators performed the following keystrokes”. We describe
algorithms to generate the recommendations based on data on
former user-interaction and process values and to store them
in a knowledge base. We also propose algorithms to retrieve
recommendations suited to the current process state. We evaluate
their performance on simulated data and data gathered from real
production machines.
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I. INTRODUCTION

In [1] we proposed to apply machine learning algorithms to
generate recommendations like “in the last 10 occurrences of
this event the operators performed the following keystrokes”
for operators of complex production machines. Figure 1 shows
the context: our system, the black box, builds a knowledge
base from past operator interactions with a complex production
machine.

The system faces two challenges: One is to retrieve the
recommendations that are most suitable for the current state
of the production machine. The other is to build the knowledge
base by extracting the operator interactions from data logged
during production.

Despite of the idea being quite straightforward there is
apparently little similar work. Most of the work in the
production-machine sector applies machine learning to ap-
plications dealing with pattern detection in process data or
distingushing different datasets [2]–[5]. The algorithms are
used to flag errors or problems with production quality to the
machine’s operator who needs expertise to counter the detected
problem.

Challiol et al. [6] describes an application striving to dis-
play content dependent on the users context. While addressing
a completely different application domain this is similar to our
approach in terms of matching context to content. The authors
assume the content to be available and do not propose specific
context matching algorithms. The context matching algorithm
proposed in [7] is quite abstract as is its performance evaluation
presented in [8].

Our approach as described in Section II covers aspects
similar to [6], [7] and [8] with strong focus on the application
in complex production machines. Furthermore we propose to
automatically generate the content of the recommendations.

The algorithms presented in Section III build a knowledge
base that can be edited. i.e., the recommendations can be
presented to an experienced operator who can modify or delete
them. This is a marked difference to most machine learning
algorithms whose knowledge base cannot be edited.

Section IV evaluates the performance of these algorithms
on test data. These data are used to train the algorithms and
to derive the “truth” we compare to the generated recommen-
dations.

Section VI summarizes the results and gives a short outlook
for our future work and the challenges expected in the near
future.

II. PROPOSED APPROACH

The basic idea of our approach is to extract operator knowl-
edge from the continuous stream of PLC-variables logged
during the operation of the machine. We want our algorithms
to be as generic as possible and to work without deeper
understanding of the machine. However, we need information
to recommend actions to the machine operator: Which columns
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Figure 1. Application context for our machine learning algorithms
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in the PLC variable database correspond to values affected by
the process, e.g., actual temperature, and which are controlled
by the operator, e.g., temperature set-point. We call the first set
of variables process values and the second set operator values.
The rows of the database hold consecutive values for these
variables.

With this information we propose to generate user guidance
as shown in Figure 2: The alarm messages in the alarm
database are used to tag discrete parts of the endless stream of
data logged in the PLC-variable database. The alarm tag and
the data before the occurrence of the alarm are regarded as a
fingerprint that identifies the alarm. This fingerprint consists of
process and operator variables. The data after the occurrence
of the alarm also consists of process and operator values.
The actions performed by the operator will change some of
these operator values. By detecting these changes we build
a sequence of operator events. This sequence represents the
actions of the operator corresponding to a fingerprint.

With fingerprints and corresponding operator sequences
we build a key value store representing the operators’ ex-
pert knowledge. The fingerprint is the key and the operator
sequence the value. These key-value pairs are generated by
monitoring the continuous stream of data logged during the
operation of the machine. When the machine raises an alarm
the algorithms generate a key for that new problem. Now the
key-value pairs in the knowledge base are searched for the best
matching elements. The best matches are then provided as a
recommendation on how to solve the problem. The fingerprint
and the operator sequence performed by the operator are then
stored in the knowledge base as a new key value pair.

In Section III we describe two generally different ap-
proaches for the processing of the fingerprints: One set of
algorithms directly uses the process and operator variables.
The other set converts the data in the fingerprint into an event
sequence. Events are generated for the parts of a time series
where the data changes. Several events for one or several
columns constitute an event sequence. Detailed descriptions
of the event generation can be found in [1] and [9].

III. RECOMMENDATION GENERATION

In case the machine needs operator assistance, i.e., it raised
an alarm by adding a new row in the error message table, our
guidance generation algorithm is triggered. The fingerprint of
the current situation is used as a search key for the knowledge
base.

Section III-A describes a set of algorithms that converts the
data in the fingerprint into an event sequence and then searches

for this sequence. Section III-B introduces the best performing
algorithm that directly uses the N -dimensional point set of
process and operator variables in the fingerprint as a key. More
algorithms are described in [9]

A. Recommendation Generation using Event Sequences
1) Map: In [1] we used a content addressable memory,

i.e., a Java map, to store the knowledge base. We build the
knowledge base by iterating through all past occurrences of
alarms. For each fingerprint we calculate the event sequence
and use it as the key and the corresponding operator event
sequence as the value. Each key-value pair is then stored in
the map. For ambiguous entries we store the frequency of the
respective sequence in the past.

To generate a recommendation we simply generate the
event sequence corresponding to the fingerprint of the current
alarm and query the map for this key. For map entries with
several values for one key we return several recommendations
and their frequency in the past. Should the key not be in the
map, we cannot generate a recommendation.

2) Map with Statistical Event Filtering: The map presented
in Section III-A1 will only find a recommendation if the
search key exactly matches one of the stored keys. If the event
sequences contain spurious events, e.g., caused by noise, we
can not find a match. So we created an algorithm to suppress
the irrelevant events.

We use a statistical approach identifying unimportant
events to remove them from the process event sequence. The
filtered event list is then processed as described in Section
III-A1.

The filtering is done in two steps. First we iterate through
the event sequences of all stored fingerprints for one alarm
and count how often an event is contained in the set of
event sequences. In the next step we remove all events with a
frequency below a defined threshold from the event sequences.
So far our tests indicate that 0.5 is a reasonable choice.

3) String matching: The map algorithm presented in Sec-
tion III-A1 requires the key in the query to be absolutely
identical to one key in the map. Thus, it is very sensitive
to changes in the key, i.e., the event-sequence. We alleviate
this rigorous selection criterion by storing all keys and the
corresponding values in a vector. We then loop through all
the elements and compare the sequence of the query to the
sequence stored in the vector. We return the value as a
recommendation that is most similar to the key in the query.

We evaluate the similarity with the Levenshtein distance
for string values as described in [10]. For the comparison we
treat each event in the sequence as one letter.

B. Recommendation using point sets
The approach described in Section III-A3 allows for dis-

turbance by not requiring a complete match between search
key and stored key. We can take this idea one step further
by regarding the data points in the fingerprint as a set of
n-dimensional points. For one timestamp every process and
operator value is one dimension.

As in Section III-A3 we store the point sets and the cor-
responding operator events in a vector of key-value-pairs. To
generate a recommendation we loop through all the elements
of this vector and compare the fingerprint, i.e., the point set,
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of the query to the point sets stored in the vector. We return
the value, i.e., the operator events, as a recommendation that
is most similar to the key in the query.

Plenk et al. [9] details several procedures for matching
point sets. In this paper we only detail the procedure that per-
formed best on our data. It is a combination of the Hausdorff
distance for point sets and the Manhattan-distance for points.

The Hausdorff-distance defines a similarity between two
not empty point sets A and B. For one point a that is an
element of set A the distance between a and B is defined as:

DH (a,B) = min
b∈B

d (a, b) (1)

where d is the Manhattan-distance between two points a and
b with the dimension i:

dm (a, b) =
∑
i

|ai − bi| (2)

On that basis the the Hausdorff-distance between two sets A
and B can be put down as:

dh (A,B) = max

{
max
a∈A

D (a,B) ,max
b∈B

D (b, A)

}
(3)

IV. QUALITY OF RECOMMENDATIONS

To evaluate our algorithms we use a “batch-mode” that
basically iterates through a long time series of PLC-variables
and alarms. It triggers the recommender for each alarm en-
countered during the iterations and requests a recommendation.
This recommendation is compared to the operator sequence
stored in the time series. This sequence is taken as the expected
recommendation or “truth” for this particular alarm. If the
recommendation is equal to the operator sequence in the test-
set the test is positive and Cpos is incremented. If a different
sequence is returned or the algorithm returns nothing the test
fails and Cneg is incremented. With these two parameters we
can calculate the Quality Qalg for the algorithm:

Qalg =
Cpos

Cneg + Cpos
· 100% (4)

We need to train the recommender algorithms before feed-
ing them alarms. We generate the training data by dividing
the dataset into four subsets with an equal number of alarms.
One of these sets is taken as the test-set. The others are
combined into a training set. Thus, we can run four tests on
each of our algorithms by using the test-sets as training data.
The remaining sets of alarms and data are used to train the
algorithms.

The expression in equation 4 ranges between 0 ≤ Qalg ≤
100%. A closer look at the test-sets however reveals cases
where an operator sequence only occurs in the test set and
not in the training set. Thus, the algorithm cannot learn this
recommendation and is not able to detect it correctly. Some
other keys have more than one associated value. In these cases,
the algorithm is not able to decide which operator sequence
is the right one. Consequently the maximum possible score is
less than 100%.

For our evaluation we use the data gathered during 5
minutes before the alarm to generate the fingerprint. The
operator sequence is generated for the duration of the alarm,
i.e., for the period of time in which the alarm condition is true.

TABLE I. DATASET 1: THE FIVE MOST FREQUENTLY RAISED ALARMS

Alarm number Alarm count With op-sequence Different op-sequences
1101 171 57 12
1012 107 86 19
12 106 53 19
22 106 49 16
2 59 30 10

A. Dataset 1 – Simulation
As a first dataset we use a slightly extended version of the

data we used in [1]. This dataset was obtained by operating
a simulation model of the production machine. It contains
NRows = 1, 150, 063 rows and NAlarms = 1, 254 alarms.

As in [1] we focus on alarm 1101. There are 171 instances
of this alarm in the dataset. For 57 of these instances we could
generate the 12 different operator sequences shown in Table
II. The remaining 114 occurrences of the alarm do not contain
operator sequences because the simulation was not always
operated properly.

8 of these operator sequences corresponding to 10 occur-
rences of alarm 1101 are only contained in one of the four
subsets. Thus, these sets are either part of the training data or
of the test data. We therefore reduce the maximum possible
score from 57 to 47.

For the event based algorithms we found 3 ambiguous
event sequences. Table VII shows all event sequences. The
ambiguous event sequences have more than one corresponding
operator sequence. We consider ambiguous sequences as un-
learnable. Our algorithm will always recommend the sequence
with the highest frequency. Therefore we subtract the number
of the other sequences from the maximum possible. In our
case this reduces the maximum possible by 10 to 37.

For event sequence based algorithms we get a maximum
possible score of

Qalg1evmax
=

37

57
· 100% ≈ 65% (5)

For the point based algorithms we get a maximum score
of

Qalg1pmax
=

47

57
· 100% ≈ 82% (6)

B. Dataset 2 – Converted Data from real Machine
The second set of process- and operator values was taken

from a production machine.
The database of that machine does not yet conform to our

interface standard and thus did not log the alarms. We resorted

TABLE II. DATASET 1: OPERATOR SEQUENCES

Frequency Operator Sequence Learnable
36 Loop1_3_SP_170 yes
7 Loop1_2_SP_170#Loop1_3_SP_170 yes
4 Loop1_4_SP_170 yes
2 Loop1_3_SP_250 no
1 Loop1_3_SP_225 no
1 AOUT1_1_OutValue_10 no
1 AOUT1_1_OutValue_29 no
1 AOUT1_1_OutValue_50 no
1 AOUT1_2_OutValue_9 no
1 Loop1_7_SP_250 no
1 Loop1_2_SP_250#Loop1_3_SP_250 no
1 Loop1_3_SP_170#Loop1_4_SP_170 no
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to generating our own alarms based on process experts’ def-
initions for lower and upper bounds of process values. The
first occurrence of a value being outside the bounds was the
starting time for an alarm. The stopping time was taken the
moment the value was back inside the bounds.

The resulting database contains NRows = 1, 223, 992 rows
describing the machine state and NAlarms = 5, 667 alarms.
Table III shows the five most frequent alarms in the dataset.
With the machine logging the data every 10 seconds we have
a runtime of ≈ 3, 400 hours. This means we have 1.7 alarms
per hour. According to our project partner this number seems
to be very high.

Not all alarms we generated from the machine were useful
for our test. Some alarms were not followed by operator
events. We assume that these alarms are artifacts of our
data preparation algorithm. Other alarms obviously occured
at the end of a production shift and consequently lead to the
recommendation to shut down the machine. We chose alarm
225 for our evaluation.

Alarm 225 occurred 1949 times. For 277 instances of this
alarm we could create a fingerprint and an operator sequence.

We assume that this difference is partly due to our self
generated alarms and partly due to spurious and short alarms
that disappear without user intervention.

For these 277 instances of alarm 225 we generated the 22
operator sequences shown in Table IV. 13 of these operator
sequences corresponding to 46 event sequences occur in only
one of the four subsets. Consequently we reduce the theoret-
ical maximum by 46. Furthermore, we found 33 ambiguous
event sequences. We subtract all but one of these ambiguous
sequences except for those that are already marked as not
learnable because they appear in only one subset. So we have
to subtract further 47 alarms.

So for event based algorithms we get a maximum score of:

Qalg2evmax
=

184

277
· 100% ≈ 66% (7)

For the point based algorithms we get a maximum score
of:

Qalg2pmax
=

231

277
· 100% ≈ 83% (8)

C. Dataset 3 – Real Data
The third data set was gathered on a new production

machine equipped with our system. The machine being new
it is not yet fully productive and there is no long history of
operation. We logged NRows = 417, 663. As in the previous
dataset a new row of data has been logged every 10 seconds.
So we got a total run time of ≈ 1, 200 hours. During this time
period we found NAlarms = 2, 277 alarms.

TABLE III. DATASET 2: THE FIVE MOST FREQUENTLY RAISED
ALARMS

Alarm number Alarm count With op-sequence Different op-equences
225 1949 277 22
423 1059 70 43
122 763 243 93
123 503 149 69
214 238 142 81
213 109 76 60

TABLE IV. DATASET 2: OPERATOR SEQUENCES FOR ALARM 225

Frequency Operator Sequence Learnable
54 AOut1_1_85# yes
53 AOut1_1_84# yes
30 AOut1_1_83# yes
30 AOut1_1_86# yes
20 AOut1_1_81# yes
17 AOut1_1_82# yes
16 AOut1_1_77# no
14 AOut1_1_87# yes
11 AOut1_1_80# yes
9 AOut1_1_76# no
7 AOut1_1_78# no
5 AOut1_1_79# no
2 AOut1_1_88# yes
1 AOut1_1_0#AOut2_1_6# no
1 AOut1_1_83#AOut2_1_64# no
1 AOut1_1_83#AOut2_1_98# no
1 AOut1_1_84#AOut2_1_98# no
1 AOut1_1_85#AOut2_1_98# no
1 AOut1_1_87#AOut2_1_73# no
1 AOut1_1_89# no
1 AOut1_1_91#Loop2_2_SP_230# no
1 AOut2_1_99# no

For this particular machine we can determine if the ma-
chine is in the production process or is idling. So we filtered
for alarms being raised while the machine was running, we
found NAlarms = 1, 393 alarms during operation. For 412 of
these we could determine an operator sequence. Along with
that we found 381 alarms which only occurred for a short time
period, in this case less than 10 seconds. Table V shows the
five most frequent alarms.

For further investigation we chose alarm 21.5 which oc-
cured 321 times. For 45 instances of the alarm we were able to
create a fingerprint and an operator sequence. We used these
alarms for our test. Table VI shows the operator sequences
we could determine. In total we found 31 different operator
sequences.

These operator sequences cover 17 alarms that we consider
as learnable. The other ones occurring only once are not learn-
able by our algorithms. From the unique operator sequences
28 occurred in only one set. 28 alarms belong to these operator
sequences. In this dataset we did not find any ambiguous event
sequences. So for event and point based algorithms we get a
maximum score of:

Qalg3evmax
= Qalg3pmax

=
17

45
· 100% ≈ 38% (9)

V. COMPARISON OF THE ALGORITHMS

After processing the three datasets through all of our
algorithms we calculated the score for each dataset according
to eq. 4. As discussed in sec. IV the resulting values for
Qalg are not comparable between the datasets because of
unlearnable and ambiguous operator event sequences.

TABLE V. DATASET 3: THE FIVE MOST FREQUENTLY RAISED ALARMS

Alarm number Alarm count With op-sequence Different op-equences
21.5 321 45 31
42.0 121 9 9
36.0 106 14 14
38.0 82 2 2
18.2 46 24 22
17.3 43 28 25
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TABLE VI. DATASET 3: OPERATOR SEQUENCES FOR ALARM 21.5

Frequency Operator Sequence Learnable

13 ButtonDrive_1 yes
2 ButtonDrive_1# OutScrewspeed_30 yes
2 ButtonDrive_1# ToolButtonTemp_1 yes
1 ButtonDrive_0 no
1 ButtonDrive_0# MeltpumpOut_30 no
1 ButtonDrive_1# ButtonTemp_1#

MeltpumpOut_20
no

1 ButtonDrive_1# ButtonTemp_1#
MeltpumpOut_30# ToolButtonTemp_1

no

1 Button.Drive_1# OutScrewspeed_11 no
1 Button.Drive_1# OutScrewspeed_13#

MeltpumpOut_10
no

1 Button.Drive_1# OutScrewspeed_14#
MeltpumpOut_50

no

1 Button.Drive_1# OutScrewspeed_15#
MeltpumpOut_13

no

1 Button.Drive_1# OutScrewspeed_19#
MeltpumpOut_11# ToolTemp3SP_180

no

1 Button.Drive_1# OutScrewspeed_24#
MeltpumpOut_37

no

1 Button.Drive_1# OutScrewspeed_27#
ToolTemp1SP_195# ToolTemp2SP_185#
ToolTemp3SP_180

no

1 Button.Drive_1# OutScrewspeed_28#
Temp2SP_220#Temp4SP_220#
ToolButtonTemp_1# ToolTemp1SP_195#
ToolTemp3SP_198

no

1 Button.Drive_1# OutScrewspeed_43#
MeltpumpOut_17

no

1 Button.Drive_1# OutScrewspeed_48 no
1 Button.Drive_1# OutScrewspeed_51 no
1 Button.Drive_1# OutScrewspeed_59#

Meltpump.Out_40
no

1 Button.Drive_1# HaulOffButton_0 no
1 Button.Drive_1# MeltpumpOut_0 no
1 Button.Drive_1# MeltpumpOut_12 no
1 Button.Drive_1# MeltpumpOut_24#

ToolButtonTemp_1
no

1 Button.Drive_1# MeltpumpOut_30 no
1 OutScrewspeed_15 no
1 OutScrewspeed_32 no
1 OutScrewspeed_34 no
1 Meltpump.Out_0 no
1 Meltpump.Out_14 no
1 Meltpump.Out_26 no
1 Meltpump.Out_48 no

Eqn. 5 to 9 give the maximum possible score for each
dataset. With this score we can normalize the results as

Qalgrel =
Qalg

Qalgmax

· 100% (10)

To put the performance into perspective we calculate the
performance of a simple approach that always recommends the
most frequent user sequence in the knowledge base. Such an
approach would propose a correct operator sequence for all the
alarms associated with the most frequent operator sequence:

Qsimple =
100%

NOpSeq
·NmostFreqOpSeq (11)

i.e.,

Qsimple1 =
100%

57
· 36 ≈ 63% (12)

Qsimple2 =
100%

277
· 54 ≈ 19% (13)

Qsimple3 =
100%

45
· 13 ≈ 28% (14)

Figure 3 shows the normalized performance of the different al-
gorithms on the three datasets and for reference the normalized
scores of the simple approach.

The mapping algorithm introduced in [1] and III-A1 scores
≈ 63% on dataset 1. On dataset 2 it performed less with only
≈ 12%. On dataset 3 it did not give any correct recommen-
dations. We attribute this lack of performance to the fact that
this dataset does not have two identical event sequences. Since
the algorithm performs a one to one matching it is not capable
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Figure 3. Normalized results for various recommender algorithms
(left bars: Dataset 1, middle bars: Dataset 2, right bars: Dataset 3)

of finding any solution. In total it always scores less than the
simple approach.

With ≈ 42% on dataset 2 the statistical filter performs
better than the simple approach and is almost on par with the
point based algorithms. It also shows the best performance on
dataset 3 but is still behind the simple algorithm.

The point based algorithm scores better on dataset 1 with
almost 90% and > 50% on dataset 2. Dataset 3 however proves
difficult with ≈ 29%.

VI. CONCLUSION AND FUTURE WORK

We used three datasets to generate and evaluate recommen-
dations in “batch-mode”. On some datasets our recommender
algorithms outperformed a simple algorithm by a factor of 2.
On our newest and smallest dataset, i.e., dataset 3, they lacked
performance. That being said, we want to point out that all
algorithms need the operator sequences we generate from the
logged data.

Nevertheless, we will need to look further into dataset 3 and
enlarge our knowledge base from ≈ 1, 200 hours and ≈ 2, 000
alarms to at least 5,000 hours and 10,000 alarms.

A quick analysis of dataset 3 showed that many alarms
occur at the same time or in a very short timespan. So we will
investigate whether it is easier to find a recommendation for
groups of alarms.

We started interviewing experienced operators. We learned
that in some situations the appropriate operator action is to just
wait for the alarm to clear itself. So it might be a good idea
to include a “do nothing” recommendation in the knowledge
base.
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We also plan to give the operator the possibility to evaluate
our recommendation and to factor that evaluation into our
recommendation.
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TABLE VII. DATASET 1: EVENT SEQUENCES AND OPERATOR SEQUENCES

EventSequence Operator Sequence Frequency Learnable
Empty1 Loop1_3_SP_225 1 no

Loop1_3_SP_250 2 no
AOUT1_1_OutValue_29 1 no
Loop1_3_SP_170 2 yes
Loop1_2_SP_170#Loop1_3_SP_170 1 yes
Loop1_2_SP_250#Loop1_3_SP_250 1 no
AOUT1_1_OutValue_10 1 no

Loop1_4_PV_B#Loop1_4_PV_X Loop1_4_SP_170 1 yes
Loop1_3_SP_0.0 Loop1_3_SP_170 28 yes

Loop1_2_SP_170#Loop1_3_SP_170 6 yes
Loop1_4_PV_H#Loop1_4_SP_50.0# Loop1_4_SP_170 1 yes
Loop1_4_PV_G#Loop1_4_PV_F
Loop1_4_SP_0.0 Loop1_4_SP_170 2 yes
Loop1_2_SP_0.0#Loop1_4_SP_0.0 Loop1_3_SP_170#Loop1_4_SP_170 1 no

Loop1_3_SP_170 2 yes
Loop1_3_SP_10.0 Loop1_3_SP_170 1 yes
Loop1_4_PV_H#Loop1_5_PV_H# Loop1_7_SP_250 1 no
Loop1_6_PV_H#Loop1_7_SP_50.0
Loop1_3_SP_60.0 Loop1_3_SP_170 3 yes
AIN2_1_Value_G#MP1_Value_G#MT1_Value_F#
MP1_Value_F#AIN2_1_Value_F#MP1_Value_B# AOUT1_2_OutValue_9 1 no
MT1_Value_E#MP1_Value_C
MP1_Value_E#MP1_BandMin_E#MP1_BandMax_E#
Loop1_6_PV_E#Loop1_6_PV_F#Loop1_6_PV_E#
Loop1_6_PV_D#Loop1_6_PV_C#Loop1_6_PV_B# AOUT1_1_OutValue_50 1 no
Loop1_6_PV_A#MP1_BandMax_F#MP1_Value_H#
MP1_BandMax_H#MP1_BandMin_F

1In our simulation empty event sequences can occur when an alarm is generated by changing the alarm condition. This happens during testing or demonstration.
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TABLE VIII. DATASET 2: AMBIGIOUS EVENT SEQUENCES

Event- Operator- Frequency Learnable Event- Operator- Frequency Learnable
Sequence Sequence Sequence Sequence
1 AOut1_1_84# 2 yes 18 AOut1_1_86# 2 yes

AOut1_1_82# 1 yes AOut1_1_87# 1 yes
2 AOut1_1_86# 3 yes 19 AOut1_1_85# 5 yes

AOut1_1_87# 1 yes AOut1_1_85#AOut2_1_98# 1 no
AOut1_1_85# 1 yes AOut1_1_84# 1 yes

3 AOut1_1_86# 2 yes 20 AOut1_1_82# 1 yes
AOut1_1_87# 1 yes AOut1_1_81# 1 yes

4 AOut1_1_84# 5 yes 21 AOut1_1_85# 1 yes
AOut1_1_85# 4 yes AOut1_1_87# 1 yes

5 AOut1_1_83# 2 yes 22 AOut1_1_87# 3 yes
AOut1_1_85# 2 yes AOut1_1_85# 1 yes
AOut1_1_84# 1 yes AOut1_1_86# 1 yes

6 AOut1_1_80# 2 yes 23 AOut1_1_83# 1 yes
AOut1_1_79# 1 no AOut1_1_81# 1 yes

7 AOut1_1_87# 1 yes 24 AOut1_1_81# 2 yes
AOut1_1_86# 1 yes AOut1_1_80# 1 yes

8 AOut1_1_85# 1 yes 25 AOut1_1_85# 1 yes
AOut1_1_84# 1 yes AOut1_1_86# 1 yes

9 AOut1_1_83# 1 yes 26 AOut1_1_80# 3 yes
AOut1_1_84# 1 yes AOut1_1_81# 1 yes

10 AOut1_1_84# 2 yes 27 AOut1_1_84# 1 yes
AOut1_1_83# 1 yes AOut1_1_85# 1 yes

11 AOut1_1_82# 1 yes 28 AOut1_1_77# 3 no
AOut1_1_83# 2 yes AOut1_1_78# 1 no

12 AOut1_1_86# 2 yes 29 AOut1_1_85# 1 yes
AOut1_1_88# 1 yes AOut1_1_86# 1 yes
AOut1_1_87# 1 yes AOut1_1_84# 2 yes

13 AOut1_1_87# 1 yes 30 AOut1_1_82# 1 yes
AOut1_1_86# 1 yes AOut1_1_81# 1 yes

14 AOut1_1_86# 2 yes 31 AOut1_1_85# 1 yes
AOut1_1_87# 1 yes AOut1_1_86# 1 yes

15 AOut1_1_85# 2 yes 32 AOut1_1_83# 1 yes
AOut1_1_86# 2 yes AOut1_1_85# 1 yes

16 AOut1_1_84# 1 yes 33 AOut1_1_84# 1 yes
AOut1_1_83# 1 yes AOut1_1_83# 1 yes
AOut1_1_85# 1 yes AOut1_1_85# 2 yes
AOut1_1_82# 1 yes

17 AOut1_1_83# 1 yes
AOut1_1_85# 7 yes
AOut1_1_84# 3 yes
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