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Abstract—This paper proposes a new feature vector for machine
learning-based hotspot detection in lithography for Large-Scale
Integration (LSI) fabrication, which incorporates the optical
characteristics of exposure systems. Unlike existing features that
focus only on local layout sub-patterns, the proposed feature
takes into account optical behavior essential to accurate pattern
transfer. In LSI fabrication, a hotspot is a region in the layout
where an undesired open or short circuit may occur, even if
the design rules are satisfied. Hotspots can significantly reduce
manufacturing yield, and the cost of reworking after fabrication
begins is substantial. Therefore, it is crucial to detect and remove
hotspots at the pre-fabrication stage. Although several feature
vectors have been developed for hotspot detection, most of them
ignore the optical system’s influence, which is critical in the
lithography process. By incorporating optical characteristics, our
proposed feature aims to improve detection accuracy and reduce
the need for time-consuming lithography simulations.
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I. INTRODUCTION

In the lithography process, which is one of the key steps in
semiconductor manufacturing, laser light from the exposure
system is projected onto a photomask, which serves as the
master template of circuit patterns, and the pattern is transferred
onto a semiconductor wafer coated with a photosensitive
material. In this process, due to optical diffraction, some areas
may fail to be correctly transferred even if they comply with
the design rules. Such regions are referred to as hotspots. Since
photomask fabrication is highly expensive, it is necessary to
detect these hotspots prior to manufacturing and revise the
layout patterns accordingly.

Lithography simulation, which computes phenomena, such as
light diffraction and the behavior of the photosensitive material
on the wafer, is a common method used to detect hotspots
before mask or product fabrication. However, applying this
simulation across the entire layout is extremely time-consuming.
If hotspots can be rapidly detected through methods other than
simulation, allowing prompt initiation of pattern revision, the
overall cost in terms of simulation coverage, frequency, and
runtime can be significantly reduced.

Therefore, several studies have explored hotspot detection
using machine learning techniques [1]-[5]. These methods train
classifiers using known hotspot and non-hotspot layout patterns
and detect unseen hotspot patterns based on learned features.
However, false detections still occur, and higher detection
accuracy is desired. In machine learning-based approaches,

the design of features that effectively capture characteristics
strongly related to hotspots is crucial. A widely used pixel-
based feature is Density Based Layout Feature (DBLF) [1][2],
which represents the local wiring density in layout patterns.
Other proposed pixel-based features include Histogram of
Oriented Light Propagation (HOLP) [3], which approximates
optical diffraction by smoothing layout images, and Line Width
and Separation (LiWS) [6][7], which considers wire widths
and the spacing between wires in the layout.

While several features have been proposed for machine
learning-based hotspot detection, actual hotspots vary depend-
ing on the behavior of light on the wafer surface, which in
turn is influenced by the optical characteristics of the exposure
system. Since hotspots are caused by light diffraction from
the exposure source to the wafer, it is important to consider
the optical characteristics (i.e., source characteristics) of the
exposure system. These source characteristics are indispensable
in lithography simulation and are already known to those who
perform hotspot detection. Thus, this information is potentially
applicable outside simulation-based approaches.

Some studies do make use of source characteristics for
hotspot determination [4][8], but such approaches remain close
to machine learning-based lithography simulation. For example,
the method from [4] is also regarded as considering optical
characteristics, but it is based on the idea of training a model
using intensity images generated by lithography simulation.
Therefore, it does not directly incorporate the optical parameters
of the exposure system into the learning process.

In this study, we propose a new feature that considers
the optical characteristics of the exposure system, which
have not been taken into account in existing features. This
work is an extended and revised version of our previously
published technical report [9]. Because hotspots are induced
by diffraction of light as it travels from the light source to
the wafer, incorporating source characteristics is essential.
By leveraging information already available from lithography
simulators, our method enables effective hotspot detection in a
machine learning framework. Through comparative experiments
with existing features, we confirmed that our proposed feature
improves detection accuracy. Note that the effectiveness of the
proposed feature may depend on the availability and precision
of source characteristics provided by the exposure system.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of lithography, hotspots, and
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machine learning. Section III defines the hotspot detection
problem and describes machine learning-based hotspot detec-
tion methods and existing features. Section IV explains the
proposed feature incorporating source characteristics. Section V
presents the experimental results, and Section VI concludes
the paper.

II. PRELIMINARIES

In this section, we first explain the mechanism of lithography
and the concept of lithography hotspots. We then describe
the machine learning framework used for hotspot detection,
focusing on supervised learning for classification, and the
process of feature extraction required when applying machine
learning.

A. Mechanism of Lithography

Lithography is the pattern transfer process in semiconductor
fabrication [10]. In lithography, ultraviolet (UV) light is
projected onto a photomask, which serves as the master
template for semiconductor chips, and the circuit pattern
(layout pattern) is transferred onto a silicon wafer through
the photomask, as illustrated in Figure 1.
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Figure 1. Lithography

B. Lithography Hotspots

With the continued scaling of semiconductor devices, it has
become increasingly difficult to accurately transfer designed
layout patterns. Examples of degraded pattern fidelity include
corner rounding, necking, and line-end shortening, which are
caused by Optical Proximity Effects (OPE). To improve the
fidelity of pattern transfer, technologies, such as Optical Prox-
imity Correction (OPC) and Sub-Resolution Assist Features
(SRAF), have been developed [11]. However, patterns that
cannot be accurately transferred still emerge, even with these
technologies. Such patterns are referred to as hotspots, and
they are one of the factors that degrade yield and reliability of
semiconductor products. Figure 2 shows an example of short
and open circuits caused by lithography.

Because photomasks, which serve as the masters for layout
patterns, are extremely expensive, it is essential to eliminate
hotspots at the design stage to avoid costly rework.

Pattern
Transfer

—

Open Circuit

Figure 2. Short and open circuits caused by lithography

C. Optical Simulation for Hotspot Detection

In lithography, UV light is projected onto a photomask,
which acts as the master template for semiconductor chips, and
the pattern is transferred onto the silicon wafer through the
photomask.

In optical simulation for lithography, the exposure process is
simulated by calculating the light intensity distribution as the
light emitted from the source passes through the photomask
and projection lens system and reaches the photoresist. In this
simulation, the optical characteristics of the exposure system
(i.e., source characteristics) are represented by a matrix called
the Sum of Coherent Systems (SOCS) kernel [12]. The post-
exposure light intensity distribution is computed as the squared
magnitude of the convolution between the SOCS kernel in the
spatial domain and the layout pattern.

Let ¢; be the j-th kernel matrix and M the layout pattern
matrix. The resulting light intensity distribution I is given by:

I(z,y) = > ojl(¢; * M)(x,9) ], (1)
j=1

where the symbol * denotes convolution and o; is a constant.

D. Machine Learning and Feature Extraction

It is time-consuming and labor-intensive for humans to
analyze large amounts of data and derive rules or conditions
related to specific phenomena. To address this, machine
learning [13] has attracted attention as a technique that enables
computers to learn from large-scale data and automatically
construct models or algorithms for tasks, such as classification
and prediction.

Machine learning can be categorized into supervised and un-
supervised learning. Supervised learning involves estimating a
mapping function based on given input data and corresponding
labeled outputs. Among supervised learning tasks, classification
aims to predict the class label of a given instance.

In classification problems, raw data alone often fails to
achieve sufficient prediction accuracy. To address this, relevant
elements are extracted from raw data in a process known as
feature extraction. If two such elements are denoted as = and
y, then the vector f = (x,y) is referred to as a feature vector.
In this paper, we refer to both the feature vector itself and its
components as features.
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III. HOTSPOT DETECTION USING MACHINE LEARNING

In this section, we define the hotspot detection problem
and describe a method for detecting hotspots using machine
learning. We also introduce two widely used features: DBLF,
which considers layout density, and HOLP, which approximates
optical diffraction effects.

A. Hotspot Detection Problem

A hotspot refers to a pattern in lithography that poses a risk
of causing an open or short circuit. Whether a given pattern is a
hotspot can only be determined through lithography simulation
or after actual semiconductor fabrication. The hotspot detection
problem is to identify such hotspot patterns from a layout, based
on known hotspot and non-hotspot examples.

B. Detection Method Using Machine Learning

Hotspot detection using machine learning consists of two
main phases: the training phase and the testing phase. In this
study, layout patterns are assumed to be represented as bitmap
images, where wiring areas are white (pixel value: 1) and
empty areas are black (pixel value: 0). The flow of machine
learning-based hotspot detection is illustrated in Figure 3.
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Figure 3. Flow of hotspot detection using machine learning [7]

In the training phase, as shown in Figure 3(a), a set of
known hotspot and non-hotspot pattern images are provided as
training data. Feature extraction is performed on each image
to obtain features (Figure 3(b)). These features, along with the
corresponding class labels indicating whether the image is a
Hotspot (HS) or Non-Hotspot (N-HS), are input to a machine
learning algorithm. The model is then trained to construct a
hotspot classifier (Figure 3(c)).

In the testing phase, as shown in Figure 3(d), an image of
the entire layout is given as test data. A region of interest
used to determine whether a hotspot is present is referred
to as a detection window. The detection window is scanned
over the layout image (as in Figure 3(c)), and for each region
corresponding to the detection window, feature extraction is
performed and the extracted features are input into the trained
classifier. The classifier outputs predicted labels (Figure 3(f)),
enabling hotspot detection.

C. Existing Feature: DBLF

The feature DBLF considers the density of wiring in
the layout, i.e., the proportion of area occupied by wires.
The procedure to compute DBLF is as follows. The image
corresponding to a detection window of 7 x ¢ pixels is divided
into N x N subregions, each consisting of k x k pixels
(Figure 4). These subregions are referred to as local regions.

Divisions
N=5

Subregion
k x k [px]

Divide a Region into
N x N Subregions

Figure 4. Division of image and local regions

For each local region s;, the wire area ratio d; is calculated.
The DBLF feature is then represented as the vector of these
values, as shown in (2):

FDBLF: (d17d2,...,dN2>. (2)

D. Existing Feature: HOLP

The feature HOLP approximates the effect of optical
diffraction in lithography by smoothing layout images.

First, a Gaussian filter is applied to the image M correspond-
ing to a detection window to produce a smoothed image Mg
as shown in Figure 5(a). For each local region of My, intensity
gradients are computed, as illustrated in Figure 5(b), and a
histogram is constructed using the intensity gradients. Gradient

Divisions
N=5

(b) Intensity Gradient
in Subregion

(a) Smoothed Layout Image
Figure 5. Gradient computation from smoothed image [3]

angles are quantized into bins as shown in Figure 6(a). In the
example with 8 bins, the illustrated gradient falls into bin 4,
and weighted voting is applied using gradient magnitude as the
weight, as shown in Figure 6(b). Next, each local histogram is
normalized so that the sum of all bin values equals 1. For a
local region s;, the histogram with B bins is represented as a
vector (g4, gb,...,g%). The overall HOLP feature is obtained
by concatenating the histograms from all local regions, as
shown in (3):

2 2
FHOLP:(g%ag%7vng,ag{Vvagg ) (3)
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Figure 6. Construction of gradient histograms [3]

IV. PROPOSED FEATURE

Since hotspots are caused by optical effects as light travels
from the exposure system’s light source to the wafer, it is

important to consider information about the optical system.

Therefore, we propose a novel feature vector, named Optical
System-Aware Mapping (OSAM), which incorporates the
optical characteristics of the exposure system (hereafter, source
characteristics).

A. Feature Considering Optical System Characteristics

As the source characteristics can be represented using SOCS
kernels, we propose a feature based on these kernels. The
proposed feature vector is derived from a simplified light
intensity distribution calculated using reduced versions of both
the mask pattern and the kernels, as well as by truncating the
number of kernel components. By reducing the mask and kernel
sizes in advance and limiting the kernel order, the computation
time becomes significantly shorter compared to full lithography
simulations.

B. Computation Procedure of the Proposed Feature

The computation procedure of the proposed feature is
described below. We assume that the pattern image and the
kernels have the same size.

First, the mask pattern image M is divided into N x N
regions, where N is a user-defined constant. Next, for each
k x k-pixel local region s; in the pattern image, the proportion
of area occupied by wires is calculated as d;, and a new N x N
matrix M’ is formed using these values in the same way as in
DBLEF, as illustrated in Figure 7.
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Figure 7. Downsampling of pattern image

Then, the kernels ¢; (j =1,2,...n/) in the spatial domain
are divided into & x k-pixel local regions such that the center

of the central local region aligns with the center of the kernels,
where n/(< n) is a user-defined integer constant and n is
the original number of SOCS kernels used in the full optical
simulation.

That is, to avoid splitting the central part of the kernels, each
kernel is divided into (N — 1) x (N — 1) local regions when
N is even, and into N x N regions when N is odd. When N
is even, the peripheral areas of the kernels are ignored.

For each kernel, the average value e; of the pixels in each
local region s; is calculated, forming a matrix qﬁ;- of size
(N—=1)x (N —1) or N x N depending on whether N is
even or odd, as shown in Figure 8.
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Figure 8. Downsampling of kernel

The simplified light intensity distribution I’ is calculated
using the following equation:

I'(x,y) = ojl(¢) M) (x, ). 4)
j=1

The central N x N submatrix C from I’ is then flattened
to form the proposed feature vector Fosam, as shown in (5):

Fosam = (C1,1,Ci2,-..,Cnov—1,Cn,N)- ®)

Note that C can be obtained without computing the full
convolution results, by restricting the computation to the region
of interest.

The overall flow of computing the proposed feature is
illustrated in Figure 9.
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Figure 9. Flow of proposed feature computation

Kernel ¢;

In our experiments, the proposed feature OSAM is used in
combination with DBLF to enhance detection performance.

V. EXPERIMENTAL RESULTS

In this section, we compare the hotspot detection accuracy
between the existing feature DBLF and the proposed feature
that considers optical system characteristics. Experiments
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were conducted on a Linux server equipped with an Intel

Xeon E5-2620 v4 2.2GHz processor and 128GB of memory.

The experimental programs were implemented in Python
3.6.10, using OpenCV, Cython, scikit-learn, and TensorFlow
as libraries.

To evaluate the proposed method, a dataset with specified
optical conditions is required. We used data relabeled using an
optical simulator [14] based on the ICCAD 2012 CAD contest
dataset [10], as shown in Table I.

TABLE I. RELABELED ICCAD 2012 CONTEST DATASET

Circuit [[ #Samples [ Process | #HS | #N-HS

datal 545 32nm 246 299
data2 4644 28nm | 1417 3227
data3 5349 28nm | 2930 2419
datad 3563 28nm 1100 2463
data5 2152 28nm 625 1527

A. Comparison Using AdaBoost

To compare the proposed feature with DBLF, we used
AdaBoost [15], a commonly used machine learning algorithm
in feature-based hotspot detection. The implementation used
scikit-learn, and decision trees were used as weak learners in
the ensemble model.

To focus on the fundamental performance of each feature,
we evaluated hotspot classification (not full detection). In the
experiments, 70% of the HS and N-HS regions in each dataset
were used for training, and the remaining 30% were used for
testing. The classification results were categorized into four
types, as shown in Table II.

TABLE II. CLASSIFICATION ACCURACY CATEGORIES

i Hotspot [

True Positive (TP)
False Negative (FN)

Non-hotspot

False Positive (FP)
True Negative (TN)

Predicted as Hotspot
Predicted as Non-hotspot

As an evaluation metric, we used the F1 score, which is the
harmonic mean of Precision and Recall, defined as follows:

.. TP
Precision = o TP ©)
TP
Recall = TP TN 7
F1_score =2 x Precision x Recall )

Precision + Recall

For DBLF, the pattern image was divided into N = 10,
resulting in a 100-dimensional feature vector. For the proposed
feature, the pattern was also divided with N = 10, while the
kernel was divided with N — 1 =9 to align the region center.
To match region sizes, the outer region of the kernel was
excluded. Although the optical simulator’s kernel order n was
24, we set n’ = 1 for the proposed feature. Thus, the proposed
feature had 100 dimensions, and since it was concatenated
with DBLF, the total dimensionality became 100 + 100 = 200.

To ensure a fair comparison, we explored all 225 combi-
nations of the following hyperparameters for each feature,
selecting those that yielded the highest F1 scores:

o Number of weak learners: 2, 4, 6, ..., 1000
o Maximum tree depth: 2, 3, 4
o Learning rate: 0.95, 0.96, 0.97, 0.98, 0.99

These hyperparameters follow prior studies [7]. Each dataset
was tested 5 times, and the average F1 score was computed.
The best and average F1 scores across all combinations are
shown in Table III. In all tables presented in this section, PROP
denotes our proposed feature, OSAM.

TABLE III. F1 SCORES WITH ALL PARAMETER COMBINATIONS (DBLF

10 x 10)
Best Average
Dataset | DBLF | PROP (Ratio) DBLF | PROP (Ratio)
datal 0.8640 | 0.8769  (1.0149) | 0.8111 | 0.8271  (1.0197)
data2 0.6199 | 0.6090  (0.9824) | 0.5332 | 0.5370  (1.0071)
data3 0.8399 | 0.8456  (1.0067) | 0.7907 | 0.8171  (1.0334)
data4 0.8281 | 0.8240  (0.9950) | 0.6672 | 0.7475  (1.1204)
data5 0.7993 | 0.8260  (1.0334) | 0.6544 | 0.7515  (1.1423)
Average | 0.7902 | 0.7963  (1.0077) | 0.6913 | 0.7360  (1.0647)

To compare under more similar dimensionality, we also
tested DBLF with 14 x 14 = 196 dimensions. Results are
shown in Table IV.

TABLE IV. F1 SCORES WITH ALL PARAMETER COMBINATIONS (DBLF

14 x 14)
Best Average
Dataset | DBLF | PROP (Ratio) DBLF | PROP (Ratio)
datal 0.8711 | 0.8769  (1.0067) | 0.8111 | 0.8271  (1.0197)
data2 0.6247 | 0.6090  (0.9749) | 0.5332 | 0.5370  (1.0071)
data3 0.8279 | 0.8456  (1.0214) | 0.7907 | 0.8171  (1.0334)
data4 0.8306 | 0.8240  (0.9921) | 0.6672 | 0.7475  (1.1204)
data5 0.8191 | 0.8260  (1.0084) | 0.6543 | 0.7515  (1.1423)
Average | 0.7947 | 0.7963  (1.0020) | 0.6913 | 0.7360  (1.0647)

As shown in Table III, the proposed feature performed better
than DBLF in both best and average F1 scores. Computation
times were comparable. Table IV further shows that even
with nearly equal dimensionality, the proposed feature still
performed better than DBLF. These results indicate the ef-
fectiveness of incorporating source characteristics in hotspot
detection.

We also investigated whether the proposed feature can be
further improved by maximizing the optical detail, ignoring
computation time. We used simulation images directly as
feature vectors, resizing them to control dimensionality. These
were concatenated with DBLF as in the proposed method.
Results are shown in Table V.

TABLE V. F1 SCORES USING SIMULATION IMAGES AS FEATURES

Dataset | 10 x 10 | 15 x 15| 20 x 20 | 30 x 30 | 50 x 50 | 100 x 100
datal 0.8839 | 0.8885 | 0.8849 | 0.8848 | 0.8772 0.8771
data2 | 0.7164 | 0.7284 | 0.7176 | 0.7003 | 0.6797 0.6768
data3 0.8735 | 0.8823 | 0.8726 | 0.8688 | 0.8665 0.8617
data4 | 0.8611 | 0.8987 | 0.8864 | 0.8823 | 0.8811 0.8714
data5 0.8441 | 0.8613 | 0.8329 | 0.8372 | 0.8267 0.8225

Average | 0.8358 | 0.8518 | 0.8389 | 0.8347 | 0.8263 0.8219

These results suggest that while the proposed feature can
be further improved by adjusting kernel order or partition size,
its performance is already strong at 10 x 10. Unexpectedly,
the best score occurred at 15 x 15, not at higher resolutions,
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indicating that the relabeled dataset is challenging, and that
AdaBoost may perform better with lower-dimensional input.
Similar findings have been reported in [16].

B. Comparison Using CNN

Based on the previous findings, we also performed experi-
ments using Convolutional Neural Networks (CNNs) instead
of AdaBoost. We used TensorFlow for implementation.

We compared DBLF and the proposed feature using the
same parameter (N = 10). The CNN consisted of five layers:
conv1-pooll-conv2-pool2-dense. Each convolutional layer used
ReLU activation, with filters of size 3x3 and stride 1. The
number of filters was 16 in convl and 32 in conv2. Each
pooling layer performed max pooling with a 2x2 filter. We
experimented with all combinations of epochs {10, 20, 30, 40,
50} and batch sizes {16, 32, 64, 128, 256}. The best F1 scores
are shown in Table VI.

TABLE VI. BEST F1 SCORES USING CNN (FEATURE S1ZE 10 x 10)

Dataset | DBLF | PROP (Ratio)
datal 0.8774 | 0.8662 (0.9872)
data2 0.6552 | 0.6714  (1.0247)
data3 0.8531 | 0.8697 (1.0195)
data4 0.8471 | 0.8405 (0.9922)
data5 0.7880 | 0.8126  (1.0312)

Average | 0.8042 | 0.8120 (1.0098)

From Tables III and VI, both features improved in F1 score
using CNN. From Table VI, the proposed feature performed
better than DBLF by approximately 1%, suggesting its potential
effectiveness. We further experimented using simulation images
as features in CNN, comparing 10 x 10 and 20 x 20 sizes.
Results are shown in Table VII.

TABLE VII. BEST F1 SCORES USING CNN WITH DIFFERENT FEATURE

SI1ZES
Feature Size 10 x 10 Feature Size 20 x 20
Dataset DBLF Sim. (Ratio) DBLF Sim. (Ratio)
datal 0.8774 | 0.8774  (1.0000) | 0.8533 | 0.8701 (1.0197)
data2 0.6552 | 0.6583  (1.0047) | 0.6910 | 0.7477  (1.0821)
data3 0.8531 | 0.8659  (1.0150) | 0.8755 | 0.8972  (1.0248)
datad 0.8471 | 0.8513  (1.0050) | 0.8649 | 0.9356  (1.0817)
data5 0.7880 | 0.8486  (1.0769) | 0.8563 | 0.9065  (1.0586)
Average | 0.8042 | 0.8203  (1.0200) | 0.8282 | 0.8714  (1.0522)

These results indicate that the proposed feature has room for
improvement, but already performs well at 10 x 10, supporting
the practicality and effectiveness of our approach.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a novel feature for machine
learning-based hotspot detection that incorporates the optical
characteristics of the exposure system, which are typically over-
looked in existing approaches. Experimental comparisons with
existing features showed that the proposed feature consistently
improved detection performance.

As future work, we aim to improve the runtime efficiency
of the proposed approach, for example, by performing convo-
lutions in the frequency domain.
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