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Abstract—This work discusses adaptive designs of decoders
for several forward error correction codes. In the first scenario,
decoders capable of decoding the codes with different parameters
belonging to the same family are introduced. The results suggest,
that the hardware overhead caused by the additional flexibility
in most cases is as low as 5-10% additional silicon footprint
compared to the implementation based on the fixed code
parameters. In the second scenario, reconfigurable designs of
multi-family decoders are discussed. Since some parts of the
data-path and internal memory can be reused for different
decoders, silicon area savings of more than 40 % are achievable
compared to the overall chip area costs of the individual decoder
implementation per code family. The overall usefulness of such
reconfigurable decoder designs depends on the application case,
for instance, the throughput requirements or the necessity to
process data streams encoded with different codes in parallel.
The figures reported herein summarize and extend some previous
work known from literature, as well as the research carried out
by the author.
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I. INTRODUCTION AND RELATED WORK

Most of the modern digital communication and data storage
standards enforce the use of different error correcting codes.
Since in most cases the error correction process is carried out
by the receiver — without resending or rereading the data packet
— these codes are usually referred to as Forward Error Correcting
(FEC) codes and the respective hard- or software units are
called FEC encoders and decoders. The FEC codes most widely
used nowadays are belonging to one of the following code
families: convolutional codes, Reed-Solomon (RS) codes, Low-
Density Parity-Check (LDPC) codes, and turbo codes. Some
standards specify varying codes for different data rates or
combine codes from different families within one run to address
specific channel properties like cross-talk and fading improving
the overall bit error rate.

Over the last few years, mobile devices got significantly more
flexible. Modern mobile phones and other wearable devices
support numerous communication interfaces providing the user
with almost unlimited connectivity. Even the low-price devices
nowadays support wireless LAN, different mobile internet
standards, and Bluetooth, just to name a few. At least some of
them rely on the same kind of FEC algorithms, although the
specific parameters like code generator polynomials, coding
rates, constraint length, block sizes, and so on may vary even
within the same communication standard. To address this issue,
adaptive Viterbi and RS decoders will be discussed below and
compared to the straight-forward implementation for the single

code instance. Such comparison will provide a glimpse of the
overhead introduced by the additional flexibility.

On the other side, some computations carried out during the
decoding process of different code families are quite similar.
In addition, some data need to be temporarily stored either
throughout the complete decoding procedure or, in case of
LDPC and turbo codes, between adjacent decoding iterations
resulting in specific memory requirements. This poses the
question, if at least some parts of the silicon dedicated to
the data-path and memory can be reused among different
standards reducing the silicon footprint and improving the
power balance compared to the straight-forward implementation
of every single decoder. This question will be addressed in the
discussion of combined Viterbi/turbo and LDPC/turbo decoders.

The general applicability and advantages of the adaptive
FEC decoder implementation depend on the use case, e.g., the
necessity to process several data streams encoded with the
same code or with different codes in parallel or the option to
switch between different data rates. This should be kept in
mind during the discussion of the different design options.

In principle, FEC decoding algorithms can be implemented
both in software and hardware. However, given the fact, that
most of them are quite computationally intensive, software-
based solutions are usually lagging behind the high throughput
requirements imposed by the majority of contemporary com-
munication and data storage standards. For instance, iterative
decoding involved in the decoding process of turbo and LDPC
codes may require as many as 1 500 machine instructions per bit
(or even more depending on the number of decoding iterations)
[1]. Running such decoders at the data rates of several hundreds
of megabits per second requires computational power which is
beyond the capabilities of even most powerful microprocessors.
For this reason, the scope of this paper is limited to the
dedicated hardware architectures, i.e., direct mapping of the
FEC decoders to silicon. Alternative approaches which are less
flexible than the software solution but still offer at least some
properties of the architectures built around the instruction set
paradigm are Application-Specific Instruction-set Processors
(ASIP) [2][3] and Networks-on-Chip (NoC) [4]. These are
beyond the scope of this contribution. A comprehensive
overview concerning the scalability issues and multi-standard
capabilities of different FEC decoders is provided in [1][5].
Based upon these studies, some of the results are re-evaluated,
supported by new findings and extended herein.

The rest of this paper is organized as follows. Section II
introduces an adaptive implementation of the Viterbi decoder
and compares several designs known from literature. In Sec-
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Figure 1. Simple convolutional encoder.

tion III, the additional costs of a reconfigurable architecture for
a Reed-Solomon decoder are discussed. Section IV summarizes
the general options of combining decoders for different code
families within one design and analyzes the architectures of
reconfigurable Viterbi-turbo and LDPC-turbo decoders in more
detail. Finally, Section V provides a summary of this work
and draws some conclusions concerning adaptive and multi-
family FEC decoder implementation showing some directions
for future research.

Due to the limited space, the detailed description of the cod-
ing schemes and decoder architectures is omitted. Instead, the
key ideas are summarized and some references for the readers
unfamiliar with the matter are provided where appropriate.

II. VITERBI DECODERS

Convolutional codes were introduced in 1955 [6] and became
one the most widely applied FEC code family. The incoming
data stream is stored in a shift register, from which several
bits are combined using an XOR operator. The number of
delay stages in the shift register including the input of the
first delay stage is referred to as constraint length K. Larger
K values provide better error correction capabilities (at the
cost of the increasing decoder complexity). Constraint lengths
between 5 and 11 are common. Particular XOR operators are
selected to produce the output data streams. The result is the
discrete convolution of the input data with encoder’s impulse
responses in the time domain, hence the name of the code [7,
pp. 455-456]. The number n of the output data streams defines
the code rate 1/n. For the codes used in most communication
standards 2 to 4 output bits are produced for every input bit,
so the code rate R lies between 1/2 and 1/4.

The particular codes differ depending on which bits from
the sequence stored in the shift register are involved in the
XOR calculation. This information is provided in the form of
the so-called generator polynomials g, one for every output.
Figure 1 shows an example of a simple convolutional encoder
with K = 3, R = 1/2, g = 011 and g2 = 111. As can
be seen, the generator polynomials are often specified by the
binary or octal representation of their coefficients. The encoder
is a Finite-State Machine (FSM) whose output depends on g.

The decoding process is based on the maximum-likelihood
principle. Decoder’s task is to find the state transition sequence,
which encoder FSM most likely underwent based on its output
sequence, which in most cases is corrupted by noise during the
transmission. Afterwards, the state transitions can be mapped to

the corresponding input data sequence. The most widely used
decoding algorithm for convolutional codes is based on dynamic
programming and was introduces in 1967 by Andrew Viterbi [8].
In the first stage of the decoding process, every received symbol
is compared to all legal output symbols of the encoder. The
result is called Branch Metric (BM). In the simplest case of the
so-called hard-input decoding, BM is the Hamming distance.
Due to modulation and analog-digital conversion the input
symbols are usually integer numbers represented by several
bits. This case is referred to as soft-input decoding, where
BM is represented by other measures like squared euclidean
distance. The number of BM values to be calculated depends
on the code rate since every additional output bit increases the
number of the legal output symbols by the factor of two and
every received symbol needs to be compared with all of them.
In the second stage, branch metrics are used to calculate
the Path Metrics (PM). One PM needs to be calculated for
every state of the encoder. All path metrics are set to zero
in the beginning and updated with every processed symbol.
The corresponding operation is called Add-Compare-Select
(ACS) and is the computational core of the decoding process.
Every ACS unit consists of two adders, one comparator and
one multiplexer. In addition, one register is required per unit to
store the actual PM value. The number of ACS units is equal
to 2K-1 je., it increases exponentially with the constraint
length of the code. The result of the ACS calculation is the
new path metric and the binary decision, which state transition
the encoder underwent while the corresponding output symbol
was generated. This decision is stored for every processed
symbol and every ACS unit in form of a single bit called
decision bit. The decision bits represent several paths through
the possible state transition sequences of the encoder with every
path corresponding to the certain input sequence. It can be
shown, that under normal conditions all paths merge to a single
one after a certain number of steps, which ist called Trace-
Back Depth (TBD). This path represents the most probable
sequence of the encoder’s state transitions. As a consequence,
decoder needs to store the decision bits for at least the number
of symbols equal to TBD. Given the fact, that one decision
bit is produced by every ACS unit, the memory capacity for a
single trace-back run equals to TBDx2%5~1. As the decision
bits cannot be overwritten during the trace-back, this amount
needs to be at least doubled. The exact value of the TBD
depends on the channel conditions. For AGWN channels TBD
values of 5 x K are sufficient, but they may be higher than
20 x K for channels with fading and multi-path propagation.
Trace-back is the final stage of the decoding process, in
which the decision bits corresponding to the most probable
path are traversed and the corresponding input bits are stored in
a Last-In First-Out (LIFO) buffer. Finally, the LIFO memory is
read to produce the decoded input sequence (which in optimal
case will be the same as the original input to the encoder).
A Viterbi decoder for a specific convolutional code has
fixed design parameters like the number of the BM and the
ACS units, TBD, and so on. It is quite different in the case
of the adaptive decoder. Figure 2 shows the ACS calculation
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Figure 2. Path metric calculation for a reconfigurable Viterbi decoder.

unit for a decoder which can decode the code produced by
the encoder in Figure 1, as well as the code generated by
g1 = 101 and go = 111. While for each particular code
the interconnect between the BM calculation outputs and PM
calculation inputs is fixed, the adaptive decoder needs to switch
between two different patterns depending on the code to be
decoded. This functionality is realized by the multiplexers
placed at the inputs of the particular ACS units. If the decoder
has to process codes with different constraint lengths, additional
flexibility is required in the interconnect pattern between the
registers storing the actual PM values and the inputs of the
ACS units as well. This means more and larger multiplexers
at the inputs reducing the clock frequency and the throughput.
A detailed design of the interconnect network for an adaptable
Viterbi Decoder including the particular interconnect patterns
for different settings is described in [9].

In general, varying the constraint length and/or the generator
polynomials has the strongest impact on the additional chip area
and the critical path of the decoder. For the trace-back stage,
the memory architecture has to be calculated for the worst case,
i.e., the largest K and TBD values. In addition, the addressing
scheme has to be adapted to every single case, which imposes
the need for programmable address counters. Compared to other
modifications this overhead is almost neglectable. Figure 3
shows the trace-back unit of the reconfigurable Viterbi decoder
for variable values of the constraint length. The building blocks
affected by the reconfigurable nature of the design are shaded.
In principle, the address generators could be dimensioned
for the worst case, just like the memories. However, larger
TBD increases the latency of the decoder, which would be
an unnecessary overhead for smaller K values. At the same
time, making the address generators pre-loadable and scalable
adds almost nothing to the overall silicon footprint of the
decoder. The trace forward block depicted in Figure 3 is used
to calculate the initial state of the new trace-back cycle and is

K
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Figure 3. Trace back unit for a reconfigurable Viterbi decoder with clock and
reset signals not shown for the sake of clarity.

TABLE I. COMPARISON OF ADAPTABLE AND SINGLE-CODE VITERBI
DECODERS (b REFERS TO THE INPUT BIT-WIDTH).

Architecture [ Metric | Reference | Result
1K =3...7, ;‘rle‘z"" K=17gfixed | 42,9%
iable, b fixed
g vanabie xe throughput | K =7, g fixed —1,5%
VITURBO [12] silicon K =9, +9%
K=3...9, area g variable
g variable, b fixed max. clock | K =9, —30%
frequency g variable

[13] K € {7,9}, silicon K =09, g fixed overhead is
g according to area (CDMAZ2000) neglectable
EDGE, CMDA2000 critical K =9, g fixed +4%
and WCDMA, b fixed | path (CDMAZ2000)
[14] K =3...11, silicon K=11,n =4, 50. 1
g variable, area b =5, g fixed +50,1%
n=2...4 K=11,n=4

’ th hput ’ * | —26,1
b=1...5 TOUBIPUL |y 5 g fixed 6,1%

described in detail in [10]. One memory block is used to store
the actual decision bits (write access) while the other is used
to trace back the decision bits from the previous cycle (read
access). The memories switch their roles after every cycle,
which explains the need for the multiplexer at their read ports.

Table I summarizes the figures of different adaptable Viterbi
decoder designs. The major findings can be generalized as
follows:

o The overhead increases with the degree of flexibility.
The Viterbi decoders designed to support a (small) fixed
amount of codes introduce the least — in some cases even
neglectable — overhead. In contrast, the full flexibility
regarding the constraint length, the code rate as well as
the generator polynomials requires up to 50 % more silicon
area and reduces the throughput by about 26 %. Although
looking diminishing at the first glance, it may still be
quite a good price to pay considering the alternative to
implement a dedicated decoder for every single code.
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o Varying the constraint length K has the highest impact
on the area overhead of the adaptive Viterbi decoder
implementation. Two factors can be identified as being
responsible for this matter. On one hand, the number of
ACS units increases exponentially with /', which means,
the number and the size of the multiplexers required
to implement different interconnect patterns increases
accordingly. On the other hand, the TBD value grows
linearly with K, so the memory depth of the trace-back
grows accordingly. At the same time, the memory width
grows exponentially with K. These consequences become
crucial for higher values of K: the area overhead for
K =9 is about 9 %, while for K = 11 it is more than
50 %. For Viterbi decoders with smaller constraint lengths
the area overhead is almost neglectable.

ITI. REED-SOLOMON DECODERS

The basic idea of the error correcting linear cyclic codes
nowadays knows as Reed-Solomon codes can be traced back
to 1952 [15][16]. In its current form the codes were introduced
in the seminal paper by Irving S. Reed and Gustave Solomon,
hence the name [17]. RS codes are defined over a finite field
GF(¢™), which is an extension field of GF(q), where ¢ is a
prime number and m is a natural number different from zero.
For all practically applied codes ¢ = 2 is chosen, which means,
that the number of the elements in the field is a power of two.
Binary representation of the elements of GF(2") requires m
bits per element. This is the reason, why almost all RS codes
used in communication and storage systems are defined over
GF(2%): each symbol can be encoded by exactly one byte. In
contrast to the most other code families, the error correcting
properties of the RS codes are defined symbol-wise, i.e., it does
not matter, if a single bit or any other number of bits within
one symbol are corrupted — the decoder treats it as a single
symbol error. This explains, why RS codes are very powerful
at correcting burst errors. A (255,239) RS code has the block
size of 255 bytes, with 239 bytes of original message data and
2t = 255 — 239 = 16 bytes of the checksum added during
encoding. ¢t = 16/2 = 8 is the number of corrupted symbols
which can be corrected by the code. If 8 adjacent symbols (64
adjacent bits in the worst case) would be corrupted during the
transmission, the decoder would still be able to correct all of
them. The general notation used to specify RS codes is (n, k),
where n is the block size and k is the original message size
before encoding (both specified in symbols of m bits width).
As stated in the example above n — k = 2t, where t is the
number of correctable symbol errors and R = k/n is the code
rate.

The ¢ parameter can be chosen depending on the required
error correction capacity of the code. Once fixed, it defines the
generator polynomial for the code, which has the degree 2t:

g(x) =go+qix+ gr? + .. g2 42 (1)

The coefficients go, . . ., go;—1 are all elements of GF(2™) and
the polynomial itself is defined in such a way, that its 2¢ roots
correspond to the 2t consecutive powers of the single element

Controller

Clkr r r r

) ) m(x) 3

Figure 4. Reed-Solomon encoder for a (7,3) code over GF(23).

of GF(2™). For practical reasons, usually the primitive element
of the extension field GF(¢™) is chosen as the first root (being
the generator of the multiplicative group of this field).

The encoding procedure appends the rest p(z) of the division
of the polynomial representing the original message m(z)
shifted to the left by n—k symbols by the generator polynomial:

z""*m(z) = q(z)g(z) + p(2), 2
which is equivalent to
p(z) = 2" "m(z) mod g(x). (3)

This operation can be easily carried out using feedback shift-
register as illustrated in Figure 4 for a very simple (7,3) RS
code. Note, that addition and multiplication operations are
defined on the elements of the corresponding finite field (i.e.,
not in terms of common arithmetic).

Given the fact, that the encoding process can be represented
by means of polynomial multiplication over GF(¢g™), it
becomes clear, how the transmission errors can be recognized
(and corrected). Since multiplication operation preserves the
roots of the generator polynomial, the resulting encoded
message can be inspected by the decoder by checking if 2t
consecutive powers of the primitive element of GF(¢"™) are the
roots of the polynomial corresponding to the received message.
This is the first step of the decoding process which is called
syndrome calculation. If at least one of the syndromes is not
equal to zero, then the message was corrupted.

The syndrome values are used in the next step of the
decoding process to calculate the number of the corrupted
symbols. The most intuitive way to accomplish this is — in
the first step — to assume the number of errors to be one and
try to solve the corresponding system of equations based on
the co-called error location polynomial. The solution indicates
the position of the corrupted symbol. In case the system of
equations for a single error is not solvable, the assumption
of two corrupted symbols has to be made resulting in a
different system of equations. The process is repeated until
a solvable system of equations is found. This procedure is
called Peterson-Zierler-Gorenstein algorithm [18][19]. For the
hardware implementation the Berlekamp-Massey algorithm [20]
is better suited, since it can be better parallelized and modified
to reuse the same hardware to calculate both error location and
error value polynomials [21]. Its detailed description, however,
would go far beyond the scope of this paper. Independent of
the choice of the algorithm, finite field arithmetic is heavily
involved in the search for the error positions and values.
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Figure 5. Variable-variable versus constant-variable multiplier for GF(23).

As just stated, since RS codes work on symbols of m bits
width, knowing the symbol error position is not enough. An
additional step is required to determine the error values. This
can be done by using the syndromes computed in the first
step, since every set of syndromes can be mapped to certain
errors. Alternatively, the so-called error value polynomial can
be calculated [22]. In the final decoding step, the error values
are added to the received symbols at the calculated error
positions restoring the original message. To accomplish this,
the received (corrupted) data is stored in the First-In First-Out
(FIFO) memory making sure the right values appear at the
output of the decoder at the right time. The finite filed addition
corresponds to a bitwise XOR operation, which scales well
and is trivial from the implementation point of view.

As mentioned above, decoding the RS codes requires
numerous calculations based on the finite field arithmetic.
In an RS decoder designed for a specific code, many of
the GF-multipliers have one constant input (variable-constant
multipliers). For adaptive decoding of different codes, a
variable-variable multiplier is required. The corresponding
overhead is quite high as Figure 5 illustrates. However, since
only multipliers involved in the syndrome and error location
computation are affected, the impact on the area of the whole
RS decoder is limited.

Table II summarizes the area and throughput figures of
different RS decoder designs. For the adaptive decoding, n,
t, and m parameters can be changed, although changing m
does not make a lot of sense, since almost all real-world RS
codes are based on m = 8 (ITU-T J.83, IEEE802.3bp, and
IEEE802.3bj standards being an exception by specifying codes
based on GF(27), GF(2%), and GF(2'°) correspondingly). In
addition, different polynomials can be chosen as the finite field
generators. Varying the GF generator polynomial f(z) results
in a different encoding of the particular elements of the finite
field. However, it has been shown, that all finite fields for the
fixed values of ¢ and m are isomorphic.

TABLE II. COMPARISON OF ADAPTABLE AND SINGLE-CODE
REED-SOLOMON DECODERS.

Decoder architecture

Comparison
: [23] [23]
metric (24] (2] [26] Ist variant | 2nd variant
Code fixed n and t Universal decoder:
parameter variable n, t, m and f(x) variable
m 8 8 1...8 1...10 1...8
t 8 1...8 1...8 1...8 1...16
Erasu.re no no no <16 <16
correction
Throughput
in Gb/s 1,6 0,8 0,048 2,2 24
Gate 75000 + 39000 +
equivalents 21000 34000 44000 35 Kbit 15 Kbit
RAM RAM

The conclusions from the study of the different RS decoder
designs are as follows:

o The area overhead of the adaptive RS decoder implemen-
tation can be quite significant. Compared to the fixed-code
decoder with m = t = 8, a fully reconfigurable design can
consume about 85 % more silicon area in terms of gate
equivalents in addition to 15 KBit more SRAM. Just like
in the case of adaptive Viterbi decoder this is still quite a
low price to pay, since the error correction capabilities are
much better and the additional erasure correcting feature
is useful in many application scenarios (erasures are errors
whose position is known in advance).

o Throughput is usually not an issue with RS decoding,
since the symbol-per-second decoding rate is multiplied
by m to obtain the bit-per-second values. For adaptive
decoding it means, that the reduced clock rates caused by
the additional overhead of the adaptive implementation
are not significant in most cases.

IV. MULTI-FAMILY DECODERS

As can be seen from previous sections, the arithmetic
involved in decoding of convolutional and RS codes is quite
different which limits the possibilities of senseful hardware
reuse. However, it may be an option to combine decoders for
the other code families within one design with Viterbi decoder
or with each other.

Turbo codes were introduced in 1993 [27]. The basic idea is
to use several (usually two) recursive convolutional encoders
to process the same input data. First encoder receives the
data directly, the second one gets an interleaved data stream.
The size of the interleaver is usually in the order of several
kilobits. This approach makes the same data appearing as two
statistically independent messages. The decoding is done in an
iterative manner with two decoders which process the received
data and pass the output to each other (with interleaving and
deinterleaving steps inbetween). The decoders are based on the
Soft-Input Soft-Output (SISO) principle, i.e., their output is a
metric providing the likelihood for a bit to be 0 or 1 instead of
the final bit decision (soft-input was already discussed in the
Section II). The idea is, that a SISO decoder uses the output
of its predecessor as a-priori information to improve its own
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Figure 6. Chip area distribution for different FEC decoder designs (adapted
from [1]).

decisions, which are then passed back to the first decoder and
so on. The certainty of the calculated metrics improves over
time, so that the decoding process usually can be stopped after
several iterations.

LDPC codes were described in detail in the dissertation of
Robert Gallager in 1963 [28]. Due to the high computational
requirements of the decoding process, first practical applications
came more that 30 years later as LDPC were proposed as
channel codes for several communication standards. In a
nutshell, LDPC codes are linear block codes with very large,
very sparsely filled generator matrix. As in the case of turbo
codes, the decoding process is iterative. In one iteration, parities
are checked to determine, which bits of the information block
are responsible for most unsatisfied parity equations. These
bits are inverted and the next iteration starts. The decoding
ends, as soon as all equations are satisfied or a certain number
of iterations is reached. As in the case of turbo codes, most
applications use soft metrics during the decoding process, which
are converted to the hard bit decisions at the end.

According to this brief description of the iterative decoding,
it should be clear that a lot of local memory is required to
store the information bits and intermediate results. Figure 6
shows the silicon area distribution between different parts of
the design for LDPC, turbo, and Viterbi decoders. The extreme
disproportion in the required silicon area between LDPC and
Viterbi decoders suggests, that a combination of both within
the same design with the goal to reuse some of the resources
does not make sense. Even if the complete Viterbi decoder
area could be reused for LDPC (which is virtually impossible),
the overall gain would sum up to less than 10 % of the silicon
footprint.

At the same time, the SISO module required for turbo
decoding can be implemented based on the Soft-Output Viterbi-
Algorithm (SOVA), which can also be used to decode the
convolutional codes. This increases the potential for hardware
reuse at the cost of slightly reduced bit error ratio for turbo
decoder compared to the SISO module based on the Max-log-
MAP algorithm [29].

A closer look at the internal data-path of the turbo and LDPC

Turbo data-path:

Figure 7. Combining Turbo and LDPC data-paths within a single FFU (adapted

a=a0+7
h—

ap = m:

+7
ax(a,b) + log(1 + el b‘)‘ bl

lal

LDPC data-path:

| f(a.b) [=min(la|,|b])

+log (1+ e~(Ial+I8)

from [30], LUT-S are Look-Up-Tables storing the approximated logarithmic

values).

TABLE III. COMPARISON OF MULTI-FAMILY FEC DECODERS.

~log (1 + e~ llaI-18ll)

| f(ab) |

Architecture [ Metric | Reference [ Results
Viterbi-Turbo Decoders
VITURBO silicon Viterbi decoder +5 % logic
[12] area (K=3...9 +25 % memory
silicon separate turbo and
—14,5

[29] area Viterbi decoder %
(fully parallel) th hput separate turbo and h

rougipu Viterbi decoder 1o change
29 silicon separate turbo and —28.1
Eti II]I o- area Viterbi decoder %

Itipl th hput separate turbo and | same for Viterbi
multiplex) rougipy Viterbi decoder 1/2 for turbo
[31] silicon area | Turbo decoder +20%

Turbo-LDPC Decoders
1 silicon separate turbo and 10
[ area LDPC decoder %
turbo decoder +10...+20%
[30] silicon LDPC decoder +15...+20%
area reused vs. separate | _gq  _ 49%
data-paths o

decoders reveals some similarities as well. Figure 7 shows,
how the calculations involved in both decoding algorithms
can be combined within the same Flexible Functional Unit
(FFU) [30]. As in the case of multi-standard Viterbi decoder,
some additional multiplexers are required to switch between
the codes, which slightly increases the critical path.

Accordingly, the only options for multi-family decoders are
Viterbi-Turbo or Turbo-LDPC designs. Some case studies of
such designs are known from literature. Table III summarizes
the results. As expected, some portions of the data-path and
memory can be reused resulting in silicon area savings of 10—
42 % while throughput is not affected in most cases of combined
Viterbi-turbo decoder. If adaptable designs are compared with a
single family decoder, the overhead of introducing an additional
code family is very low. For instance, adding the LDPC
functionality to the existing turbo design comes at only 10-20 %
additional silicon area [30].

V. CONCLUSION AND FUTURE WORK

This paper discussed several options of the adaptive FEC
decoder design. The findings based on literature study and
own research suggest that overhead of extending a decoder
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towards other codes of the same family comes at moderate
cost. As expected, this overhead increases with the amount of
flexibility and code complexity. At the same time, decoders
covering several code families can take advantage of the
resource sharing reducing the overall silicon footprint compared
to the dedicated implementation of one particular decoder per
family. One aspect not discussed herein is the impact of the
adaptive decoder implementation on the power consumption.
On one hand, reconfigurability comes at the cost of additional
area and thus should result in increased energy-per-bit figures.
On the other hand, it can be expected that reusing parts of the
data-path and memory for different decoding algorithms leads
to overall power savings. Supporting these assumptions by
concrete numbers is a promising direction for further research.
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