CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Processing Speed Impact of the Pipeline-Length
on a Custom RISC-V CPU for FPGAs

Julian Weihe, Timm Bostelmann and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany
Email: {inf104808,bos, saw}@fh-wedel.de

Abstract—To achieve a higher processing speed of a Central
Processing Unit (CPU), a higher clock frequency can be used.
Since the underlying circuit is limited by the switching and signal
runtimes, pipeline stages are installed to divide the signal paths.
Due to the piecewise processing in the stages, the evaluation of
the instruction, which is necessary for the program flow, occurs
too late. An example of this are jump instructions in which
the target address is not determined until new instructions have
already been read. As a result, instructions have to be discarded
or the evaluation has to be delayed. This leads to a reduced
processing speed and a dependency on the program code. This
work shows the difference between a two- and a five-stage CPU
with CoreMark. For this purpose, two simple Reduced Instruction
Set Computer generation five (RISC-V) CPUs with the instruction
set rv32i were compared. At the same clock frequency, the two-
stage CPU processes 21.358 % more instructions per time than the
five-stage CPU, which is slowed down by the pipeline structure.
However, a 69.851 % higher clock frequency is possible with the
five-stage CPU, which leads to a 39.969 % higher CoreMark score.

Keywords—CPU; FPGA; RISC-V; Pipeline; CoreMark.

I. INTRODUCTION

With RISC-V, an Instruction Set Architecture (ISA) has
been developed which, due to its open licensing model, allows
modifications and extensions to the underlying hardware. The
architecture is particularly widespread in embedded systems
and microcontrollers and is also used by companies, such
as Seagate, Western Digital Corp. or Espressif Systems Corp
[1]. A RISC-V CPU can either be obtained pre-built from
companies, such as SiFive Inc. or created by the developer [2].
It is precisely the expandability through, as an example, new
instructions that makes the development of one’s own CPU
attractive [3].

The instructions of the ISA must be appropriately con-
verted into hardware when creating a microprocessor with a
RISC-V CPU. Since clock speeds and structure depend on
the underlying hardware, there is some room for development
here. The basic structure of a microprocessor with memory,
registers, Arithmetic Logic Unit (ALU) and Program Counter
(PC) is always quite similar. However, the interconnection of
the components is not trivial and influences runtimes and the
size of the design. The execution speed is directly related to
the clock used for the CPU. The clock applied to increase
performance is limited by the runtimes of the signals and gates.
To reduce these, pipeline stages are built into the CPU. The
synchronous memories save intermediate results from partial
calculations and thus shorten the critical path [4].

Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

In this paper, the performance of a two-stage CPU is
compared with a five-stage CPU using CoreMark [5]. The
number of instructions per time is compared with the increased
clock rate of the five-stage pipeline CPU. In addition, the
space requirements resulting from the further pipeline stages
are also discussed. The development and benchmark of the two
designs was implemented on a Field Programmable Gate Array
(FPGA). In contrast to other works, which compare complete
existing processor designs in different aspects [6][7], here only
the effect of the actual number of the two analysed pipeline
stages is considered.

In Section II, the basics for implementation and evaluation
are described. The RISC-V ISA is described in more detail, as
it directly influences the design. The CoreMark benchmark
is also briefly introduced. Section III describes the imple-
mentation of the two CPUs, as well as the compilation of
the programme code. The performance losses due to a longer
pipeline are also shown here. Section IV compares the results
of the two CPUs. As described, space requirements, maximum
clock and scores determined by the benchmark are analysed
and discussed. Finally, Section V provides a summary of this
work and an outlook on further comparisons and analyses.

II. BACKGROUND

The RISC-V ISA provides a compiler for instructions
with an instruction width of 32, 64 and 128bit. In addi-
tion, extensions can be added which, for example, support
hardware-supported calculation with floating point values. The
list of instructions given by the ISA must be implemented
in the hardware. They are roughly divided into logical and
arithmetic, load and store and conditional or unconditional
jump operations. The instructions determine the structure of
the hardware. Modules, such as the logical and arithmetic
operations are combined in ALU, the comparator for the
conditional jumps or the memory address calculation provide a
relatively strict specification for implementation. Also decisive
for the compiler are the firmly defined 32 registers, as well as
the byte-addressable memory access [8].

A benchmark is used to compare the performance of the
two CPUs. There are only a few popular benchmarks for
embedded systems [9]. In each of them, different functions
are performed to measure performance. In Whetstone, the
focus is on floating point computation. But especially in small
systems often no explicit hardware is implemented for this
and therefore it is not used in this project. Also Dhrystone, for
example, uses the c standard library with functions for mem-
ory management, which cannot always be fully implemented



CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

o

IF - ID EX . MA WB
s
2 M rsl addr, rs2 addr, rd_addr M rd_addr M rd _addr M
N I
g = S S T - fes np_addr
»m pe [ imn n—”——' B
. inst >
rmFg K gy Decode_instr s »g
©
C . imm rsl data . ‘m —y| L
X aamg Decode _imm pc - —
c next ke = S
s ": op 1 ) ) o
lrsi_addr / _rs1 data | | rs2 data op r A 20 TE L] L5 E
rs2_addr r'sz data imm
—_— 4 add |} | data
_P_u./ imm = N addr -
rd data / —
L > /A L| L
. IF/ID/EX MA/WB
[
o
® rsl addr, rs2 addr, rd_addr rd_addr M rd_addr
Qalf
£
E addr
»m pc pc -
o : & 3 -
r r R aang Decode_instr
g — jm
[Xemmea Decode_imm -> »m,‘u)_' I
c_next e - ]
= : op 1 ) ) 5
rsl addr 7 7, rsl data rs2 data op | A S s L 2T é
rs2_addr # r'sz data i
v ‘ D data
r‘d addr N addr —
rd data

Figure 1. Structure of the implemented five-stage CPU (A) and the two-stage CPU (B).

due to the memory size [9]. For these reasons, the bench-
mark CoreMark developed by the company EDN Embedded
Microprocessor Benchmark Consortium (EEMBC) was used.
The focus here is on list processing, matrix operations, state
machines, and Cyclic Redundancy Check (CRC) calculations
[10]. The integration is done without dependencies of other
libraries. Regarding the hardware, there are only two require-
ments. A timer must be integrated for time recording and a
communication interface must be implemented to export the
results. To use CoreMark with custom hardware, the timer and
communication interface must be implemented by the design
and made available through functions. The result is output via
the serial communication interface after the benchmark has
been executed [11].

III. IMPLEMENTATION
The implementation section is divided into four subsec-
tions. First, the development environment and conditions are
presented. This is followed by an outline of the similarities
and then the differences between the two implimented CPUs.
Finally, the design decisions that lead to performance losses
in the five-stage CPU are described.

Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

A. Environment

The development and benchmark was done on an Intel Cy-
clone 10LP 10CL025 FPGA. The clock frequency is generated
via the FPGA integrated Phase Locked Loop (PLL). These
are set at synthesis time. The carrier board of the FPGA also
provides a standard clock of 12.000 MHz. Synthesis and timing
analyses are provided by the software Quartus Prime v.20.1.0.
The prebuild tools published by Sifive in December 2020 were
used to compile the benchmark software [12]. The optimisation
-01, as well as selected features, were added to the compiler
call. The same compilation was used for all benchmarks.

B. Uniform structures

Structurally, the design consists of the CPU and the mem-
ory connected to it. The memory is divided into a common
program and data memory and a peripheral area that provides
Input Output (IO), timer and a serial communication interface
used by CoreMark. For the simplicity of the system, no
external memory is connected. Program and data memory are
located on the integrated memory blocks of the FPGA. The
access to the M9K memory blocks can be done in the used
FPGA with a maximum frequency of 200 MHz [13]. As the
memory blocks do not support the byte addressing required



CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

W - S B T N A

#3 (Jmp)

nn

Figure 2. Instruction processing with jump delay.

by the ISA, this is realised by interconnecting four separate
byte blocks. Here, the last two bits determine the reading
order of the four memory blocks. The memory is identical
in both implementations of the microprocessor, so changes in
performance are due to differences in the CPU.

Two microprocessors were developed for the comparison.
Both implement the instruction set rv32i and differ mainly in
the pipeline structure. The structure of both implementation are
shown in Figure 1. Since this is a fully synchronous design,
the clock connection of storing elements has been omitted
for a better overview. Likewise, from decoding on, the signal
instr is not displayed in the further stages, because it is used
in almost all places. The pipeline stages are named above
the respective design and are described in more detail in the
following paragraph. The different stages are separated from
each other with synchronous memory blocks represented by
the red narrow blocks. In contrast the grey block in the middle
of B corresponds to a strictly logical linkage and serves the
purpose of clarity.

C. Five-stage vs. two-stage structure

In the five-stage pipeline CPU, certain tasks are calcu-
lated in each stage. In the Instruction Fetch (IF) stage, the
instructions are read from the memory at the address of the
programme counter. In the next step, the Instruction Decode
(ID) stage is responsible for analysing the command. Operators
from the registers are also loaded here. In the following stage
Execute (EX), arithmetic, logical and comparison operations
are carried out. In addition, the memory address for the
memory access and possible jump addresses are calculated. In
the next stage Memory Access (MA), write and read accesses
to the memory take place. Read signed values are also adjusted
to the 32 bit data width. Finally, in the Write Back (WB) stage,
the results are written back to the registers.

The two-stage pipeline CPU merges the stages IF, ID and
EX and is no longer separated by memory stages. Similarly,
the separation of MA and WB has been dropped. Because of
the data memory, which writes the address and data to the
memory, two stages are also necessary here. The functionality
of the pipeline stages are implemented as in the five-stage
CPU. The designs differ only in the pipeline memory blocks
and the complexity of the multiplexers.

D. Disadvantages of pipeline stages

Due to the reduced signal paths in the five-stage CPU, an
increased possible clock frequency can be expected. However,
the pipeline stages in particular lead to performance losses
due to jumps. Figure 2 shows an example of the instructions
in the pipeline stages during a jump. The pipeline stages are
displayed vertically and show in each new row the instructions

Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

Figure 3. Instruction processing with memory read dependencies.

in the respective stage to the corresponding clock cycle. The
#1 and #2 instruction are fully executed, but the #3 instruction
is a jump, which is only detected in the execution phase.
The previous misread #Ex instructions are discarded. After the
executed jump, the instructions continue to be read sequentially
as normal. The late evaluation of the instruction in the EX
stage leads to further instructions being read by mistake at first.
Since these must be ignored, a gap is created at this point so
that the pipeline is not fully utilised. This has the consequence
that three instructions are lost per jump instruction.

In the programme sequence, successive calculations can
occur on the same register. This would lead to waiting with
the following calculation until the result was written back to
the WB stage. To speed this up, separate returning connections
have been added [4]. The target register corresponds to the one
in the MA stage. In the 5-stage pipeline CPU, this affects the
results of the ALU operation in the MA and the write back
data result of the WB stage. Read operations from memory
require another clock cycle before the result can be returned.
Therefore, in the sequence, an empty instruction is inserted if
the register addresses match, thus delaying the execution by
one clock cycle. This is shown in Figure 3. The instruction
#3 coming after the memory-reading instruction #2 needs the
memory value as an operand. Since the memory access is
only available one clock cycle later, a stalling instruction is
inserted. If instruction #3 is now applied in the EX stage,
the memory value from the WB stage is used. In the design,
the returns of the data lines in Figure 1 are recognisable
by the pink connections. The two-stage microprocessor has
no waiting cycle after a read memory access due to the
deliberate reduction of the pipeline stages. This increases the
corresponding signal runtimes here.

IV. RESULTS
The evaluation first looks at the performance determined by
the benchmark. Then the space requirements of the respective
implementation are analysed.

A. Runtime analysis

Both CPUs are not able to perform floating point calcu-
lations. Therefore, the ticks determined after the benchmark
must be converted into a score for the run. The conversion is
shown below.

Iterations - Frequence

Scorejierations / Sec = (D
Tickstoral

The score of the benchmark describes the number of iter-
ations per second. At compile time, the number of completed
runs was transferred via parameters. In this case, a total
measurement of 200 runs was taken. After the benchmark is
finished, the number of ticks required for execution is output.



CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE I. COREMARK SCORES OF THE TWO MICROPROCESSORS WITH
THE SAME AND RESPECTIVE MAXIMUM CLOCK.

Stages | Frequence/MHz | Iterations Ticks Score
2 12.000 200 203629411 11,786
2 39.670 200 203629411 | 38,963
5 12.000 200 247103108 | 9,7125
5 67.380 200 247103108 | 54,536

The score can be calculated from this. The results are shown
in Table L.

The series of measurements begins with a synthesis at the
same clock rate of 12.000 MHz for both microprocessors. It
can be seen that the two-stage CPU with 203629411 ticks
needs less time to run the benchmark than the five-stage
CPU with 247 103 108 ticks. This is also visible in the corre-
spondingly higher score. The two-stage CPU works faster by
21.358 % due to the jumps and also the delays caused by the
dependencies of successive instructions with memory accesses.

After synthesis, a time analysis is performed. The devel-
opment tool provides a maximum clock that may be applied
to the circuit. Here, the advantage of the pipeline structure
becomes apparent. Whereas the two-stage CPU may clock at
a maximum of 39.670 MHz, the maximum clock for the five-
stage pipeline CPU is 67.380 MHz, which is 69.851 % higher.
With the maximum clocks determined for each microprocessor,
a score is calculated again. Although the two-stage pipeline
CPU has a higher score at the same clock frequency, the
higher clock frequency of the five-stage pipeline CPU leads
to a higher score, overall.

From a performance point of view, the increased clock
rate due to the pipeline stages is an improvement. However,
it should be noted that the function from the benchmark was
executed. Since jumps in particular lead to performance losses,
it cannot be said in general how efficiently the CPU calculates
with the pipeline stages. A compiled program with more
jumps, for example, would also perform worse in this respect.
It always depends on the application and the compilation.

B. Space analysis

In addition to the execution speed, the occupied area on
the semiconductor or FPGA is a decisive point, especially for
small embedded systems. Table II shows the demand for logic
elements and registers of the two implemented designs. This
includes, for example, the program and data memory as well
as their overlying byte addressing. However, since both im-
plementations use identical assemblies for the implementation
of the logic, the difference in number is due to the pipeline
structure.

In Table II, two syntheses with different optimisation
levels have been carried out in each case. The benchmark
values determined in Table I always refer to the performance
optimisation. As expected, the additional logic through the
pipeline requires more logic elements as well as registers.

V. CONCLUSION
In this work, the effect of different numbers of pipeline
stages on their performance and space requirements was in-
vestigated. It shows that the number of instructions per time
decreases with a five-stage CPU, but a higher clock rate is
possible. This increases the performance and in this case

Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

TABLE II. ASSIGNMENT OF LOGIC ELEMENTS AND REGISTERS BY THE
RESPECTIVE IMPLEMENTATION OF THE MICROPROCESSOR.

Stages | Optimization mode | Logic Elements | Register
2 Balanced 4566 1344
2 Performance 4769 1577
5 Balanced 4821 1670
5 Performance 5009 1833

ultimately works faster than a CPU with two pipeline stages.
The space requirement increases with an increasing number of
pipeline stages because of the additional logic.

In the end, the application determines the choice between
the number of stages. If the application requires the fastest
possible execution, a five-stage pipeline CPU is more recom-
mended. But especially when it comes to small embedded
systems or the application is not time-critical, the space re-
quirement can also be decisive. Another advantage of the two-
stage CPU designed in this work is the guaranteed execution
of instructions, which does not depend on the program code.

Further analysis is needed to more accurately assess the
efficiency of pipeline stages. In the context of this work, a jump
prediction logic was explicitly omitted. Likewise, the memory
is directly connected and does not depend on a cache structure.
This must be taken into account for the implementation in real
systems.

REFERENCES

[1] “Esp32-c3,” https://espressif.com/en/products/socs/esp32-c3, Espressif
Inc., accessed: 2022-07-03.

[2] “Sifive processors,” https://www.sifive.com/risc-v-core-ip, SiFive Inc.,
accessed: 2022-07-12.

[3] J. Hsu, “RISC-V star rises among chip developers worldwide,”
https://spectrum.ieee.org/riscv-rises-among-chip-developers-worldwide,
April 2021, accessed: 2022-07-12.

[4] H. Miyazaki, T. Kanamori, M. A. Islam, and K. Kise, “RVCoreP:
An optimized RISC-V soft processor of five-stage pipelining,” IEICE
Transactions on Information and Systems, vol. 103, no. 12, 2020, pp.
2494-2503.

[5] “Coremark,” https://www.eembc.org/coremark/, EEMBC, accessed:
2022-07-03.

[6] A. Dorflinger et al., “A comparative survey of open-source application-
class RISC-V processor implementations,” in Proceedings of the 18th
ACM International Conference on Computing Frontiers, 2021, pp. 12—
20.

[7]1 P. D. Schiavone et al., “Slow and steady wins the race? a comparison
of ultra-low-power RISC-V cores for internet-of-things applications,” in
2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS). IEEE, 2017, pp. 1-8.

[8] K. A. Andrew Waterman, “The RISC-V instruction set manual,’
https://riscv.org, January 2021, accessed: 2021-12-18.

[9] P K. Krause, “Stdcbench: A benchmark for small systems,” in Proceed-
ings of the 21st International Workshop on Software and Compilers for
Embedded Systems, 2018, pp. 43—46.

[10] S. Gal-On and M. Levy, “Exploring coremark
a benchmark maximizing simplicity and efficacy,”
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf, 2012,
accessed: 2022-07-03.

[11] eembc, “coremark,” https:/github.com/eembc/coremark, GitHub, ac-
cessed: 2022-03-01.

[12] sifive, “freedom-tools,” https://github.com/sifive/freedom-tools, GitHub,
accessed: 2022-03-07.

[13] “Intel cyclone 10 Ip device datasheet,”
https://cdrdv2.intel.com/v1/dl/getContent/666518?fileName=c10lp-
51002-683251-666518.pdf, Intel Corp., 2018, accessed: 2022-06-15.



