CENICS 2021 : The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

A Comparison of Verilog Synthesis Frontends

Daniel Stokes*, Georgiy Krylov, Jean-Philippe Legault, Panos Patros*, Kenneth B. Kent
*ORKA Cloud and Adaptive Systems Lab, Dept. of Software Engineering, University of Waikato, Aotearoa New Zealand
email: djns1 @students.waikato.ac.nz, email: panos.patros @waikato.ac.nz
ORCiD: 0000-0002-1366-9411
fCentre for Advanced Studies-Atlantic, Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
email: georgiy.krylov@unb.ca, email: jlegault@unb.ca, email: ken@unb.ca

Abstract—A crucial consideration in choosing a frontend
synthesis tool is the quality of the synthesised result. This
kind of benchmarking is critical to choosing a fit-for-purpose
tool. However, to the best of the authors’ knowledge, the only
comparison of Odin II, the front-end of Verilog-to-Routing, and
another synthesis tool was focused primarily on Odin II and
Yosys’ performance with respect to commercial counterparts in
the Xilinx ISE tool. Further, such an evaluation is to improve
confidence in research findings utilising these tools. The quality
of results for a poorly optimised research tool may not reflect
the performance of real-world applications, adding uncertainty
to any findings and requiring extra work from the researcher
to obtain valid results. We compare Odin II and Yosys targeting
the Xilinx Artix-7 architecture provided by SymbiFlow.

Keywords—Field Programmable Gate Arrays (FPGA); Com-
puter Aided Design (CAD); Verilog.

I. INTRODUCTION

To achieve performance and sustainability, projects incor-
porate specialised technologies for resource-intensive sections
of their applications replacing software with hardware. Appli-
cation Specific Integrated Circuits (ASICs) provide significant
performance gains at the cost of a high upfront investment and
a significant loss in flexibility of application. Few projects have
sufficiently well-defined requirements and the funding required
to manufacture their own ASICs; hence, Field Programmable
Gate Arrays (FPGAs) are used as an alternative. FPGAs
provide much of the performance of ASICs without the upfront
cost, and are a better fit for prototyping and research [1]
because they can be reprogrammed if the specifications change
or if any errors in the design are found.

Applications for embedded devices are written in specialised
Hardware Description Languages (HDLs), such as Verilog or
VHDL. Designing and efficiently mapping HDL programs to
hardware involves many steps, from parsing and optimising
the HDL design to allocating logic elements to hardware
resources. Verilog-to-Routing (VTR) [2] is an open source
tool that aims to provide a highly efficient Computer Aided
Design (CAD) flow, for mapping the Verilog 2005 [3] HDL
onto an FPGA. VTR targets either commercial or experimental
designs, making it a powerful tool for both circuit design
and research into the next generation of FPGA devices and
architectures. Other CAD flows, such as SymbiFlow [4], also
exist. CAD flows share flow components with VIR, which
enables comparing different frontend logic synthesis tools.

The work by Hung [5], provides a comparison of Odin II
and Yosys front-end synthesis tools as part of VTR. Their

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-921-8

experiment was conducted six years prior to this paper,
which means many changes happened to both rapidly-growing
projects, and the results of the comparison might differ.
This paper presents the current challenges of conducting the
comparison between the two tools, as well as aims to provide
up-to-date information on performance differences.

II. BACKGROUND

This section describes the principles of operation and the
distinguishing features of the Symbiflow and VTR CAD flows.

A. Verilog To Routing (VIR)

VTR is an open source CAD flow for mapping a Verilog
2005 circuit design to an FPGA bitstream. It uses several
interoperating tools for producing an FPGA program.

1) Odin II: The VTR flow consists of five primary stages,
performed by three separate tools as shown in Figure 1.
The first stage in this flow, Odin II [6] is responsible for
parsing the Verilog circuit description into a flattened netlist—
a process known as synthesis. This involves three distinct
phases: parsing, elaboration and technology mapping. The
parsing stage involves taking the provided Verilog files and
parsing them into an Abstract Syntax Tree (AST). The AST
encodes information about the structure and hierarchy of the
program, where each node in the tree corresponds to a Verilog
construct from the source files. It is necessary to unroll loops
in Verilog at this stage, since these are infeasible to implement
in hardware. Optimisations such as constant folding can also
be done to reduce the number of nodes in the final netlist [7].

The next phase of the Odin II flow is elaboration. It
involves taking the high level Verilog abstractions encoded
by the AST and converting them into an Odin II-specific data
structure, called a netlist. It also involves instantiating Verilog
modules (high-level language feature grouping programs by
functionality) at the appropriate locations in the circuit.

After Odin II builds the netlist, it moves to the final
phase: technology mapping. This process maps netlist nodes
to specialised FPGA circuitry known as hard blocks. Often,
FPGA designs include specialised hardware implementations
of common operations, these are known as hard blocks or
Intellectual Property (IP) cores on commercial devices. During
the technology mapping phase, Odin II reads the architecture
file and identifies the types of available hard blocks. Odin II
can also analyse the circuit and architecture file to identify
the number and physical location of these blocks allowing

CENICS 2021 : The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

FPGAArchitecture | |

Verilog

ODIN Il

Netlist - BLIF

Netlist - BLIF

VPR

Figure 1. Stages of the VTR CAD flow

QoR Metrics

the technology mapping to account for placement and routing
costs associated with each allocation [8]. Odin II also converts
logic to be suitable for placement on hard blocks based on the
specifications of the target FPGA [9].

The final stage of Odin II is its power-estimation capabilities
even when hard blocks are present via simulating the circuit’s
behavior over a number of specified inputs [10].

While Odin II’s technology mapping gives it a significant
lead for academic and experimental applications, Odin II has
shortfalls. One significant barrier to its adoption is incomplete
coverage of the Verilog 2005 specification. At present Odin II
only covers a subset of the language thereby reducing the se-
lection of the programs that can be synthesized to completion.

2) ABC: The second stage in the flow is optimisation. VTR
uses the ABC [11] tool to perform this step. ABC takes
the BLIF file output by Odin II and performs a range of
combinational and sequential logic optimisations on the netlist
to reduce the overall circuit footprint. These optimisations are
critical for obtaining quality synthesised results, which are
measured via comprehensive Quality of Result (QoR) metrics
about the synthesis output), such as device size, maximum
frequency and estimate of placed wire length [12].

3) VPR: Versatile Place and Route (VPR) [13] runs the
final three stages of the flow: packing, placement and routing.
VPR uses a genetic algorithm to efficiently find a strong final
result without searching for the best possible solution. The
quality of the final result is captured in QoR metrics output
by VPR once the flow completes. Researchers and designers
can use these metrics to evaluate the quality of the individual
phases in the flow and the impact of design decisions made
at both the Verilog and FPGA architecture level.

B. SymbiFlow

A stage of the VTR flow interfaces with the next via a BLIF
file, allowing for stages to be replaced or removed, as desired.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-921-8

Hung [5] used this characteristic to compare stages of the VIR
flow to their commercial counterparts, e.g., SymbiFlow [4].

The SymbiFlow project [4] is an FPGA CAD flow tar-
geting commercial architectures, with support for Xilinx Ar-
tix 7 [14] and Zynq SoC 7000 [15] families, and for the Lattice
iCE40 [16] and ECP5S [17] devices. The synthesis flow of
the project closely resembles that of VTR, with VPR being
used to pack, place and route for both projects. Instead of
Odin II, SymbiFlow uses Yosys [18] for synthesis, which in
turn integrates ABC internally for optimisation. As with VTR,
each stage of this flow is modular, so a range of different tools,
including both open source and commercial, can be used.

In addition to the standard CAD flow, SymbiFlow also
includes peripheral functionality. In particular, an important
feature for this work is the architecture database. SymbiFlow
includes several sub-projects, each targeting a different de-
vice family. This work focuses on the Artix-7 XC7A200T
architecture generated by Project X-Ray [19]. The database
contains architecture files that describe the CLBs and hard
blocks the device provides, which can be compiled into a
VPR architecture file. It also provides Verilog files that are
used during the technology mapping phase in Yosys.

While SymbiFlow has many similarities with VTR, it does
not use Odin II for synthesis, instead opting to use Yosys.
There are several reasons for this, the most obvious is more
comprehensive language support. Another powerful feature
of Yosys is its scripting interface that gives the user more
control over the exact behaviour of the tool. This is achieved
by breaking the synthesis flow into three distinct types of
operation: Frontends, Passes and Backends.

A Yosys Frontend parses an HDL (not necessarily Verilog)
into a common netlist representation. Input files can be pro-
cessed by different Frontends and added to the internal model
as needed. The internal model constructed by the Frontends
can be processed by Passes. Yosys Passes can perform a vari-
ety of operations including technology mapping, optimisation
through ABC and manipulating the module hierarchy. Finally,
the processed netlist can be output in many different formats
via the corresponding Yosys Backend.

One benefit of this modularity is that it allows users to
add custom Passes for their application. Effective utilisation
of hard blocks can vastly improve the quality of the generated
circuit by reducing the number of LUTs, DFFs and wires. Hard
blocks can also provide more performant implementations than
would otherwise be implemented via soft logic.

Yosys [18] provides hardcoded technology mapping flows
for a range of supported architectures, but requires the user to
generate custom Verilog descriptions of the FPGA architecture
to target a new device—even when used in combination with
VPR. In contrast, Odin II can perform this stage at no extra
cost by utilising the architecture file used for VPR. This
gives Odin II a significant advantage when evaluating novel
and experimental FPGA designs, as designers do not need a
supplemental architecture definition for technology mapping.

CENICS 2021 : The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

ITI. EXPERIMENTAL COMPARISON OF ODIN I AND YOSYS

Comparing the performance of Odin II and Yosys requires
accounting for a wide range of factors. The first decision
to make is which architecture(s) to use for the comparison.
Since both Odin II and Yosys will be used with VPR, the
architecture must have a VPR XML architecture definition
available. While Odin II can use the same architecture file as
VPR, Yosys primarily relies on hardcoded technology mapping
passes specific to a given architecture.

SymbiFlow provides XML architecture files for the Artix-
7 family, and the corresponding technology mapping support
required by Yosys. In addition, SymbiFlow supports placement
and routing of these devices using VPR, thereby allowing the
final QoR of the synthesized circuits to be compared with the
VTR flow. This allows running both tools against a concrete
commercial architecture, providing a real-world benchmark of
each flow’s performance. In particular, this work focuses on
the largest in the Artix-7 family—the XC7A200T architecture.
The largest device was chosen to ensure all benchmarks could
successfully route, as several of the larger benchmarks tested
require too many blocks for the smaller architectures.

A further consideration when choosing an architecture re-
lates to hard block inference. Odin II only recognises hard
blocks that match a specific signature, while Yosys can map
to any hard block in its technology mapping database. While
Odin II’s approach is good when targeting experimental ar-
chitectures where the hard blocks can be written to match the
expected format, for a commercial device Yosys has support
for hard block inference. In particular, Yosys is capable of in-
ferring RAM blocks, which can greatly reduce circuit footprint
because multiple CLBs are required to emulate memory.To
ensure a meaningful comparison, both Yosys and Odin II were
configured and run appropriately, such that both tools could
recognize the same potential hard blocks.

To isolate the behaviour of just Odin II and Yosys, it is
necessary to ensure that the rest of the flow is consistent across
all runs. To control for this, both flows use the ABC and VPR
versions built by the SymbiFlow project. However, to provide
a more comprehensive analysis, this work also tests Odin II
against the version of ABC packaged with VTR. This makes it
possible to identify any behaviours that Odin II depends upon
that are not present in the SymbiFlow version of ABC.

Since VPR uses a non-deterministic genetic algorithm based
approach to performing packing, placement and routing the
final result depends on the initial seed. A representative sample
of average performance must be obtained via averaging the
performance across multiple runs of VPR. Since Yosys, ABC
and Odin II are deterministic they are only run once per
benchmark, while VPR is run with 10 seeds on the BLIF file
produced by each flow. Once the synthesis flow completes for
each benchmark, the result is copied according to the number
of iterations needed by VPR, which is then run on each copy
with a different seed. The full flow appears in Figure 2.

Additionally, each synthesis flow was run 10 times to allow
for a comparison of run-time metrics such as total time taken

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-921-8

Yosys Flow l l Odin Il Flow

Verilog File
ODIN Il
Netlist - BLIF

Yosys Default
ABC ABC

SymbiFlow
Architecture
5 Versatile Place and
VTR Architecture Route (VPR)

Netlist - BLIF

Quality of Result
Metrics

Figure 2. Full Benchmark Flow

and memory usage. The time command is used to report the
user time and maximum resident set size (max. RSS) metrics
for each run. An important note is that ABC does not have
integrated support for optimising across clock domains. To
handle this case, VTR runs ABC once for each clock domain
present. In these experiments, each run of ABC generated
separate run-time metrics. The user time metric was obtained
by summing across all runs, while the max. RSS was obtained
by taking the maximum value across all runs.

All results were obtained on a Ubuntu 18.04 (kernel 4.15.0-
117) with an Intel® Core™ i5-8400 CPU @ 2.80GHz, config-
ured to run in performance mode. The machine was configured
with 4x16GiB DDR4 RAM running at 2133 MT/s.

A. Benchmarks

To compare Yosys and Odin II, this work focuses on a subset
of the Verilog benchmarks from the VTR project that can
be synthesized to completion with both flows. Several well-
known benchmarks were considered for evaluation, but they
either failed to synthesize through Odin II or did not have
an open source Verilog implementation available. While these
VTR benchmarks can be correctly synthesised by Odin II
on VTR’s comprehensive architecture, many use hardware
RAM blocks that are incompatible with the Xilinx architecture
used in the experimental flow. To support these RAM blocks,
this work utilises VTR’s ability to leverage generic hard
blocks to target the Xilinx Block RAM module included
in the SymbiFlow architecture definition. In particular, this
architecture defines the RAMBISEI_VPR hard block, which
corresponds to the RAMBISE] Xilinx IP core. This enables
the mkPktMerge benchmark, which otherwise could not have
been included in this evaluation. However, modifying all such
benchmarks is infeasible and several others can not easily
be converted while maintaining support for Odin II. In total,
fourteen benchmarks were modified to support the new flow.

B. Hypotheses

Hung showed that the Yosys flow produced a better (i.e.,
lower) critical path delay and similar logic area utilisation [5].
For this comparison, it is expected that Yosys will further

CENICS 2021 : The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE I
BLOCKS AND NETS IN NETLIST PRIOR TO PACKING IN VPR
Blocks Nets
Test Name Odin Yosys Odin Yosys
and latch 6 8 5 7
bgm 54624 | 69412 | 54592 | 69380
blob merge 8030 8378 7930 8278
diffeql 4907 6030 4811 5934
mkPktMerge 347 402 191 291
multiclock output and latch 14 20 13 19
multiclock read write 16 42 16 41
sha 3569 3143 3533 3107
single ff 4 6 3 5
single wire 2 2 1 1
stereovisionQ 21431 | 34493 | 21234 | 34296
stereovisionl 42579 | 58469 | 42434 | 58324
stereovision2 60233 | 91063 | 60051 | 90881
stereovision3 310 477 281 447

extend this gap, as it has received significant tuning against
the XC7A200T target architecture. In contrast, Odin II aims
to work out-of-the-box for a wide range of devices limiting
the number of architecture specific optimisations possible.

In addition to QoR, run-time statistics are also an important
aspect of both flows. Hung’s work does not show either flow as
having conclusively better total flow time, and does not report
on the time taken by each phase of the flow, only reporting
the total flow time. Hung’s work also does not include a
report on the memory requirements of the flows. It is hoped
this evaluation will be able to provide more insight into the
expected memory consumption and total time for each flow.

C. Results

This evaluation used the 14 selected VTR benchmarks
against the SymbiFlow XC7A200T architecture, each run
10 times through VPR with distinct seeds. Likewise, each
synthesis tool was run 10 times against each benchmark to
gather run-time statistics. Where applicable, the geometric
mean (geomean) is used to combine the results from the
10 VPR or synthesis runs. These benchmarks vary in size
significantly, from the smallest single wire benchmark, with 2
blocks and 1 net under Odin II, to the largest stereovision2,
with 60,233 blocks and 60,051 nets under Odin II. Table I
shows the number of netlist primitives in each benchmark,
when synthesized with Odin II or Yosys and optimized by
ABC. This table also shows that Odin II produces fewer netlist
primitives across all benchmarks except sha.

The primary QoR metrics of interest are the critical path
delay and the logic block area metrics. The critical path delay
in seconds (s) is the inverse of the maximum frequency (Hz), at
which the circuit can be run. The logic block area, measured
in Minimum Width Transistor Areas (MWTASs), determines
the size of the FPGA required and influences the total circuit
power usage. Figure 3 shows the geomean critical path delay
of Odin II and Yosys, normalised such that the critical path
delay for Odin II is 1.0. Note that both ABC versions tested
with the Odin II flow produced identical results, so only one
value is reported. Likewise, Figure 4 shows geomean logic
area used by Odin I and Yosys, normalised such that the logic
area used by Odin II is 1.0. Hung [5] ran Yosys and Odin II

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-921-8

M Odin M Yosys

2.0

1.5

1.0

0.5

0.0
2 A @ g R s e DA DD N

& Q<§'\ @Q}QI & e}"—’&‘_&’ & F ¥ wé\“é@(“(’@(‘.(}o(‘. o &

&S & & e F F @ §F

S §F TS Lo e &
SIS ECIEC R

Figure 3. Normalised critical path delay

against the stereovision2 benchmark, targeting a Xilinx Virtex-
6 family device. That work found that both flows produced a
similar critical path delay, while Odin II used approximately
half as many logic slices as Yosys. This contrasts with the
findings in our work where Yosys has a 14% lower critical
path delay, while also using 11% less area. There is a similar
improvement in critical path delay for the bgm benchmark,
which was also included in Hung’s comparison, suggesting
that Yosys is producing much higher quality circuits for this
evaluation than in Hung’s work. This matches expectations
as outlined in Section III-B, as Yosys has had several years
of development since the publication of Hung’s work, with
significant focus to supporting the Xilinx Artix-7 line used in
this evaluation. For the mkPktMerge benchmark, Odin II uses
a 6.8x larger logic block area, but still yields a 1.5x shorter
critical path delay. This is a significant difference in perfor-
mance, suggesting that both tools have specific applications in
which they excel, however, there are general trends that can
be observed. In particular, we see that Yosys yields shorter
critical path delays—producing a geomean critical path delay
across all benchmarks of 8.95888 ns, a 14% improvement over
Odin II’s 10.373 ns. When considering logic block area, we
see Yosys tends to yield smaller areas—producing a geomean
logic area used across all benchmarks of 1,925,560 MWTAs,
an 11% improvement over Odin II's 2,168,990 MWTAs.

An important consideration here is the size of the bench-
marks. While small benchmarks can give insight into specific
behaviours, larger benchmarks are more representative of real
world applications. Considering just the seven benchmarks that
generate over 1000 blocks when synthesised with Odin II, we
see that Yosys produces a lower critical path delay in every
benchmark. Overall, Yosys produces a geomean critical path
delay of 23.0714 ns compared to Odin II’s 35.1330 ns, a
36% improvement. Similarly, the geomean logic block area
used for Yosys is 32,277,700 MWTAs compared to Odin II's
35,538,200 MWTAs, a 9.2% improvement. This suggests that
Yosys is better optimised for larger benchmarks, where its
targeted technology mapping can produce a better QoR.

In addition to the QoR, run-time metrics, such as total

CENICS 2021 : The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

M Odin M Yosys

Figure 4. Normalised logic area used

time taken and memory usage, are also important. Figure 5
shows the geomean max. RSS for each of the synthesis tools
tested: Yosys required more memory than Odin for every
benchmark. This shows that Yosys used between 2.1x and
10.3x more memory than Odin II across all benchmarks,
with a geomean across all benchmarks of 460,209 kilobytes,
5.1x larger than Odin II's 89,760.2 kilobytes. While this is
a significant difference, which may impact some workloads,
it is unlikely to be a deciding factor for most designs, since
the lowest max. RSS value reported by VPR was 13,227,032
kilobytes, 5.7x larger than the largest max. RSS reported by
Yosys. A more important difference is the total user time of
each flow. The small benchmarks with under 1000 primitives
have limited use since the total user time for Odin II is under
one second and so the reported timings are dominated by both
the launch overhead and the VPR time taken (minimum of
38.62 s for the smallest benchmark), so we only consider the
benchmarks with over 1000 primitives. Figure 6 shows the
user time taken for the benchmarks with over 1000 primitives,
noting that times include ABC for both flows. This shows that
the Yosys synthesis flow runs between 1.1x and 3.2x faster
than Odin II in five of the seven cases. In the case of sha,
Yosys runs 78.8x faster than the default Odin II flow, while
for diffeql Yosys takes 4.1x longer at 16.12 s compared to
Odin II’s 3.96 s. It is worth noting that Odin II only consumes
between 0.13% and 8% of the total pre-VPR flow time, so the
Odin II flow’s poor performance is likely due to a combination
of a lower quality initial netlist requiring more work from ABC
and running more demanding ABC optimisations. Across all
cases, the VIR version of ABC is between 1.7% and 5.7%
faster than the Yosys version of ABC. Both versions produced
functionally identical results for all benchmarks tested, but
the output BLIFs had small cosmetic differences suggesting a
version difference, in favour of the VTR version.

To understand the effects of VITR’s non-deterministic al-
gorithm on BLIF files generated by different frontends, this
work also looks at the run-time metrics for VPR, starting with
VPR’s max. RSS for each flow. We found that VPR’s memory
consumption is consistent for a given architecture and does

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-921-8

W Odin M Yosys

2500000
2000000
1500000
1000000
500000
0
"y
LSS E S P8 E LSS SS 7
FVEFEFE S - TS <€
£ & VEFE SIS S S S f
o 6&6\&\6\\,\“ TP B P P

Figure 5. Geomean max. RSS (kilobytes) for synthesis flow

M QOdin+VTRABC M Odin + Yosys ABC Yosys
800
600
400
200
0
A 3] A
S & & S S S ,\o@’ &
S & @ ¢ 5
o))) &
Q° & & & &)
& & &

Figure 6. Geomean user time (s) for pre-VPR flow

not vary with the size of the benchmarks, measuring at 10.2-
11.3 GiB for all benchmarks. Figure 7 shows the geomean
VPR user time for each flow. This shows that for the larger
benchmarks, the BLIF produced by Yosys takes longer to place
and route than the corresponding BLIF produced by Odin II.
When combined with the timings for the synthesis flow from
Figure 6, we see that the full Yosys flow completed faster in
five of the seven large benchmarks, while the full Odin II flow
completed faster for diffeq! and stereovision2.

D. Threats to Validity

The comparison between Odin II and Yosys targeted a
single architecture and a limited set of benchmarks. These
benchmarks are those used by the VTR flow to validate per-
formance, so Odin II's behaviour is likely to be optimised for
performance against these benchmarks. It is thus possible, that
the performance of each tool may deviate from the findings
of this comparison when targeting a different architecture or
with different sets of benchmarks. Further, the benchmarks
used are smaller than modern benchmarks, such as the Titan
Benchmark suite. Moreover, a number of core features were
disabled for these benchmarks.

While the XC7A200T architecture provides a valuable refer-
ence for a commercial design, it is constantly being improved

CENICS 2021 : The Fourteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

W Odin ™ Yosys

1250
1000
750
500
250
0
& N B W W S e N A D o
\fb ‘QQ é&(\e’o‘@ &é.o '\\ ‘}\ 2 e‘!‘k\.(‘,\é\. CQ\O(\‘ ('9@(\.(‘9\00 @?:b
& © & S oV Y SV 3
2 & \8 & _\\f} S & L &L &
& & & U

Figure 7. Geomean user time (s) for VPR

and so does not perfectly represent the true commercial device.
Moreover, the developers of SymbiFlow have specifically
tuned Yosys to run against this architecture, while many of
Odin II’s features cannot target this architecture. As such,
a comparison against an architecture that can fully leverage
Odin II’s features may show different results.

IV. CONCLUSION

To answer how Odin II performs relative to other open
source synthesis tools, this work undertook a comparison
of Odin II with another open source synthesis tool Yosys,
targeting the XC7A200T architecture.

The findings show that Yosys produced 14% lower geomean
across all benchmarks for critical path delay, increasing to
34% lower geomean for circuits with over 1000 blocks.
Additionally, Yosys also yielded 11% lower geomean across
all benchmarks for logic area used, decreasing to 9.2% lower
geomean for circuits with over 1000 blocks. This shows
that Yosys consistently produces better QoR for large circuit
designs when targeting the XC7A200T architecture. The com-
parison also looked at the run time metrics of the two tools
where Yosys used between 2.1x and 10.3x more memory than
Odin II, but completed the synthesis faster than Odin II in
six out of seven large benchmarks. Further, the full Yosys
CAD flow had equivalent memory requirements and completed
faster than the full Odin I CAD flow in five of seven large
benchmarks. As part of this evaluation, this work presented
a framework for comparing the Odin II and Yosys synthesis
flows. This framework allows the two flows to be compared
against a range of architectures and benchmarks, enabling
greater insight into the behaviour of these tools.

The framework described in this work enables Odin II and
Yosys to be compared against many different benchmarks and
architectures. The Titan Benchmark suite [20] is a much larger
set of benchmarks that have been applied to evaluating the per-
formance of VPR. However, due to Odin II’s limited language
support, the Titan flow makes use of Intel’s Quartus II tool to

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-921-8

perform synthesis. Future work is encouraged to revisit this
suite once Odin II achieves sufficient language coverage.

ACKNOWLEDGMENTS

The authors thank the University of New Brunswick, the
University of Waikato, Nyriad Ltd., and ORKA Lab for the
software and hardware resources to complete this work.

REFERENCES

[1] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” ACM Comput. Surv., vol. 34, no. 2, p. 171-210,
Jun. 2002. [Online]. Available: https://doi.org/10.1145/508352.508353

[2] K. E. Murray et al., “Vtr 8: High-performance cad and customizable
fpga architecture modelling,” ACM Trans. Reconfigurable Technol.
Syst., vol. 13, no. 2, pp. 1-55, May 2020. [Online]. Available:
https://doi.org/10.1145/3388617

[3] IEEE, “Ieee standard for verilog hardware description language,” IEEE
Std 1364-2005 (Revision of IEEE Std 1364-2001), pp. 1-590, 2006.

[4] K. E. Murray et al., “Symbiflow and vpr: An open-source design flow
for commercial and novel fpgas,” IEEE Micro, vol. 40, no. 4, pp. 49-57,
2020.

[5] E. Hung, “Mind the (synthesis) gap: Examining where academic fpga
tools lag behind industry,” in 2015 25th International Conference on
Field Programmable Logic and Applications (FPL), 2015, pp. 1-4.

[6] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin ii - an
open-source verilog hdl synthesis tool for cad research,” in 2010 18th
IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines, 2010, pp. 149-156.

[71 B. Yan and K. B. Kent, “Hard block reduction and synthesis improve-
ments in odin ii,” in 2015 International Symposium on Rapid System
Prototyping (RSP), 2015, pp. 126-132.

[8]1 G. Krylov, J. P. Legault, and K. B. Kent, “Hard and soft logic trade-offs
for multipliers in vtr,” in 2020 23rd Euromicro Conference on Digital
System Design (DSD), Aug 2020, pp. 40-43.

[9] J.-P. Legault, P. Patros, and K. B. Kent, “Towards trainable synthesis for

optimized circuit deployment on fpga,” in 2018 International Symposium

on Rapid System Prototyping (RSP). 1EEE, 2018, pp. 90-96.

S. Seeley, V. Sankaranaryanan, Z. Deveau, P. Patros, and K. B. Kent,

“Simulation-based circuit-activity estimation for fpgas containing hard

blocks,” in 2017 International Symposium on Rapid System Prototyping

(RSP). 1IEEE, 2017, pp. 36-42.

R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength

verification tool,” in Computer Aided Verification, T. Touili, B. Cook,

and P. Jackson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 24-40.

VTR Developers, “Verilog-to-routing documentation,” https://docs.

verilogtorouting.org, 2021, [Online; Retrieved: Oct 2021].

V. Betz and J. Rose, “Vpr: a new packing, placement and routing tool for

fpga research,” in Field-Programmable Logic and Applications, W. Luk,

P. Y. K. Cheung, and M. Glesner, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1997, pp. 213-222.

Xilinx Inc., “Artix-7 fpga family,” https://www.xilinx.com/products/

silicon-devices/fpga/artix-7.html, [Online; Retrieved: Oct 2021].

[15] X “Zyng-7000 soc,” https://www.xilinx.com/products/

silicon-devices/soc/zyng-7000.html, [Online; Retrieved: Oct 2021].

Lattice Semiconductor Corporation, “ice40 Ip/hx/Im - low-power,

high-performance fpga,” http://www.latticesemi.com/en/Products/

FPGAandCPLD/iCE40, [Online; Retrieved: Oct 2021].

“BcpS / ecp5-5g. https://www.latticesemi.com/Products/

FPGAandCPLD/ECPS5, [Online; Retrieved: Oct 2021].

C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/,

[Online; Retrieved: Oct 2021].

“Project x-ray - xilinx series 7 bitstream documentation,” https://

symbiflow.github.io/prjxray-db/, [Online; Retrieved: Oct 2021].

K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-driven

titan: Enabling large benchmarks and exploring the gap between

academic and commercial cad,” ACM Trans. Reconfigurable Technol.

Syst., vol. 8, no. 2, pp. 1-18, Mar. 2015. [Online]. Available:

https://doi.org/10.1145/2629579

(10]

[11]

[12]

[13]

[14]

[16]

(71 —
(18]
[19]

[20]

