
Accelerating FPGA-Placement
With a Gradient Descent Based Algorithm

Timm Bostelmann, Tobias Thiemann and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: {bos,inf103917,saw}@fh-wedel.de

Abstract—Programmable circuits and, nowadays, especially Field-
Programmable Gate Arrays (FPGAs) are widely applied in
computationally demanding signal processing applications. Con-
sidering modern, agile hardware / software codesign approaches,
an Electronic Design Automation (EDA) process not only needs
to deliver high quality results, but also has to be swift because
software compilation is already distinctly faster. Slow EDA tools
can in fact act as a kind of show-stopper for an agile development
process. One of the major problems in EDA is the placement of
the technology-mapped netlist to the target architecture. In this
work, a method to reduce the runtime of the netlist placement
for FPGAs is evaluated. The approach is a variation of analytical
placement, with the distinction that a gradient descent is used for
the optimization of the placement. This work is based on previous
publications of the authors, in which a placement algorithm using
self-organizing maps is introduced and optimized. In comparison,
the gradient placement approach is shown to be up to 3.8
times faster than the simulated annealing based reference with
about the same quality regarding the bounding-box and routing-
resource costs.

Keywords–EDA; FPGA; placement; gradient descent.

I. INTRODUCTION
The ever-growing complexity of Field-Programmable Gate

Arrays (FPGAs) has a high impact on the performance of
Electronic Design Automation (EDA) tools. A complete com-
pilation from a hardware description language to a bitstream
can take several hours. One step highly affected by the vast size
of netlists is the NP-equivalent placement process. It consists
of selecting a resource cell (position) on the FPGA for every
cell of the applications netlist. In previous publications of
the authors, a placement algorithm for FPGAs based on a
self-organizing map [1] was presented [2] and optimized [3].
With that approach, placements of high quality were produced.
However, it was relatively slow for large netlists, even when
accelerated using a Graphics Processing Unit (GPU) [4].
Therefore, in this work, a faster approach for netlist placement
based on a gradient descent is presented as an updated version
of the authors’ previous work [4].

Due to the complexity of the netlist placement problem,
many current algorithms work in an iterative manner. A well
known example is simulated annealing [5], which starts with
a random initial placement and swaps blocks stepwise. The
result of every step is evaluated by a cost function. A step
is always accepted, if it reduces the cost. If it increases the
cost, it is accepted with a probability that declines with time
(cooling down). An annealing schedule determines the gradual

decrease of the temperature, where a low temperature means
a low acceptance rate and a high temperature means a high
acceptance rate. Generally, the temperature is described by an
exponentially falling function like

Tn = α
n · T0 , (1)

where typically 0.7 ≤ α ≤ 0.95. However, there has been a lot
of research on the optimization of the annealing schedule like
in [6][7]. As a result, there are many variations available for
any related problem.

Analytical placement is a different approach, where the
problem is described as a system of equations. By solving this
system of equations, the optimal position for every element can
be derived. However, solving such large equation systems takes
much time. Therefore, Vansteenkiste et al. [8] have introduced
a method to approximate the solution of the equation system
by the steepest gradient descent. This approach is shown to be
two times faster than a conventional analytical placement on
average, without any penalties in quality.

In this work, a simplified implementation of the steepest
gradient descent placement is described and benchmarked
extensively. It is not compared to other analytical placement
methods. Instead, the established implementation of the sim-
ulated annealing approach of the Versatile Place and Route
(VPR) tool [9] for FPGAs is used as reference.

In Section II, the problem of netlist placement for FPGAs
is introduced and the principle of netlist placement with a
gradient descent is described. In Section III, the proposed
algorithm is described including some details of its implemen-
tation. In Section IV, the results of the proposed algorithm are
presented. As representation for real world applications, a set
of twenty Microelectronics Center of North Carolina (MCNC)
benchmarks [10] is used. Finally, in Section V, the results of
this work are summarized and a prospect to further work is
given.

II. BACKGROUND
This section is separated into two parts. First, the problem

of netlist placement for FPGAs is introduced. Second, the
general idea of using a gradient descent for the placement of
netlists for FPGAs is described.

A. Netlist Placement for FPGAs
The problem of netlist placement for FPGAs can be

roughly described as selecting a resource cell (a position) on
the target FPGA for every cell of the given netlist. In Figure 1,
an exemplary graph of a netlist is defined. An exemplary

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

In0 C0

C1

C3 C4

In1

In2

In3

C2In4

In5

O0

O1

O2

I/O-Cell

Logic-Cell

Figure 1. An exemplary graph of a netlist consisting of input-, output-, and
logic-cells.

In2

C0 C1In1 C2 In5

C3 C4 O2

O0

In3 In4

O1

In0

Figure 2. A valid placement for the graph in Figure 1 on a simple
island-style FPGA architecture.

placement for this netlist is presented in Figure 2. The positions
must be chosen in a way that:

1) Every cell of the netlist is assigned to a resource cell
of the fitting type (e.g., Input / Output or Logic).

2) No resource cell is occupied by more than one cell
of the netlist.

3) The cells are arranged in a way that allows the best
possible routing.

The first two rules are necessary constraints. A placement
that is failing at least one of these two constraints is illegal
and, therefore, unusable. The third rule is a quality constraint,
which is typically described by a cost function. The goal of
a placement algorithm is to optimize the placement regarding
this function without violating one of the necessary constraints.
Usually, the length of the critical path and the routability are
covered by the cost function.

B. Netlist Placement With a Gradient Descent
The netlist placement with a gradient descent is done by

iteratively optimizing the positions of all elements of the netlist
in the direction of the steepest gradient descent. During this
process, the nodes are not bound to the grid of the FPGA

architecture. Instead, they are positioned in a continuous space.
To generate a valid placement – without overlapping and under
consideration of the FPGA’s architecture – in this approach, a
cycle of optimization and legalization is used. This procedure
is customary for analytical placement methods for FPGAs,
like Gort and Anderson have introduced in [11]. A different
approach would be to generate only valid placements by
exclusively moving the nodes on the architectural grid of the
FPGA.

III. IMPLEMENTATION
A. Gradient Calculation

At the beginning of every optimization step, the bounding-
box size of every net in the netlist is determined. This is a
necessary preparation for the cost-function, which is described
later in this section. To determine the size of a net, all nodes
with a connection to the net are determined. For all these
nodes, the minimum and maximum of the horizontal positions
(Xi) and the vertical positions (Yi) are determined and stored
for the calculation of the gradient. Additionally, the sum of all
sizes in X and Y direction is calculated, as a metric for the
global quality of the current placement.

The goal of every optimization step is to move the nodes in
a direction that leads to a reduction of the bounding-box size
of the containing net. A cost-function is necessary to determine
the influence of every node on the size of the corresponding
net. The gradient of this cost-function can then be used to
determine the direction of the movement of each node. All
nodes of the netlist are moved towards the steepest gradient
descent to reduce the global cost.

An intuitive approach would be to use the sum of the
bounding-box sizes of all nets as cost-function. However, with
this metric, only the outermost nodes would be moved and
even nodes that are very near to the bounding-box would be
ignored. Furthermore, the min and max functions contained in
the metric can not be derived to calculate the gradient.

To solve these issues, an exponential function over the
distance between the position of the node and the bounding-
box of the net is chosen as basis of the cost-function. The
cost-function for a node with the index k is

Ck = α2 ·
∑
n∈Nk

(
eα1 ·(xk−maxx (n)) + eα1 ·(minx (n)−xk)+

eα1 ·(yk−maxy (n)) + eα1 ·(miny (n)−yk)
)
,

(2)

where xk and yk describe the X and Y coordinates of the
current node, Nk describes the set of all nets that contain the
node and minx , maxx , miny and maxy are the minimal and
maximal coordinates of the current net (i.e., the bounding-
box). α1 and α2 are parameters for the cost-function, which
allow to influence the behavior of the function. With α1, it
can be determined how large the distance between the node
and the bounding-box must be to reduce its influence in the
cost-function. The influence of α1 on the gradient is shown in
Figure 3 for the X coordinate of a node, assuming a net with
the boundaries minx = 1 and maxx = 7. With α2, the cost
can be increased or reduced to influence the steepness of the
gradient.

Based on (2), the gradients for the X and Y coordinates

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

1 2 3 4 5 6 7

X Coordinate

−1

0

1

C
os
t-
G
ra
d
ie
n
t

α1 = 1
α1 = 2
α1 = 3
α1 = 4

Figure 3. Exemplary plot of possible gradients for the X coordinate of a node, assuming a net with the boundaries minx = 1 and maxx = 7.

Figure 4. Exemplary placement before the legalization step.

can be calculated as

∂Ck

∂xk
= α2 ·

∑
n∈Nk

(
eα1 ·(xk−maxx (n)) − eα1 ·(minx (n)−xk)

)
, (3)

∂Ck

∂yk
= α2 ·

∑
n∈Nk

(
eα1 ·(yk−maxy (n)) − eα1 ·(miny (n)−yk)

)
. (4)

As a result, the coordinates of nodes that are near the
bounding-box of their containing net have a gradient of ±α2,
where the coordinates of nodes with a larger distance to
the bounding-box have a much lower gradient, as shown in
Figure 3. Consequentially, nodes with a larger gradient value
must be moved further to improve the placement optimally.

B. Legalization
During the optimization step, the nodes can take any

position. Thereby, illegal placements are produced, due to
overlapping of nodes, as well as violation of the architectural
grid of the FPGA. Therefore, the optimized placement must
be legalized in a separate step. This is done by finding the

Figure 5. Exemplary placement after the legalization step.

nearest valid position for every node, as depicted in Figure 4
(before the legalization) and Figure 5 (after the legalization).

The algorithm for the legalization is inspired by the work
of Gort and Anderson [11]. The basic idea of that approach is
to find regions that contain more nodes than the corresponding
region of the FPGA provides. Then, those regions are gradually
expanded. When two regions overlap, they are merged. This is
done until the regions are large enough to place all contained
nodes to a proper resource cell of the FPGA. In the next step,
the regions are split recursively and the nodes are assigned
to the new sections by their position. This is repeated until a
region contains no more nodes, or only one node. In the latter
case, the position of the single remaining node is set to the
position of its containing region.

In this work, the search for regions that contain more
nodes than the corresponding region of the FPGA provides
and the following expansion and merge phases are skipped.
Instead, all nodes are assigned to one large region from the
start and the phase of recursive splitting starts directly. By
this measure, the computational effort for the legalization is

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

reduced significantly without a dramatic impact on the global
quality. This is because – especially when a large amount of
the available resources is used – the result of the expansion
phase is containing usually very few large regions or often
only one large region anyway.

C. Optimization
For the optimization, the algorithm Adam – which was

introduced by Kingma and Ba in [12] – is used. The used
update rules are:

gt = ∆φt Gradient of the variable
mt = β1 · mt−1 + (1 − β1) · gt Running average force one

vt = β2 · vt−1 + (1 − β2) · g
2
t Running average force two

m̂t = mt/
(
1 − βt1

)
Bias corrected force one

v̂t = vt/
(
1 − βt2

)
Bias corrected force two

φt = φt−1 − Sa · m̂t/

(√
v̂t + ε

)
Update of the variable

The constants β1 and β2 define how fast the averages of the
first and second forces change. In this work, the constants were
defined as β1 = 0.96 and β2 = 0.998. The variable Sa defines
the learning rate or, more specifically, the step-width. It starts
at Sa = 1.5, but changes over time (i.e., in the different phases
of the placement).

D. Placement Phases
The previously described steps are executed for every

iteration. The placement process is separated into five phases,
with different parameters. Each phase consists of a given
number of iterations. The number of iterations per phase was
determined empirically and is fixed (i.e., independent of the
size of the design). The phases are:

1) Presorting (5000 iterations)
In this phase, all nodes are moved with a high step
width in the general direction of their final position.

2) Grid placement (1000 iterations)
In this phase, the force of the legalization is increased.
Thereby, the nodes are pulled harder towards legal
positions (i.e., to fitting cells of the architecture).
This is necessary – for example – to prevent input
and output cells from getting stuck in the logic block
section of the architecture.

3) Initial detailed placement (1000 iterations)
In this phase, the global step-width is reduced to
one tenth of the initial value. This influences the
legalization and the optimization equally, so that the
balance between those two steps is not changed.
However, the changes are much smaller, resulting in
a more precise outcome.

4) Detailed placement (5000 iterations)
In this phase, the step-width of the optimization is
reduced linearly to 20 percent of its original value.
Thereby, the nodes are pulled relatively harder to-
wards their final positions in the grid.

5) Final placement (100 iterations)
In this phase the influence of the optimization is re-
duced to zero, so that effectively only the legalization
is active. Hence, the nodes are moved to their final
position in the grid.

TABLE I. A LIST OF THE USED BENCHMARKS AND THEIR
CHARACTERISTICS, THE NUMBER OF CLBS, INPUT BLOCKS, OUTPUT

BLOCKS AND THE GLOBAL BLOCK COUNT

Name Inputs Outputs CLBs Blocks

ex5p 8 63 1064 1135

tseng 52 122 1047 1221

apex4 9 19 1262 1290

misex3 14 14 1397 1425

alu4 14 8 1522 1544

diffeq 64 39 1497 1600

dsip 229 197 1370 1796

seq 41 35 1750 1826

apex2 38 3 1878 1919

s298 4 6 1931 1941

des 256 245 1591 2092

bigkey 229 197 1707 2133

frisc 20 116 3556 3692

spla 16 46 3690 3752

elliptic 131 114 3604 3849

ex1010 10 10 4598 4618

pdc 16 40 4575 4631

s38417 29 106 6406 6541

s38584.1 38 304 6447 6789

clma 62 82 8383 8527

IV. RESULTS
In this section, the benchmark results of the previously

described placement algorithm are presented. VPR is used as
reference for the comparison of the placement results, as well
as for the routing and timing analysis.

All used MCNC benchmarks [10] and their characteristics,
namely, the number of Configurable Logic Blocks (CLBs),
input blocks, output blocks and the sum of all blocks are listed
in Table I, sorted by ascending complexity (i.e., the global
block count). The netlists are placed on a homogeneous island-
style architecture with four input lookup tables.

A. Bounding-Box Costs
The standard metric used for the approximation of the

quality of a placement in VPR is the bounding-box cost. It is
basically the sum of the half perimeter of the bounding-boxes
(i.e., length plus width) of all nets. As introduced by Betz and
Rose in [9], the bounding-box metric can be described as

Cost =
Nnets∑
n=1

q(n)
[

bbx(n)
Cav,x(n)

+
bby(n)

Cav,y(n)

]
, (5)

where bbx(n) and bby(n) describe the horizontal and vertical
size of the net n. Cav,x(n) and Cav,y(n) describe the average
capacity of horizontal and vertical channels in the region of
the net (in the considered case, the capacity is homogeneous
over the whole architecture, so these values are constant. q(n)
corrects the effort for nets with more than three nodes, because
it would otherwise be approximated to low.

In Table II, the bounding-box costs for the previously
introduced benchmark netlists are presented. The results of
VPR and the gradient placer are shown as absolute values and
in relation to each other:

CostRelative =
CostVPR

CostGradient
· 100 % (6)

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE II. COMPARISON OF THE BOUNDING-BOX COSTS BETWEEN THE
GRADIENT PLACEMENT AND THE SIMULATED ANNEALING OF VPR

Netlist VPR Gradient Relative / %

ex5p 180.599 173.701 96.18
tseng 102.398 101.112 98.74
apex4 195.338 190.657 97.60
misex3 200.456 199.160 99.35
alu4 204.692 200.965 98.18
diffeq 155.531 156.375 100.54
dsip 199.845 179.254 89.70
seq 260.789 267.686 102.64
apex2 280.120 293.168 104.66
s298 225.344 217.479 96.51
des 257.643 268.889 104.36
bigkey 209.470 201.344 96.12
frisc 587.227 593.630 101.09
spla 628.155 672.990 107.14
elliptic 497.645 503.854 101.25
ex1010 684.798 720.589 105.23
pdc 939.813 976.890 103.95
s38417 687.198 784.862 114.21
s38584.1 684.220 774.451 113.19
clma 1502.330 1598.670 106.41

Average 101.85

It can be seen that especially the smaller netlists profit from the
gradient placement. Remarkably, for all netlists with less than
1600 nodes, the bounding-box costs are less with the gradient
placer than with VPR. If the larger netlists are included, the
costs for the gradient placer are only 1.85 percent higher on
average, which is almost equal.

B. Channel Width
After their generation, the placements were routed with

the VPR router and the Channel Width (CW), as well as the
amount of necessary wire elements as a measure for the total
Wire Length (WL) were determined. The results are shown in
Table III. The differences in the channel width are given as a
simple delta between the results:

∆CW = CWVPR − CWGradient (7)

The differences in the wire length are given as ratio between
the results in percent:

WLRelative =
WLVPR

WLGradient
· 100 % (8)

The needed channel width of the gradient method is on average
0.5 channels smaller than the reference, whereas its total wire
length is 0.09 percent longer. Both values are considered to be
almost equal to the reference.

C. Runtime
In the previous sections, it was shown that the gradient

placer produces a similar placement quality as VPR in regard
of the bounding-box cost and the required routing resources.
In this section, the runtime of both algorithms is measured and
evaluated. The configuration of the system that has been used
for the benchmarking is provided in Table IV.

The results are shown in Table V. The presented numbers
are each an average of ten measurements. All single mea-
surements varied less than two percent of the average of the
measurement series.

TABLE III. COMPARISON OF THE MINIMAL CHANNEL WIDTH (CW) AND
THE TOTAL WIRE LENGTH (WL) BETWEEN THE GRADIENT BASED

PLACEMENT ALGORITHM AND THE SIMULATED ANNEALING OF VPR

Netlist VPR Gradient Relative
CW WL CW WL ∆CW WL / %

ex5p 15 20034 14 19541 -1 97.54
tseng 8 10200 7 9463 -1 92.77
apex4 15 22215 13 22116 -2 99.55
misex3 13 21884 12 21820 -1 99.71
alu4 12 22319 11 21261 -1 95.26
diffeq 9 15369 8 15292 -1 99.50
dsip 7 18065 7 15260 0 84.47
seq 12 28469 13 28977 1 101.78
apex2 12 30826 12 31905 0 103.50
s298 8 22335 9 21801 1 97.61
des 9 28084 9 28764 0 102.42
bigkey 8 21424 7 20315 -1 94.82
frisc 17 63146 14 64220 -3 101.70
spla 16 68364 16 72288 0 105.74
elliptic 11 44742 12 51127 1 114.27
ex1010 13 71891 12 73653 -1 102.45
pdc 19 104065 19 106057 0 101.91
s38417 8 64626 9 68999 1 106.77
s38584.1 10 64626 9 64180 -1 99.31
clma 14 141660 14 142695 0 100.73

Average -0.5 100.09

TABLE IV. CONFIGURATION OF THE SYSTEM THAT HAS BEEN USED FOR
THE BENCHMARKING OF THE GRADIENT ALGORITHM AND VPR

Property Value
Processor Intel® Core™ i7-4510U

Cores 2
Threads 4

Base Frequency 2.00 GHz
Turbo Frequency 3.10 GHz

Cache 4 MB
RAM 16 GB

On average, the gradient based placement algorithm needs
less than half of the time of the simulated annealing placer of
VPR. Furthermore, the ratio is even better for large netlists,
as can be seen clearly in Figure 6. For example, the largest
netlist in this benchmark series – the clma netlist – is placed
3.8 times faster with the gradient based approach.

V. CONCLUSION AND FUTURE WORK
In this work, a fast approach for netlist placement based

on a gradient descent was presented. The gradient placer was
compared to the simulated annealing based placer of VPR. It
has been shown that the quality of the placement in regard of
the bounding-box cost and the occupation of routing resources
(i.e., channel width and total wire length) is equal to the
reference within a reasonable margin of error, as proven by
placing twenty prominent benchmarking netlists of different
complexity. Notably, the presented approach is shown to be
up to 3.8 times faster than the reference. On average, it needs
less than half of the time to compute the result. However,
preliminary results show that the resulting length of the critical
path is worse with the gradient placer (about twenty percent
for the largest netlist in this work). This would need to be
addressed in future work.

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

ex5p
tseng
apex4
m
isex3

alu4
diff

eq
dsip

seq
apex2
s298
des
bigkey
frisc
spla
elliptic
ex1010
pdc
s38417
s38584.1
clm

a

Netlist

0

100

200

300

R
u
n
ti
m
e
/
s

VPR
Gradient

Figure 6. Diagram of the runtime as average of ten measurements between the gradient based placement algorithm and the simulated annealing of VPR.

TABLE V. COMPARISON OF THE RUNTIME AS AVERAGE OF TEN
MEASUREMENTS BETWEEN THE GRADIENT BASED PLACEMENT

ALGORITHM AND THE SIMULATED ANNEALING OF VPR

Netlist VPR / s Gradient / s Relative / %

ex5p 14.69 7.23 49.23
tseng 13.86 7.34 53.00
apex4 17.34 8.53 49.16
misex3 18.27 9.54 52.20
alu4 20.81 10.48 50.36
diffeq 21.05 10.63 50.47
dsip 20.62 11.45 55.54
seq 27.12 12.53 46.21
apex2 29.60 13.41 45.31
s298 25.35 12.90 50.90
des 27.01 13.48 49.92
bigkey 28.36 13.72 48.36
frisc 75.10 27.83 37.05
spla 78.67 28.21 35.85
elliptic 76.02 27.79 36.56
ex1010 104.21 36.11 34.65
pdc 111.76 37.30 33.37
s38417 165.32 53.89 32.60
s38584.1 167.96 54.72 32.58
clma 282.60 75.04 26.55

Average 43.49

As the current implementation of the gradient placer is
executed only single-threaded, the next logic step would be to
parallelize its execution to make it even faster. The calculation
of the gradients could be executed in parallel on node level,
and even large parts of the legalization (e.g., the assignment
of nodes to the regions) could be parallelized. Hence, a multi-
threaded implementation would be beneficial and even a GPU-
computing approach seems to be promising.

Even though the gradient placement approach was shown
to be comparably fast for large netlists, a more recent set of
benchmarks like the one included in [13] – containing much

larger netlists – could be used to underline the scalability of
the approach.

REFERENCES
[1] T. Kohonen, Self-Organizing Maps. Springer, 1995.
[2] T. Bostelmann and S. Sawitzki, “Improving FPGA placement with a

self-organizing map,” in International Conference on Reconfigurable
Computing and FPGAs (ReConFig), December 2013, pp. 1–6.

[3] T. Bostelmann and S. Sawitzki, “Improving the performance of a
SOM-based FPGA-placement-algorithm using SIMD-hardware,” in The
Ninth International Conference on Advances in Circuits, Electronics and
Micro-electronics (CENICS), July 2016, pp. 13–15.

[4] T. Bostelmann, P. Kewisch, L. Bublies, and S. Sawitzki, “Improving
FPGA-placement with a self-organizing map accelerated by GPU-
computing,” International Journal On Advances in Systems and Mea-
surements, vol. 10, no. 1 & 2, 2017, pp. 45–55.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, May 1983, pp. 671–680.

[6] L. Ingber, “Adaptive simulated annealing (ASA): Lessons learned,”
Control and Cybernetics, vol. 25, 1996, pp. 33–54.

[7] M. M. Atiqullah, “An efficient simple cooling schedule for simulated
annealing,” in International Conference on Computational Science and
Its Applications (ICCSA). Springer, 2004, pp. 396–404.

[8] E. Vansteenkiste, S. Lenders, and D. Stroobandt, “Liquid: Fast place-
ment prototyping through steepest gradient descent movement,” in
2016 26th International Conference on Field Programmable Logic and
Applications (FPL), August 2016, pp. 1–4.

[9] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in International Conference on Field Programmable
Logic and Applications (FPL). Springer, 1997, pp. 213–222.

[10] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Microelectronics Center of North Carolina, Tech. Rep.,
1991.

[11] M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAs,” in 22nd International Conference on Field Programmable
Logic and Applications (FPL), August 2012, pp. 143–150.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, 2015, pp. 1–15.

[13] J. Luu et al., “VTR 7.0: Next generation architecture and CAD system
for FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
June 2014, pp. 6:1–6:30.

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

