
A Synthesizable VHDL Export for the
Custom Architecture Design Tool CustArD

Thomas Fabian Starke, Timm Bostelmann, Helga Karafiat and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: starke.thomas@yahoo.de, {bos,kar,saw}@fh-wedel.de

Abstract—The research of reconfigurable architectures usually
goes hand in hand with a high amount of non-recurring work
for Electronic Design Automation (EDA) tool development or
adaption. Therefore, in previous work, a heterogeneous archi-
tecture template for application domain specific reconfigurable
logic was proposed. The goal of this template is to allow the
optimization of a reconfigurable architecture towards a specific
application domain and to reduce the effort for tool generation
in architecture research. In this work, a method to export the
described architecture for synthesis is presented. It can be used
for a silicon or Field-Programmable Gate Array (FPGA) overlay
implementation and thereby extends the usability of the existing
design flow. In the future, this work could even be used do derive
a detailed timing-model for the designed architectures.

Keywords–FPGA; architecture design; VHDL; CustArD

I. INTRODUCTION
Highly flexible FPGAs [1] address the demands of fast

product lifecycles perfectly, where the non-recurring engineer-
ing costs and the slow development process of Application
Specific Integrated Circuits (ASICs) are prohibitive. However,
the main disadvantage of such flexible, reconfigurable logic
structures lies in the vast amount of configuration and com-
munication overhead and hampers their use for high volume
or high performance applications. The overhead is caused
by the configuration memory of the logic blocks and the
routing resources, as well as by the routing network itself.
As shown by Kuon et al. in [2] – compared to a standard
cell implementation – this overhead increases the area of the
chip by a factor of 40 and the power consumption by a factor
of 12. Additionally the delay times are increased because the
switch- and connection-boxes used for the flexible routing are
much slower than fixed connections, resulting in a 3.2 times
slower design. A very detailed analysis of the gap between
FPGAs and ASICs is presented by the same authors in [3]. It
is also shown, that the overhead can be reduced significantly if
the right special function blocks (e.g., multipliers or memory)
are included in the FPGA design. The main problem herein is,
that the demand for special function blocks varies considerably
with the application. Obviously, a high amount of unused
special function blocks has a direct negative impact on the area
efficiency. Moreover, the clock frequency can also be reduced
because of longer signal paths between the actually utilized
resources. Simply put, flexibility can be traded for efficiency
(in a smaller set of applications) and the other way around (see
also [4]).

In fact, modern FPGAs are equipped with coarse-grained

logic to make them more competitive. Furthermore, many
specialized reconfigurable architectures have been proposed by
the scientific community over the last decades. For example, a
datapath oriented FPGA architecture – implementing parallel
routing – has been introduced by Leijten-Nowak et al. in [5].
It reduces the necessary amount of configuration memory by
sharing configuration memory bits between routing resources
as proposed by Cherepacha et al. in [6]. Furthermore, a highly
hierarchical, heterogeneous architecture (Tree-Based Hetero-
geneous FPGA Architecture) was introduced and evaluated by
Farooq et al. in [7]. Both techniques are shown to be bene-
ficial for arithmetic intensive applications like Digital Signal
Processing (DSP). At the same time, especially the usage of
memory sharing reduces the flexibility of the architecture.

Unfortunately, architecture research often demands the
development or at least an adaption of a complete toolchain.
This makes the exploration of new architectures very time-
consuming and complicates the comparison of architectures
that have been developed using different tools. As in the papers
quoted above, academic toolchains are usually customized to-
wards a rather fixed architecture. They only allow to configure
the proposed architecture to some extent, but not to modify
its global structure. To some degree the Verilog-to-Routing
(VTR) Project for FPGAs which has been introduced by Rose
et al. in [8] is an exception in this regard. The VTR project
offers a very flexible and sophisticated academic development
toolchain for FPGAs. It allows a detailed description of a
hypothetical architecture, including timing information. Even
an export for synthesis has been proposed by Kim et al. in
[9]. The architecture description language grants a very flexible
definition of Configurable Logic Blocks (CLB). The CLBs can
contain for example fracturable lookup-tables, custom routing
resources like bus-multiplexers, custom logic and hierarchical
clusters [10]. However, the general structure of the architecture
– an island-style grid of logic blocks – is still fixed. Special
function blocks and different CLBs have to be placed column-
wise in the grid, meaning a column can only contain one type
of logic. Considering this, even though VTR is great for EDA
and island-style FPGA architecture research, its architecture
description language is not fully suited for a wide and rapid
exploration of the architecture design space as it is envisioned
by the authors of this work.

Therefore, a heterogeneous architecture template for appli-
cation domain specific reconfigurable logic was proposed in
[11] by Bostelmann and Sawitzki. A class of reconfigurable
architectures – a meta-architecture – which can be flexibly

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

optimized towards a specific application domain was intro-
duced. It supports hierarchical, heterogeneous structures, as
well as parallel datapath connections. In addition, a concept
for a corresponding design flow has been proposed in [12].
It allows a directed exploration of application domain specific
architectural optimizations. By the derivation of specialized
architectures from a very flexible meta-architecture the design
flow allows to:

1) Rapidly optimize an architecture towards a specific
application domain

2) Improve the comparability between different derived
architecture instances

3) Reduce the effort for tool generation
In this work, based on the previous publications mentioned

above, an extension for the export of the described architecture
to a Hardware Description Language (HDL) is introduced. It
can be used for a silicon or FPGA overlay [13] implementation
of the designed architecture. The current implementation sup-
ports an export as synthesizable Very high speed integrated
circuit HDL (VHDL) code with direct support of the Intel
FPGA Quartus tools.

The rest of this work is organized as follows. In Section II,
the concepts of the meta-architecture and the corresponding
design flow that have been proposed in previous work are
summarized. In Section III, the implementation of the HDL
export is described. In Section IV, exemplary results of the
HDL export are presented. Finally, in Section V, this work is
summarized and an outlook to further work is given.

II. BACKGROUND
This section is split into two parts. First the degrees of

freedom and the global structure of the meta-architecture used
in this work are described and then the concept of the extended
design flow is depicted.

A. Meta-Architecture Description
The reconfigurable architecture is described on function

block level. A basic set of configurable function blocks is
provided, but can also be extended by the user. The basic set
consists of the following function blocks:

LUT lookup-table
REG register or single flipflop
MUX multiplexer
MEM memory
IO input and output buffer
SB switchbox (bi- or unidirectional)
CB connectionbox (bi- or unidirectional)
IP fixed IP core from a library
GRID grid of blocks or grids
The global structure of the architecture is based on two

types of grid. The first one is a ‘repeating grid’ which repeats
one block (or an other grid) n × m times. The second one is
a ‘custom grid’ which can contain a custom compilation of
blocks (or other grids like shown in Figure 1). By supporting
recursive grids the design of highly hierarchical, tree-based
architectures without a huge top-level grid is encouraged.
Of course, the description of flat island-style architectures is
possible as well, by simply using a top-level ‘repeating grid’.

B. Design Flow
The design flow for the meta-architecture described above

is shown in Figure 2 as proposed in [11]. The user creates an

Grid (2x1)

Core

Core

CoreCore

Grid (1x3)

(a) Flat view of the recursive grid structure

Architecture
Grid (1x3)

Block
Core

Block
Grid (2x1)

Block
Core

Block
Core

Block
Core

(b) Tree view of the recursive grid structure

Figure 1. An exemplary recursive grid structre, consisting of two grids and
four cores

architecture in a graphical architecture design tool called Cus-
tom Architecture Design Tool (CustArD) or derives it from a
template. The design tool was first presented by Sternberg et al.
in [14]. CustArD exports an internal Architecture Description
File (ADF), as well as an HDL description of the architecture.
This feature is the major topic of this work. The user can
then select a set of reference or benchmark applications, which
are synthesized and mapped to the architecture based on the
ADF. After this step, an analysis tool provides the user with
an early evaluation of the block utilization. This is especially
interesting if the impact of special function blocks for a given
set of applications is explored. It allows for example a directed
optimization of the provided resources towards a specific appli-
cation domain. After a complete toolchain iteration the analysis
tool provides a detailed evaluation including benchmark results
and the utilization of routing resources. This can be used
to explore new routing techniques or again to optimize the
architecture towards a specific application domain, for example
by adapting the width of parallel datapath routing elements.

III. IMPLEMENTATION
The VHDL export plugin maps the CustArD representation

of an architecture into a VHDL representation. This is achieved
by mapping each CustArD architecture component to its
corresponding VHDL representation.

A. VHDL Primitives
The architecture in CustArD consists of primitives whose

complexity can vary from a simple logic gate to a com-
plex Intellectual Property (IP) core. For the VHDL export
the following primitives are used: logic gate (AND, NAND,
NOR, NOT, OR, XNOR, XOR), multiplexer, flipflop, Lookup
Table (LUT), selector, wire, Static Random-Access Memory
(SRAM), Connection-Box (CB) and Switch-Box (SB). Fur-
ther primitives can be added through storage of their VHDL

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

HDL

Synthesis
and

Technology
Mapping

HDL
Implementation

of the given
Applications

Placement,
Routing

and
Timing-Analysis

Statistical
Analysis
of the
Block

Utilization

Statistical
Analysis
of the

Routing
Utilization

HDL
Implementation
of the designed

Architecture

User
InteractionCustom

Architecture
Design

Tool

HDL

ADF

ADN

Figure 2. A Flowchart of the described design flow for heterogeneous reconfigurable architectures

config_in

config_out

config_clk

in out

clk

Device 1
in out

clk

Device 2
in out

clk

Device 3

 config_in config_out

MSB LSB
B0B1Bn-1Bn

...

Figure 3. Schematic of the global organization of the configuration memory

representations in the export plugin.
Global Signals: Currently only fully synchronous designs

are supported. As a result the signals clk and reset that are
needed by some VHDL primitives like a flipflop are handled
globally. In the VHDL export, they are marked with the prefix
global in all primitives that make use of them.

Configuration Signals: To use the exported architecture for
an application some components like LUT or switchboxes have
to be configured. This is done through a JTAG-like configura-
tion mechanism with a shift register. All components that need
configuration are serially connected as shown in Figure 3 and
store the configuration information internally. The length of
the configuration register depends on the information that is
needed for each component. The signals used for configuration
are marked with the prefix config in the corresponding VHDL
primitives.

Wire: A wire connects an input signal directly to an
output signal. It is the most simple primitive in CustArD. Its
export could have been implemented with a special treatment
which would have reduced the complexity of the VHDL
code. However, a special treatment would lead to a higher
implementation complexity and less consistency. Therefore,
even this trivial component is exported as a VHDL primitive.

Lookup Table: A LUT stores precomputed information that
is available at runtime. The data is stored in the LUT during
the configuration. Therefore the VHDL primitive of a LUT
contains a configuration register (see Figure 4). It consists
of n = 2asw words, where as asw stands for address signal
width. The size W of a word corresponds to the output signal

config_in config_out MSB LSB
W0W1Wn-1Wn

...

Figure 4. Organization of the configuration memory for a LUT

config_in config_out MSB LSB
LEFT RIGHT TOPBOTTOM

TOP: t_opin0t_opin1
...t_opinn-1t_opinn

Figure 5. Organization of the configuration memory for a switchbox

width osw of the LUT. As a result, the overall size of the
configuration register has W · 2asw bits.

SRAM: The SRAM is like a LUT, except that the informa-
tion can be stored and changed at runtime. It is assumed that
the input vector width isw is equal to the output vector width
osw and that the number of words stored in the SRAM is 2asw,
where asw stands for address signal width. The resulting size
of the SRAM is 2asw · isw bits.

Selector: The selector is similar to a multiplexer except that
the output signal is chosen during configuration time instead
of runtime. Therefore this component needs a configuration
register of size ld(isw) bits.

Switchbox: The standard switchbox in CustArD uses bidi-
rectional pins. In order to minimize the hardware complexity,
an advanced switchbox has been implemented which has fixed
input and output pins on each side. The internal connection
structure was implemented as a disjoint switchbox. As a
simplification, it is additionally defined that the amount of
the vertical input and output pins must be the same as the
amount of the horizontal ones. The configuration register (see
Figure 5) defines in which way the input pins and output pins
are connected, according to the contraints of a unidirectional
disjoint switchbox.

Connectionbox: The connectionbox is a special form of a
switch box and is used for configurable connections between
logic elements and horizontal or vertical connecting structures.
In order to provide maximum connectivity, any input pin can
be assigned to any output pin of the connection box. Figure 6

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

config_in config_out MSB LSB
LEFT RIGHT TOPBOTTOM

TOP: t_opin0t_opin1
...t_opinn-1t_opinn

t_opin0 sidepinnumber

Figure 6. Organization of the configuration memory for a connectionbox

shows the structure of the configuration register within the
connectionbox.

B. VHDL-Export-Plugin
The HDL-export traverses the architecture tree and calls

the corresponding processing routine for every node, which
then passes the calculated information towards the root. The
utilzed routines are described below.

Core: The core object represents a leaf of the architec-
ture tree. It is directly translated into a VHDL primitive.
Therefore, the entity declaration of a VHDL file is read
and the signal names, as well as the generic identifiers are
mapped to the identifiers used in CustArD. The generic
mapping declaration is designed from the configuration values
deposited in CustArD. It is stored in VHDL objects. All related
CustArD signals are stored in a dictionary like {Pingroup :
[(Pinnumber, [(Terminal 1, Terminal 2,Net)∗])∗]}, where Ter-
minal 1 corresponds to the source and Terminal 2 to the sink.

IO-cores which are the in- and output of the architecture,
are processed differently. For them no VHDL primitives are
created, but the signals of the IO-cores are integrated into a
global list that is only processed at the root element of the
tree.

Grid: A grid represents a node of the architecture tree and
is translated into a VHDL file. For all elements of the grid the
following steps are processed.

1) A VHDL file is created for each of the subtrees
through a call of the block method.

2) The instantiation of the VHDL file is created and
inserted into the grid VHDL file object including
the creation and storage of the port and generic map
declaration.

3) The signals of the instance are entered into the grid
VHDL file as local signals.

4) If there are configuration signals within the port of
the instantiated VHDL object, the configuration bus
is extended by this object and the configuration action
signals within the grid are adjusted.

All detected signals from the VHDL instances are assigned by
a matching algorithm. All signals that couldn’t be matched,
lead to different parts of the architecture tree and are therefore
passed up to the next instance.

Block: A block is a container class within the CustArD
architecture tree and, in addition to a grid or a core element,
contains further meta information, such as a unique block ID
and a referenced flag. The processing method of a block, first
creates the associated VHDL file object from the grid or core
element. If this is not a primitive object, the associated VHDL
file is generated from the VHDL file object. The determined
signals of the subtrees are used as inputs or outputs of this
VHDL entity and are specified in the port declaration. Blocks
can also be used several times within the architecture tree. This

Figure 7. Imlementation of a simple CLB in CustArD

TABLE I. EXPORT TIME FOR AN ARCHITECTURE CONSISTING OF TWO
PRIMITIVES IN A 5 X 5 GRID

Number of connections time / s used memory / MB

0 0.63 <1.5
320 0.68 <1.5

is indicated by the reference flag within the block. If this is
the case, the obtained information about the interface of these
subtrees is stored in a global block cache. If such a block is
recompiled, the translation can be interrupted directly at this
level and replaced by the cached content, which significantly
reduces the translation effort and the number of resulting
VHDL files.

Architecture: The architecture element represents the root
of the architecture tree. Similar to the block, it can contain a
core or a grid element. The processing of this node is similar
to that of the block, but all internal signals must be mapped
at this level so that only the IO-core signals, as well as the
con f ig and global signals are included.

IV. RESULTS
In this section, the runtime and memory usage of the

VHDL export plugin are discussed, depending on the number
of connections, number of used primitives and the architecture
tree depth. Figure 7 shows a simple CLB architecture designed
in CustArD which consists of one 1 x 5 grid and five different
primitives. The result of the VHDL export plugin consists
of three VHDL primitives and one VHDL file representing
the grid of the CLB architecture. Figure 8 shows a Register
Transfer Level (RTL) plot of the export in Intel FPGA Quartus.

Table I shows the export time for an architecture consisting
of two primitives in a 5 x 5 grid, with and without wiring. It
shows that the number of connections has only little influence
on the runtime of the export plugin. Table II shows the export
time for an architecture consisting of ten different primitives
in a architecture tree with a depth of four. The runtime of the
export plugin depends on the number of primitives and the
maximum depth of the architecture tree. This is manageable
even for larger structures, since they usually consist of ref-
erenced blocks or grids that are used multiple times but are
exported only once.

TABLE II. EXPORT TIME FOR AN ARCHITECTURE CONSISTING OF TEN
DIFFERENT PRIMITIVES IN A ARCHITECTURE TREE WITH THE DEPTH OF

FOUR

Number of connections time / s used memory / MB

0 0.50 <1.0
10 0.50 <1.0
30 0.65 <1.0

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 8. Intel FPGA Quartus RTL view of the exported CLB shown in Figure 7

V. CONCLUSION AND FUTURE WORK
In this work, an extension for the custom architecture

design tool CustArD was presented. It was shown how a
reconfigurable architecture that has been optimized towards a
specific application domain can be exported to a synthesizable
VHDL format. The results for a simple LUT design were pre-
sented. Furthermore, it was shown that the export is reasonably
fast for small designs. The automatic generation of project files
for the Intel FPGA Quartus tools allow a seamless utilization
of the results.

In future work, an export to the Verilog HDL language is
planned to establish consistency between the input and output
file formats. Since the internal data-structures and concepts
are HDL-independent, this should not be very complicated.
Furthermore, larger architectures should be benchmarked to
show the real-world applicability of this approach. Finally, the
usability of this export tool could be increased even further by
the creation of more building blocks (e.g., configurable DSP
blocks).

REFERENCES
[1] W. Carter et al., “A user programmable reconfigurable logic array,” in

IEEE Custom Integrated Circuits Conference (CICC), 1986, pp. 233–
235.

[2] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, Feb 2007, pp. 203–215.

[3] I. Kuon and J. Rose, Quantifying and Exploring the Gap Between FP-
GAs and ASICs, 1st ed. Springer Publishing Company, Incorporated,
2009.

[4] H. Parvez, Z. Marrakchi, and H. Mehrez, “ASIF: Application specific
inflexible FPGA,” in Field-Programmable Technology (FPT), Dec 2009,
pp. 112–119.

[5] K. Leijten-Nowak and J. L. van Meerbergen, “An FPGA architecture
with enhanced datapath functionality,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2003, pp.
195–204.

[6] D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA architecture
optimized for datapaths,” VLSI Design, vol. 4, no. 4, 1996, pp. 329–
343.

[7] U. Farooq, Z. Marrakchi, and H. Mehrez, Tree-Based Heterogeneous
FPGA Architectures: Application Specific Exploration and Optimiza-
tion. Springer, 2012.

[8] J. Rose et al., “The VTR project: Architecture and CAD for FPGAs
from Verilog to routing,” in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2012, pp. 77–86.

[9] J. H. Kim and J. H. Anderson, “Synthesizable FPGA fabrics targetable
by the Verilog-to-Routing (VTR) CAD flow,” in 2015 25th International
Conference on Field Programmable Logic and Applications (FPL), Sept
2015, pp. 1–8.

[10] J. Luu, J. H. Anderson, and J. Rose, “Architecture description and pack-
ing for logic blocks with hierarchy, modes and complex interconnect,”
in ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), 2011, pp. 227–236.

[11] T. Bostelmann and S. Sawitzki, “A heterogeneous architecture template
for application domain specific reconfigurable logic,” in 2015 Austrian
Workshop on Microelectronics (Austrochip), Sept 2015, pp. 9–14.

[12] T. Bostelmann and S. Sawitzki, “Towards a guided design flow for
heterogeneous reconfigurable architectures,” in 2015 25th International
Conference on Field Programmable Logic and Applications (FPL), Sept
2015, pp. 1–2.

[13] A. Brant and G. Lemieux, “ZUMA: An open FPGA overlay architec-
ture,” in Field-Programmable Custom Computing Machines (FCCM),
April 2012, pp. 93–96.

[14] H. Sternberg, T. Bostelmann, and S. Sawitzki, “CustArD - a custom
architecture design tool,” presented at the Technical Demonstrations
Session of the International Conference on Reconfigurable Computing
and FPGAs (ReConFig), Dec 2014, p. 2.

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

