
Local Alignment Search in Genetic Sequences on a Low-Cost FPGA

Timm Bostelmann, Thomas Fabian Starke and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: bos@fh-wedel.de, starke.thomas@yahoo.de, saw@fh-wedel.de

Abstract—The search for local alignments in genetic sequences is
a common challenge in the field of bioinformatics. The problem
is to find similar subsequences in genetic sequences of different
lengths. Usually, the search is done in a genome database that
contains hundreds of millions of sequences and rising. Due to the
large amount of data, the speed is of a high concern. The search
for a local alignment between a query-sequence and a database-
sequence is usually done with the Basic Local Alignment Search
Tool (BLAST) algorithm. In this work, an implementation of
an accelerator for the BLAST algorithm on a low-cost Field-
Programmable Gate Array (FPGA) is presented. The data is
processed in a tree-like hardware architecture. The advantages
and disadvantages of the presented approach are shown and
discussed. Finally, an outlook is given on the pending issues
of the current implementation. The main contribution of this
paper is the focus on an implementation with support of low-cost
hardware.

Keywords–FPGA; BLAST; DNA; local alignment

I. INTRODUCTION
In the field of bioinformatics, the comparison of genetic

sequences is as challenging as it is important. Usually, a query-
sequence is compared with a set of sequences that are stored
in a genome-database. The goal is to find partial or complete
similarities. This is for example useful if an unknown virus
is analyzed because properties of the unknown virus can be
derived from similarities to known entities.

1982 1987 1992 1997 2002 2007 2012 2017
0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

200000000

Date / year

D
at

ab
as

e
si

ze
 /

se
qu

en
ce

s

Figure 1. Chart of the number of genetic sequences stored in the
genome-database of the National Center for Biotechnology Information

(NCBI) over time [1].

Over the last decades, the size and number of genetic
sequences stored in genome-databases has risen considerably,
as shown in Figure 1. Further growth of the databases is to
be expected, due to the shrinking costs of genome sequencing
(see Figure 2). As a result, a fast and efficient implementation
of the search-algorithms is mandatory.

The preferred method for the comparison of genetic se-
quences of different lengths is the local alignment search.
Where the global alignment search is well suited to find
similarities in sequences of equal or similar length, the local
alignment search is utilized to find similar subsequences in
genetic sequences of different lengths. However, this process
conveys an extremely high computational effort. An estab-
lished approach is the BLAST algorithm which has been
introduced by Altschul et al. [3].

There have been several works on the acceleration of the
local alignment search with high-performance FPGAs [4]–[6].
Usually, the proposed accelerators utilize clusters of several
high-performance FPGAs. There are even industrial BLAST-
accelerators based on such hardware available, like [7]. How-
ever, in this work an implementation on a low-cost FPGA
development and education board is presented and analyzed.
It is based on a tree-like data-flow [8] architecture.

The rest of this work is structured as follows. In Section II,
the principles of the BLAST algorithm are introduced. Based
on this introduction, in Section III, an implementation of the
BLAST algorithm on a low-cost FPGA board is described. In
Section IV, the results of this implementation are presented.
Furthermore, the advantages and disadvantages compared to an
implementation in software are discussed. Finally in Section V,
this work is summarized and a prospect to further optimization
is given.

II. BACKGROUND
The BLAST algorithm is used for the search of similarities

(i.e., local alignments) between a query-sequence and the
sequences of a genome-database. It generates a list of positions
or regions that are similar between the query-sequence and the
database-sequence. Additionally, the significance of every hit
is generated as a measure of the similarity.

The BLAST algorithm can be divided into five steps which
are described in the following. It has to be remarked that
the first four steps have to be executed for all entries in the
genome-database and are therefore especially time-sensitive.

Step 1: Creation of the hit-matrix
For the search of a query-sequence w in a database-

sequence u with a scoring-function σ(α → β) both sequences
are segmented into overlapping words of the length q ∈ N.

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 2. Chart of the cost per sequenced genome over time [2].

The following example is assuming a word length of q = 3:

AVKTCSGA⇒ {AVK, VKT, KTC, TCS, CSG, SGA} (1)

The resulting set of words is called w-mers. The generated
words are called q-words. The scoring-function σ is used
to determine the degree of similarity between a symbol of
the query-sequence and a symbol of the database-sequence.
Depending on the sequence-type usually either the Block Sub-
stitution Matrix (BLOSUM) or the Point Accepted Mutation
(PAM) matrix is used to determine the degree of similarity.
Deletions and insertions are handled as follows:

σ(“-”→ β) = σ(α → “-”) = −∞ (2)

Assuming i and j are the indexes in the query- and the
database-sequence, a pair (i, j) is a hit, if for a threshold k
the following inequation is true:

i ∈ {0 ... |u| − q + 1} (3)
j ∈ {0 ... |w | − q + 1} (4)

scoreσ (u[i ... i + q − 1]︸ ︷︷ ︸
q-word in u

,w[j ... j + q − 1]︸ ︷︷ ︸
q-word in w

) ≥ k (5)

Every q-word of the query-sequence is compared with every
q-word of the database-sequence by the scoring-function σ.
The results are stored in a hit-matrix, as shown in Figure 3.

Step 2: Extraction of relevant hits
To optimize the following steps three and four, the relevant

hits in the hit-matrix are identified. Therefore, all hits that are
located adjacently on a common diagonal are grouped like
shown in Figure 4. Usually, a hit-length d is specified as the
minimal length of the diagonals. The gray hits in Figure 4 are
not grouped and will therefore be sorted out.

q-Words of the database-sequence u

q-
W

or
ds

 o
f t

he
 q

ue
ry

-s
eq

ue
nc

e
w

Figure 3. An exemplary hit-matrix generated by the first step of the BLAST
algorithm.

q-
W

or
ds

 o
f t

he
 q

ue
ry

-s
eq

ue
nc

e
w

q-Words of the database-sequence u

Figure 4. An exemplary hit-matrix after the extraction of relevant hits by the
second step of the BLAST algorithm.

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

CCAGGTATCTTAGGGCTATATTCTATATACGTAGAAGATTACTATTTCGGACTAGCGATG

XdXd
Xd

Xd

ATTGCTAGTCAGGGACTCTCTTCTCTATTCGTATATGATTACTGACCTACTATCTCGTAC

ATGGGGCTAGATGTCACGGCCAGTATATACGTAGAAGAACGTGCAAGCGATAGCTGCTAA

Figure 5. An example of a gapped extension for two different sequence pairs.

q-Words of the database-sequence u

q-
W

or
ds

 o
f t

he
 q

ue
ry

-s
eq

ue
nc

e
w

Figure 6. An exemplary hit-matrix after the ungapped extension by the third
step of the BLAST algorithm.

q-
W

or
ds

 o
f t

he
 q

ue
ry

-s
eq

ue
nc

e
w

q-Words of the database-sequence u

Figure 7. An exemplary hit-matrix after the gapped extension by the fourth
step of the BLAST algorithm.

Step 3: Ungapped extension
If a pair of hits is aligned on the same diagonal and its

distance is lower then the maximum distance δ, a point (i, j)
between the hits is extended in both directions on the common
diagonal. The sensitivity of the extension is determined by
the drop-off parameter Xd ≥ 0. For a leftward extension, the
sequences u[1 ... i − 1] and w[1 ... j − 1] are compared. For a
rightward extension, the sequences u[i ... |u|] and w[j ... |w |]
are compared. The scores of those comparisons are summed up
and the maximum Xmax is stored. If this value is lower than the
drop-off parameter (Xmax − Xd), the extension is stopped. The
sequences generated by this stage are called maximum-scoring
segment pair. An exemplary result is shown in Figure 6.

Step 4: Gapped extension
In this step, regions of high similarity with acceptable gaps

between two sequences are determined. This is for example

HD

HitMerger HitMerger HitMerger HitMerger

HitMergerHitMerger

HitMerger

HD HD HD HD HD HD HD

Result memory (SRAM or FIFO)

Main
Logic

Adress calculation

Time
Counter

DB
Seq.

Host
PC

Figure 8. Global structure of the tree-like architecture for the acceleration of
the BLAST algorithm on a FPGA.

useful to skip insertions or deletions in a sequence, which can
be for example caused by mutations. In the hit-matrix, the
result is a shift of the diagonal (see Figure 7).

After identifying a region of high similarity, a point (i, j)
between two hits is chosen as a starting point. Then, this point
is expanded towards the two selected hits. The symbols of
the two sequences are compared and the result is summed up,
where a match corresponds to +1 and a mismatch corresponds
to –1. The extension is stopped when the sum falls below
Xmax−Xd . In Figure 5, this process is shown for two different
sequence pairs.

Step 5: Output generation
In this step, the local alignments between the query- and

the database-sequence are sorted by relevance and stored in a
list.

III. IMPLEMENTATION
In this section, an implementation of the first two steps of

the BLAST algorithm on a FPGA is described. These steps
have been chosen because in sum they convey the majority of
the computational effort, as has been shown by Cameron et
al. [9]. The implementation is based on a tree-like architecture
for the parallel extraction and combination of local alignments
between a query- and a database-sequence (see Figure 8).

Due to restrictions of the current implementation, the
scoring-function σ is realized as equality-function:

σ(α → β) =
{

True, Hit for α = β

False, noHit for α , β
(6)

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

h
it

_q
u
e
ry

_p
o
s_

o
h
it

 l
e
n
g

h
t_

o
h
it

_w
ri

te
_o

re
se

t_
i

cl
o
ck

_i
h
o
ld

_i
b

u
sy

_o

sh
if
t_

d
b

_i
sh

if
t_

q
u
e
ry

_i

m
a
tc

h
_c

a
rr

y
_o

m
a
tc

h
_c

a
rr

y
_i

d
b

_s
q

u
e
n
ce

_i

d
b

_s
q

u
e
n
ce

_o

q
u
e
ry

_s
q

u
e
n
ce

_i

q
u
e
ry

_s
q

u
e
n
ce

_o

{

Match Match Match Match Match Match Match Match

& & & & & & & &

}

}

{

Hit Extraction

Figure 9. Structure of a hit-detector.

The maximal size of a sequence-element is five bit because a
protein can have only up to 21 different amino acids. An empty
or uninitialized element is described by the vector "00000".

The Time Counter (see Figure 8) is used for benchmark
purposes only. The database-sequence is stored in the DB Seq.
memory. The query-sequence is stored directly in the leaves
of the tree-like structure. The rest of the blocks is described
in the following subsections.

A. Hit-detector
The hit-detectors (HD in Figure 8) are the leafs of the

tree. As shown in Figure 9, a hit-detector consists of a chain
of n hit-matchers and a hit-extractor. The hit-matchers are
basically arranged as two parallel shift registers – one for the
query-sequence and one for the database-sequence – that can
be shifted independently. Furthermore, they contain the logic
for the scoring-function σ. The q-words introduced above are
generated by AND gates of the width q.

First, the query sequence is loaded to the hit-matches.
Then, the hit-extraction is started by shifting the database-
sequence into the hit-matchers. The hit-extractor stores the
positions and lengths of all hits that occur while shifting in
the database-sequence.

B. Hit-merger
The hit-mergers (as depicted in Figure 10) are the nodes

of the tree. They are used to merge overlapping hits of the
previous stage in a binary tree. The previous stage can either
be the hit-detectors of the first level or other hit-mergers.

The incoming hits are buffered in two FIFOs, one for the
left child and one for the right child. If an entry of the left
FIFO contains a right-aligned hit, the hit is stored in the left
buffer. If an entry of the right FIFO contains a left-aligned hit,
the hit is stored in the right buffer. If the hit combination unit
detects an overlapping hit (between FIFO and FIFO or FIFO
and buffer), the hits are merged and sent to the next level of
hit-mergers or the result memory. Hits that can not be merged
(i.e., do not overlap) are sent directly to the next level.

The length of the FIFOs depends on the hit-detector width
w, the width of the q-words q and the current level in the tree
th as follows:

f =
w

q + 1
· 2(th−1) (7)

h
it

_q
u
e
ry

_p
o
s_

o
h
it

 l
e
n
g

h
t_

o
h
it

_w
ri

te
_o

re
se

t_
i

cl
o
ck

_i
h
o
ld

_i
b

u
sy

_o

sh
if
t_

d
b

_i
sh

if
t_

q
u
e
ry

_i

m
a
tc

h
_c

a
rr

y
_o

m
a
tc

h
_c

a
rr

y
_i

d
b

_s
q

u
e
n
ce

_i

d
b

_s
q

u
e
n
ce

_o

q
u
e
ry

_s
q

u
e
n
ce

_i

q
u
e
ry

_s
q

u
e
n
ce

_o

hit combination{ {length
position

r_hit buffer

length
position

l_hit buffer

FIFO FIFO

Hit-Detector or Hit-Merger Hit-Detector or Hit-Merger

Figure 10. Structure of a hit-merger.

The word-width of the FIFOs depends on the hit-detector
width w, the current level in the tree th and the maximum
query-length lmax as follows:

width = ld(w) + ld(th − 1) + ld(lmax) (8)

IV. RESULTS
In this section, the FPGA based implementation presented

above is compared to an implementation in software and
the impact of different parameters (i.e., query length, q-word
size and hit-detector width) is evaluated. The FPGA based
implementation is executed on an “Altera DE2 Development
and Education board” with a clock of 50 MHz. The board con-
tains a “Cyclone II 2C35” FPGA with 33 216 logic elements
and 483 840 total RAM bits. The software implementation is
executed on a Personal Computer (PC) with an Intel Core i5
Central Processing Unit (CPU) at 2.80 GHz and 8 GB Random
Access Memory (RAM).

Variation of the query length: Table I shows a compar-
ison of the computation times between PC and FPGA under
variation of the query length. For all query-sequences, the same
database-sequence with a length of 1 813 bases is used. The
computation time of the software implementation is propor-
tional to the query length. In contrast, the computation time
of the FPGA implementation is rising much slower in relation
to the query length. This is because the hits are combined in
a binary tree, resulting in logarithmic characteristics.

TABLE I. COMPARISON OF THE COMPUTATION TIMES BETWEEN PC AND
FPGA UNDER VARIATION OF THE QUERY LENGTH.

Query length Hits PC / ms FPGA / ms FPGA / clock cycles

8 149 12.855 1.201 60093
32 786 55.155 1.219 60974
64 1598 94.331 1.246 62304

128 3050 195.607 1.296 64791
256 6263 316.306 1.406 70310
512 12081 640.919 1.611 80594

1024 23871 1241.095 2.006 100326

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Variation of the q-word size: Table II shows a com-
parison of the computation times between PC and FPGA
under variation of the q-word size. For all calculations, the
same database-sequence and query-sequence are used. They
have a length of 1 813 bases and 32 bases. Both, the PC
implementation and the FPGA implementation show only little
variance of computation time in respect to the q-word size.

TABLE II. COMPARISON OF THE COMPUTATION TIMES BETWEEN PC AND
FPGA UNDER VARIATION OF THE Q-WORD SIZE.

q-Word size Hits PC / ms FPGA / ms FPGA / clock cycles

1 10844 47.630 1.288 64419
2 2866 47.009 1.230 61517
3 786 40.605 1.219 60974
4 199 52.516 1.217 60899
5 51 36.553 1.217 60888

Variation of the hit-detector width: Table III shows a
comparison of the computation times between PC and FPGA
under variation of the hit-detector width. For all calculations,
the same database-sequence and query-sequence are used.
They have a length of 1 813 bases and 127 bases. The hit-
detector width has a high impact on the computation time
of the FPGA implementation. This is because the results are
processed sequentially in the hit-matchers. A lower hit-detector
width results in more levels of hit-mergers and therefore a
more parallel calculation. However, the global amount of nec-
essary FIFO-memory is increased by lowering the hit-detector
width. This is limiting the possible degree of parallelization,
especially for large query-sequences.

TABLE III. COMPARISON OF THE COMPUTATION TIMES BETWEEN PC
AND FPGA UNDER VARIATION OF THE HIT-DETECTOR WIDTH.

Hit-detector width Hits PC / ms FPGA / ms FPGA / clock cycles

4 3029 152.202 0.233 11897
8 3029 152.142 0.392 19630

16 3029 152.136 0.681 34086
32 3029 152.132 1.286 64295
64 3029 152.148 2.523 126160

V. CONCLUSION AND FUTURE WORK
It has been shown that the first two stages of the BLAST

algorithm can be implemented efficiently in a parallel tree-
like structure, even on a low-cost FPGA. However, for large

nucleotide sequences the hit-detector width is limited to a
lower bound, due to the available amount of fast on-chip
memory. Of course, the hit-detector width can be increased
to support larger sequences, but the result is an increased
computation time.

In future work, the steps three and four of the BLAST
algorithm could be implemented and evaluated according to
the first two steps, to enable a complete calculation on the
FPGA and thereby remove the overhead for communication.
Additionally, the current implementation is not fully utiliz-
ing the available hardware, because the analysis of the next
database-query is started only after the previous analysis is
complete. It should be possible to decrease the computation
time by starting the next analysis as soon as the FIFOs of
the next level of hit-mergers are empty. However, a complex
control logic would be necessary to prevent collisions and
to attribute the results. Finally, an implementation of a more
advanced scoring-function like the BLOSUM or PAM matrix
would increase the quality of the results.

REFERENCES
[1] National Center for Biotechnology Information (NCBI), “GenBank

and WGS statistics,” http://www.ncbi.nlm.nih.gov/genbank/statistics/, ac-
cessed: 30. July 2017.

[2] National Human Genome Research Institute (NHGRI), “The cost of se-
quencing a human genome,” https://www.genome.gov/sequencingcosts/,
accessed: 30. July 2017.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, vol.
215, no. 3, 1990, pp. 403–410.

[4] M. Gokhale et al., “Building and using a highly parallel programmable
logic array,” IEEE Computer, vol. 24, no. 1, Jan. 1991, pp. 81–89.

[5] M. R. Mahmoodi, H. Nikaein, and Z. Fahimi, “A parallel architecture
for high speed BLAST using FPGA,” in 2014 22nd Iranian Conference
on Electrical Engineering (ICEE), May 2014, pp. 57–61.

[6] M. Yoshimi, C. Wu, and T. Yoshinaga, “Accelerating BLAST compu-
tation on an FPGA-enhanced PC cluster,” in 2016 Fourth International
Symposium on Computing and Networking (CANDAR), Nov 2016, pp.
67–76.

[7] “Accelerated BLAST performance with Tera-BLAST™: a comparison
of FPGA versus GPU and CPU BLAST implementations,” TimeLogic
biocomputing solutions, Tech. Rep., 2013.

[8] P. Evripidou and C. Kyriacou, “Data-flow vs control-flow for extreme
level computing,” in 2013 Data-Flow Execution Models for Extreme
Scale Computing, Sept 2013, pp. 9–13.

[9] M. Cameron, H. E. Williams, and A. Cannane, “Improved gapped align-
ment in BLAST,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 1, no. 3, July 2004, pp. 116–129.

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

