CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Virtualizing Reconfigurable Hardware to Provide Scalability in Cloud Architectures

Oliver Knodel, Paul R. Genssler and Rainer G. Spallek

Department of Computer Science
Technische Universitdt Dresden
Dresden, Germany
Email: {firstname.lastname} @tu-dresden.de

Abstract—Field Programmable Gate Arrays (FPGAs) provide
a promising opportunity to improve performance, security and
energy efficiency of computing architectures, which are essential
in modern data centers. Especially the background acceleration
of complex and computationally intensive tasks is an important
field of application. The flexible use of reconfigurable devices
within a cloud context requires abstraction from the actual
hardware through virtualization to offer these resources to service
providers. In this paper, we enhance our related Reconfigurable
Common Computing Frame (RC2F) approach, which is inspired
by system virtual machines, for the profound virtualization of
reconfigurable hardware in cloud services. Using partial recon-
figuration, our hardware and software framework virtualizes
physical FPGAs to provide multiple independent user designs
on a single device. Essential components are the management of
the virtual user-defined accelerators (VFPGAs), as well as their
migration between physical FPGAs to achieve higher system-wide
utilization levels. We create homogenous partitions on top of an
inhomogeneous FPGA fabric to offer an abstraction from physical
location, size and access to the real hardware. We demonstrate
the possibilities and the resource trade-off of our approach in a
basic scenario. Moreover, we present future perspectives for the
use of FPGAs in cloud-based environments.

Keywords—Cloud Computing; Virtualization; Reconfigurable
Hardware; Partial Reconfiguration.

I. MOTIVATION

Cloud computing is based on the idea of computing as a
utility. The user gains access to a shared pool of computing
resources or services that can rapidly be allocated and released
“with minimal management effort or service provider inter-
action” [1]. An essential advantage, compared to traditional
models in which the user has access to a fixed number of
computing resources, is the elasticity within a cloud. Even
in peak load situations, a sufficient amount of resources are
available [2].

With the theoretically unlimited number of resources, their
enormous energy consumption arises as a major problem
for data centers housing clouds. One possibility to enhance
computation performance by simultaneously lowering energy
consumption is the use of heterogeneous systems, offloading
computationally intensive applications to special hardware co-
processors or dedicated accelerators. Especially reconfigurable
hardware, such as Field Programmable Gate Arrays (FPGAs)
provide an opportunity to improve computing performance [3],
security [4] and energy efficiency [5].

A profound and flexible integration of FPGAs into scalable
data center infrastructures which satisfy the cloud character-
istics is a task of growing importance in the field of energy-

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

efficient cloud computing. In order to achieve such an integra-
tion, the virtualization of FPGA resources is necessary. The
provision of virtual FPGAs (VFPGAs) makes reconfigurable
resources available to customers of the data center provider.
Therefore, service providers will be called users throughout
this paper. The users can accelerate specific services, reduce
energy consumption and thereby service costs.

The virtualization of reconfigurable hardware devices is a
recurring challenge. Decades ago, the virtualization of FPGA
devices started due to the limitation of logical resources [6].
Nowadays, FPGAs have grown in size and full utilization
of the devices cannot always be achieved in practice. One
possibility to increase utilization is our virtualization approach
which allows for flexible design sizes and multiple hardware
designs on the same physical FPGA. One challenge of this
approach are the unsteady load situations of elastic clouds,
which process short- and long-running acceleration services.

In this paper, we introduce our virtualization concept for
FPGAs, which is inspired by traditional virtual machines
(VMs). One physical FPGA can consist of multiple VFPGAs
belonging to different services with different runtimes. Each
vFPGA can be configured using partial reconfiguration [7] and
the internal configuration access port (ICAP). The vFPGAs
are, therefore, flexible in their physical size and location.
Moreover, they are fully homogenous among each other and
thereby become a wholesome virtualized cloud component,
which supports even an efficient migration of a whole VFPGA
context. Especially the vertical scaleability of vFPGAs from
small designs up to full physical FPGAs is gaining impor-
tance by providing efficient utilization of the reconfigurable
resources in modern cloud architectures.

The paper is structured as follows. SectionIl introduces
similar concepts and related research in the field of virtu-
alization of reconfigurable hardware, cloud architectures and
bitstream relocation. In Section III, we give an overview on our
virtualization concept. Our prototype, which implements our
concept with homogenous and in their size flexible vVFPGAs,
is presented in SectionIV followed by device utilization,
vFPGA size and performance results in Section V. Section VI
concludes and gives an outlook.

II. RELATED WORK

The provisoning of reconfigurable hardware in data centers
and cloud environments has gained more and more importance
in the last years as shown by the overview from Kachris et al.
[8]. Initially used mainly on the network infrastructure level,
FPGAs are now also employed on the application level of

33

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

data centers. Typical use cases in this field are background
accelerations of specific functions with static hardware designs.
The FPGAs’ special feature to reconfigure hardware at runtime
is still used rather rarely. Examples are the anonymization of
user requests [9] and increasing security [4] by outsourcing
critical parts to attack-safe hardware implementations. In most
cases, the FPGAs are not directly useable or configurable by
the user, because the devices are due to a missing provisioning
or virtualization hidden deeply in the data center.

A comparable contribution with stronger focus on the trans-
fer of applications into an FPGA grid for high performance
computing is shown in [10]. The application focus on a single
cloud service model with background acceleration of services
using FPGAs. An approach which places multiple user designs
on a single FPGA is introduced by Fahmyetal. [11], using
tightly attached FPGAs to offload computationally intensive
tasks. The FPGAs are partially reconfigurable and can hold up
to four individual user designs. The approach was extended
by Asiaticietal. in [12] with additional memory virtualization.
A cloud integration model with network-attached FPGAs and
multiple user designs on one FPGA is introduced by Weeras-
ingheetal. [13].

The term virtualization itself is used for a wide range
of concepts. An example for abstractions on the hardware
description level is VirtualRC [14], which uses a uniform hard-
ware / software interface to realize communication on different
FPGA platforms. BORPH [15] provides a similar approach,
employing a homogeneous UNIX interface for hardware and
software. The FPGA paravirtualization pvFPGA [16], which
integrates FPGA device drivers into a paravirtualized Xen
virtual machine, presents a more sophisticated concept. A
framework for the integration of reconfigurable hardware
into cloud architecture is developed by Chenetal. [17] and
Bymaetal. [18].

Approaches more closely related to the context-save-and-
restore mechanism required by our migration concept can
be found in the field of bitstream readback, manipulation
and hardware preemption. In ReconOS [19], hardware task
preemption is used to capture and restore the states of all flip-
flops and block RAMs on a Virtex-6 to allow multitasking
with hardware threads. In combination with homogenous bit-
streams for different physical vFPGA positions, methods like
relocation of designs as shown in [20], provide an opportunity
for an efficient context migration of virtualized FPGAs.

III. FPGA VIRTUALIZATION APPROACH

As the cloud itself is based on virtualization, the integration
of FPGAs requires a profound virtualization of the reconfig-
urable devices in order to provide the VFPGAs as good as other
resources in the cloud. Furthermore, it is necessary to abstract
from the underlying physical hardware.

A. Requirements for Virtual FPGAs in a Cloud Environemnt

As discussed in Sectionll, the term virtualization is used
for a wide range of concepts. The application areas of FPGAs
in clouds require a direct use of the FPGA resources to be
efficient. Thus, an abstraction from the physical FPGA infras-
tructure is only possible in size and location. Our approach
is related to traditional system virtualization with VMs that
corresponds to a Type-1 bare-metal virtualization with use of
a hypervisor [21]. This kind of virtualization is designed for

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

Static Partial Reconfigurable Regions
/_J% A —
~ ~
T T
Dom0 DomU DomU DomU DomU
M [/ o < w0
lanagemen < < <
. FPGA 1
Configuration g . & &
[i [
> > >

Hardware

{ Interface

Figure 1. Paravirtualization concept used in RC2F to provide virtual FPGAs
(VFPGAs) using partial reconfiguration. vVFPGAs can be combined to group
larger regions and thereby provide more resources.

Frontend| | [Frontend] | [Frontend] | [Frontend] | [Frontend
1 2 3 4

FPGA Hypervisor

Backend Frontend|
Interface 0

o

Static

Physical FPGA (Resources, ICAP PCle Endpoint, ..

the efficient utilization of the physical hardware with multiple
users. Therefore, it is necessary to adapt the required FPGA
resources closely to the requirements of the users’ hardware
design capsuled by vFPGAs. By this, an efficient utilization
of the physical hardware with multiple concurrent vVFPGAs on
the same hardware can be achieved.

Furthermore, the VFPGA has to appear as a fully us-
able physical FPGA with separated interfaces and its own
infrastructure management like clocking and resetting. For an
efficient cloud architecture which requires elasticity [1], it is
necessary to migrate VFPGAs with their complete context (reg-
isters and BlockRAM), which requires to enclose a complete
state management of the VFPGA as described in [22]. An
extraction of internal DSP registers is not supported in recent
Xilinx FPGAs and must be considered in the design.

B. FPGA Virtualization Approach

We decided to virtualize the FPGA similar to a paravirtual-
ized system VM executed by a hypervisor to provide access to
the interfaces. Figure 1 shows an FPGA virtualization inspired
by the paravirtualization introduced before. The virtualization
is limited to the interfaces and the designs inside the re-
configurable regions, which constitute the actual vFPGAs as
unprivileged Domain (DomU). Each vFPGA design is gener-
ated using the traditional design flow with predefined regions
for dynamic partial reconfiguration [7] and static interfaces.
The vFPGAs can have different sizes (Figure 1) and operate
completely independent from each other. The infrastructure
encapsulating the vFPGAs has to be located in the static region
corresponding to a privileged domain (DomO) or hypervisor.

The interface providing access to the vVFPGAs is a so-called
frontend interface, which is connected inside the hypervisor to
the backend interface in the static FPGA region. There, all
frontends are mapped to the static PCle-Endpoint and the on-
board memory controller inside the Dom0, which also manages
the states of the vVFPGAs.

IV. FPGA PROTOTYPE RC2F

Our prototype RC2F introduced in [23] provides multiple
concurrent VFPGAs allocated by different users on a single
physical FPGA. The main part of the FPGA frame(work)
consists of a hypervisor managing configuration and user cores,
as well as monitoring of status information. The controller’s
memory space is accessible from the host through an APIL
Input- and output-FIFOs are providing high throughput for
streaming applications. The VFPGAs appear to the user as
individual devices inside the System VM on the host.

34

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Hardware 30
e

Interface

Control Unit

Backend N
Interface

_____________ te Transitions

Hypervisor
Control Unit
T -
1 Encryption
Unit |
| 1
IAES, RSA, SHA 1

Channel |
Interface .

|

i

|
Frontend | |t

Interface .I

i

[

i

i

|

i

[

i

i

[

i

Figure 2. Virtualization frame RC2F with hypervisor, I/O components and
partial reconfigurable areas housing the VFPGAs. The vFPGAs have access
to the host using PCle (FIFO interface and config space), to the Cloud
network using Ethernet and the virtualized DDR3 memory.

A. System Architecture

The physical FPGAs are located inside a host system
and are accessible via PCIe. On both hardware components
(host and FPGA), there are hypervisors managing access,
assignment and configuration of the (v)FPGAs. Based on
our concept, we transform the FPGAs into vVFPGAs with an
additional state management and a static frontend interface as
shown in Figure 1. Our architecture, designed to provide the
vFPGAs, is shown in Figure 2. The hypervisors manage the on-
chip communication between backend and frontend interfaces
for PClIe (Our prototype uses a PCle-Core from Xillybus for
DMA access [24]), Ethernet and a DDR3 RAM. The RAM is
virtualized using page tables, managed by the host hypervisor,
which also manages the vVFPGA states we introduced in [22].
The number of frontends and their locations are defined by
the physical FPGA architecture as shown in Figure 6. The
Hypervisor Control Unit manages the ICAP controller and the
vControl units, which maintain and monitor the vVFPGAs.

To exchange large amounts of data between the host (VM)
and the vVFPGAs a FIFO interface is used. To exchange state
and control information the vFPGAs can be controlled by the
user via a memory interface as shown in Figure 3. The memory
is mainly intended for simple transfers and configuration tasks
like resets, state management (pause, run, readback, migrate)
and the selection of a VFPGA system clock. In addition to these
static fields, there is also a user-describable memory region
which can be used as virtual I/O. The communication using
Ethernet is also provided but out of the scope of this paper.

B. Configuration of the FPGA Hypervisor

The tasks of the FPGA hypervisor are the management
of its local vFPGAs and their encapsulation, the state man-
agement, as well as the reconfiguration using the ICAP. The
interaction between host and FPGA hypervisor is based on
the configuration memory shown in Figure4, which includes

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

31 2423 16 15 8 7 0

VFPGA Design Name 00h

(ASCI)

01h
Static

User Resets ‘ Clock Select
VFPGA State
(current and upcoming!

Design Status 02h

Test Loopbacks ‘ Reserved 03h

User Describable 04h

Reconfigurable \

Figure 3. Register and memory interface for the management of VFPGAs
accessible by the user VM (rc2f_cs).

1Fh

3 24 23 16 15 8 7 0

D N;
esign fame oon
01h
Ve

ozn
System Status ‘ Resets V{E{frgeAr)s Reconfig Status 03h

Hypervisor
Reserved 04h
IPv4-Address (Hypervisor) 05h
Channel Configuration 06h
Encryption Configuration 07h
D ‘ Reserved ‘ JFPGAState | Channel Parameter | Memory Parameter | 08h
|Pv4-Address 09h
AES-Key OAh

(128-Bit)

0Bh

VFPGA 0
0Ch
0Dh
vFPGi”Lugcauon OEh
OFh
User Describable 0Ch

VFPGA 1N
FFh

Figure 4. Register and memory interface for the management of the FPGA
hypervisor accessible by the host hypervisor (rc2f_gcs).
configuration of the FPGA hypervisor (system status, reconfig-
uration data and status) and the administration of the VFPGAs.
Other important VFPGA-related entries are an AES-key for
encryption of the VFPGA-bitsteam and the allocated vVFPGA
region(s) for additional validation during reconfiguration. The
information inside the FPGA hypervisor are only accessible

and modifiable through the host hypervisor.

C. The Role of the Host-Hypervisor

Our virtualization concept on the host-system includes
passing through the VFPGAs’ FIFO channels and the config-
uration memories from the host-hypervisor to the user VMs
(DomU) and the FPGA hypervisor memory to the management
VM (Dom0). The overall system architecture on hypervisor
level of host and FPGA is shown in Figure5. The frontend
FIFOs and the FPGA memories are mapped to device files
inside the host hypervisor. There, our system forwards the user
devices to the assigned VM using inter-domain communication
based on vChan from Zhangetal. [25] in our Xen virtualized
environment, similar to pvFPGA [16].

The management VM thereby accesses the FPGA hypervi-
sor’s configuration memory and the ICAP on the FPGA via a
dedicated FIFO interface for the configuration stream (read and
write). Thus, only the hypervisors can configure the VFPGA
regions on the physical FPGA whereby a sufficient level of
security can be guaranteed.

35

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

x
o
7]
-~
-n
]
@
>

Dom0 — Management

ites |

<>l

Device
Driver

”””” Dom0 — Management

FPGA Configuration,

user assignment and
access control

/dev.

Hardware
Hardware
Interface

1
+--rc2f_config_write
+--1c2f_config_read

=-rc2f_system_write Inter-

Domain
Channel
a

+--rc2f_system_read
--rc2f_ges

device assignment

Backend
Interface
Backend
Interface

DomU —VM 0

/devy
F--rc2f_cs

E=-rc2f_write
“=-rc2f_read

<

Frontend
Interface

<3
58
a 28
5%
@ £

DomU — vFPGA 0

Device
| _ files _ |

Figure 5. System architecture on the hypervisor level of the host system.
FIFOs (rc2f_write, rc2f_read) and configuration memories (rc2f_cs) are
displayed in the different host memories.

Partition Pins

S

@

2
GA £
:
‘N
3

2

2

5> He
4 1
>

g

8

) @
=
13
2
-ls
E

£

.

8

g

2

3

FPGA-Hypervisor
(PCle + DDR)

Figure 6. Layout of a Xilinx Virtex-7 XC7VX485T with six VFPGA regions
configurable using dynamic partial reconfiguration. The regions and their
number are determined by the height of the configuration frames, which

consist of one complete column inside a clock region. Regions are
homogenous to allow migration of VFPGAs.

D. Mapping vFPGAs onto physical FPGAs

In our example we use six frontends on a Xilinx Virtex-7.
Depending on the resources required, the utilization of up to
six different-sized VFPGAs is possible with the same static
without reprogramming. If one of the VFPGAs covers more
than one region, only one frontend connection is used as
shown in Figure 1. Among the VFPGAs, the partition pins (PP)
between the static and the reconfigurable regions are placed
with identical column offset as shown in Figure 6. The regions
forming the VFPGAs are not free from static routes as for
example the region VFPGA 5 shows.

To reduce migration times, all components which hold
the context of the current vVFPGA design as registers, FIFOs
or BlockRAM, are placed at the same positions inside each
vFPGA. Therefore, it is necessary that all of these positions
exist in each region. Hardmacros like PCle-Endpoints or
parts of the FPGA infrastructure interrupt the homogenous
structures. Thus, we establish homogenous vVFPGAs, which
are identical among each other by excluding these areas in all
VFPGAs as shown in Figure 6. The advantage of this approach
is that only one mask file is necessary to extract the content
of the different vFPGAs. Furthermore, it allows the provision
of almost identical VFPGAs.

E. Extended Design flow

For our virtualization we extend the Xilinx Vivado design
flow to generate VFPGA bitstreams from user-netlists for

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

every possible VFPGA position. First, directly after synthesis
the required region size (single, double, etc.) is chosen (see
TableI for appropriate VFPGAs). Afterwards, the design is
placed at a first vVFPGA region. Before the routing step, the
VFPGA region is expanded over the full width of the vVFPGA
for unlimited routing of the design inside the uninterrupted
region. The placements of the same design for all the other
VFPGA positions are created by setting the LOC (Location)
and BEL (Basic Element Location) information accordingly
to the initial placed design. Only the routing is carried out for
the additional vFPGA designs to allow static routes inside the
different vVFPGAs, resulting in designs with identical register
and BlockRAM positions for each vVFPGA locations on the
physical FPGA. After generation of the first bitstream, a
mask for extracting the context bits is generated to allow an
efficient migration in significantly less time compared to our
first approach in [22]. This allows flexible placement of the
vFPGA designs at various positions in a cloud system, as
well as the migration between VFPGAs on the same or to
other physical FPGAs. The bitstreams required for all possible
vFPGA positions belonging to a single user design are stored
as virtual reconfigurable accelerator images (VRAI).

F. Description of vFPGAs

The execution of a VRAI requires allocation of a VFPGA
which fulfills all requirements. Therefore, it is necessary to
describe the vVFPGAs in a particular configuration file. Figure 7
gives an overview of such an configuration, which is evaluated
by the resource management system to allocate the necessary
resources. After allocation the host hypervisor chooses from
the VRAI the appropriate bitstream and configures the device.

service = 'ba’ #Background Acceleration Service
name = ’‘vfpga-kmeans’ #VFPGA/User Design Name

vm = ["vml-pvm’] #VM-Instance Name

vipga = 1 #Number of VFPGA

size = [3] #VFPGA Size

memory = [2000] #DDR-Memory Size in MByte

vif = ["ip=10.0.0.43"] #VvFPGA-IP

boot = [’running’] #Initial VvFPGA-State

design = [’kmeans.vrai’]#Initial Design

Figure 7. Configuration file for the allocation of a single VFPGA with
network access and external memory of 2 GByte.
V. IMPLEMENTATION RESULTS AND SCENARIO

The resources required for the implementation described in
the previous section are shown in the following with a real-
world scenario based on our motivation from Section I.

A. Implementation

The resource consumption of our prototype introduced in
Figure 2 is shown in Table I. Furthermore, the table introduces
the size of homogenous VFPGA regions as outlined in Figure 6.

SliceLUT's
s SliceRegister
p = BlockRAM (D)
DSP

is used in the following to describe the resources. The aggre-
gated homogenous VFPGAs p,44 can be calculated using

Pagg = Psingle " Magg — (Pagg — 1) - Pppr 2

where pg;n g1 are the resources of a single vVFPGA region, 1444
is the number of aggregated vVFPGAs and p,,,, represents the

36

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

partition pin region (PPR) necessary to exclude the unused
frontend interfaces from the grouped VFPGAs. The open
frontends are therefore treated as stubs and are securely sealed
using a partial vVFPGA bitstream. The cost of the provision of
identical vVFPGAs are in the case of our Virtex-7 XC7VX485T
FPGA only 6.44% of slices registers/LUTs and 8.33% of the
BlockRAM tiles compared to a compete, but inhomogeneous
region. In our floor planning shown in Figure6 there are
no further DSPs affected. All regions except the largest one
(Hexa), which has only one possible position, are homogenous.

The throughput between vVFPGAs and host (PCle Gen2 8x
on a Xilinx VC707) with different numbers of concurrently
active VFPGAs is shown in Figure 8. The throughput of a single
design is limited by a user clock of 100 MHz and a 64-bit data
interface. Starting from three VFPGAs, a limitation due to the
concurrent users occurs. The throughput shown in Figure 8 is
the minimal guaranteed throughput for each vFPGA.

The size of the VRAI packages and the number of possible
locations on the physical device are shown in TableIl. With
69.2 MByte, a quad vVFPGA with bitstreams for three possible
positions and a mask file for context migration is the largest
vRAI package. Compared to our first approach, the information
necessary for context migration is reduced by several orders
of magnitude by using homogenous vFPGAs.

3,000

Throughput in MByte/s

05 1 2 4 8 16 32 o4

128 256 512 1,024

Data size in MByte

4 One Two 5 Three it Four <& Five O Six vFPGAs ' Aggregated

Figure 8. Throughput between host and FPGA with different numbers of
concurrent VFPGAs. The diagram shows for each number of VFPGAs the
average throughput of one representative VFPGA. The aggregated throughput
is thereby the average throughput of all VFPGA compositions on the device.

B. Scenario

In the following, we show a scenario based on a typical
real-world application for our virtualization approach. The goal
is it to migrate VFPGA designs to achieve a high utilization
as shown in Figure9(c). In a system with jobs arriving and
being finished at different points in time, situations as shown
in Figure 9(a) can occur. The fragmentation of the physical
FPGA restricts only one small VFPGA and one aggregated
double sized vVFPGA. By migrating the design from user 3 from
VFPGA 5 to vVFPGA 0 as shown in Figure 9(b), an area for a
group of three VFPGAs (triple) becomes available and makes
higher utilization of the physical device possible.

VI. CONCLUSION AND OUTLOOK

This paper presented a comprehensive virtualization con-
cept for reconfigurable hardware and its integration into a
cloud environment. Our definition of the term virtualization

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

VFPGA 0: Empty

USE{IFQ@'KE’E Usérf- Des‘i‘gn‘Crythn I
VFPGAI| i

VFPGA 2: User 2 - Design BSMC10

vFPGA‘Z}: Empty
VEP(P

I
o
o} It
e 5
il

()

O_D
> +
Ilq)
< ©
9 &
o
[

VFPGA 4: Empty

VFPGA 5: User 3 - Desigh BSMC10

FPGA-Hypervisor
(Ethernet + ICAP)

(a) Fragmentation of the physical FPGA caused by
dynamic de- and allocation.

VFPGA 0: User 3 - Design BSMC10

USCURPBA 1: User 4 - Design Crypto

VFPGA 2: User 2 - Desigh BSMC10

FPGA-Hypervisor
(PCle + DDR)

|

|
'FPGA-Hypervisor
(Ethernet + ICAP)

(b) Defragmentation providing aggregated vVFPGA
regions for larger designs.

VFPGA 0: User 3 - Desigh BSMC10

USEUEPGAT:

y i-’Desiga Crypto
VFPGAR N | i

VFPGA 2: User 2 - Desigh BSMC10

el
a
[a)
+
o)
O
&

VFPGA 3: User 1- Design kMeans

ot
o
&
>
l
()
Q
>
i
<
G}
o
[T

FPGA-Hypervisor
(Ethernet + ICAP)

(c) Utilization of the free region with a design using
three aggregated VFPGAs (Triple).

Figure 9. Szenario with different users and designs on a Xilinx Virtex-7
XC7VX485T with six (vertically) scaleable VFPGAs.

is inspired by traditional VMs whose functionalities are trans-
ferred to reconfigurable hardware. We develop a paravirtual-
ized infrastructure on a physical FPGA device with multiple
vFPGAs. The concept is integrated into a framework, which
allows for interaction with the vFPGAs similar to traditional
VMs. We create homogenous regions for the vVFPGAs on the
physical FPGA to optimize the process of VFPGA migration
between different physical FPGAs. Implementation details
are described, the necessary resources and the virtualization
overhead are presented.

37

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE I. NUMBER OF AVAILABLE RESOURCES INSIDE THE STATIC AND THE AGGREGATED VFPGA REGIONS AND UTILIZATION OF STATIC CONTAINING
INFRASTRUCTURE AND HYPERVISOR. THE PARTITION PIN REGION (PPR) IS NECESSARY TO EXCLUDE AND ISOLATE UNUSED PARTITION PINS (PP).

Ressource Static Utilization of static region PPR Into aggregated VFPGA regions

region HF?* PP E° MY Total Single Dual Triple Quad Quint Hexa®
Slice LUTs 94824 26% 3% 2% 11% 42% 1,200 30,800 60,400 90,000 120,800 151,600 188,400
Slice Register 189,648 11% 2% 1% 4% 18% | 2,400 61,600 120,800 180,000 241,600 303,200 376,800
Block RAM Tile 369 23% 2% 2% 3% 30% 0 100 200 300 400 500 600
DSPs 726 - - - - - 20 340 660 980 1,320 1,660 1,940
“HF: Hypervisor and Frontends bp: PCle-Endpoint “E: Ethernet IM: DDR3 Memory “Largest region without considering homogeneity

TABLE II. SIZE OF A SINGLE BITSTREAM FOR A VFPGA REGION, NUMBER
OF POSSIBLE POSITIONS INSIDE THE FPGA AND SIZE OF THE VRALIS.

\ Single Dual Triple Quad Quint Hexa
Bitstream (MByte) 4.8 9.0 13.0 17.3 21.3 25.3
Locations 6 5 4 3 2 1
VvRAI (MByte) 336 540 65.0 69.2 63.9 50.6

One significant result of this paper is that the provision
of homogenous FPGA resources is possible with state-of-the-
art FPGAs. We think that such approaches are necessary for
establishing FPGAs in modern data centers housing clouds.
Certainly, when cloud providers like Amazon expand their
cloud architectures with high-end FPGAs, such as Xilinx
Virtex-7 UltraScale devices [26] it is necessary to utilize the
hardware efficiently with multiple designs in a scaleable frame
inside one physical FPGA. Such kind of flexible approach
allows for adaption the individual resources to the users’
requirements.

(1]

(2]

(3]

(4]
(5]

(6]

(7]
8]

(9]

(10]

(1]

Copyright (c) IARIA, 2017.

REFERENCES

P. Mell and T. Grance, “The NIST definition of cloud com-
puting, Revised”, Computer Security Division, Information
Technology Laboratory, NIST Gaithersburg, 2011.

M. Armbrust, A. Fox, R. Griffith, et al., “A view of cloud
computing”, Communications of the ACM, vol. 53, pp. 50-58,
2010.

T. El-Ghazawi, E. El-Araby, M. Huang, et al., “The promise
of high-performance reconfigurable computing”, IEEE Com-
puter, vol. 41, no. 2, pp. 69-76, 2008.

J.-A. Mondol, “Cloud security solutions using FPGA”, in
PacRim, Pacific Rim Conf. on, IEEE, 2011, pp. 747-752.

A. Putnam, A. M. Caulfield, E. S. Chung, et al., “A reconfig-
urable fabric for accelerating large-scale datacenter services”,
in Computer Architecture (ISCA), 41st Int’l Symp. on, 2014.
W. Fornaciari and V. Piuri, “Virtual FPGAs: Some steps
behind the physical barriers”, in Parallel and Distributed
Processing, Springer, 1998, pp. 7-12.

Xilinx Inc., Vivado Design Suite User Guide — Partial Recon-
figuration, UG909 (v2017.1), April 5, 2017.

C. Kachris and D. Soudris, “A survey on reconfigurable
accelerators for cloud computing”, in Field Programmable
Logic and Applications (FPL), 26th Int’l Conf. on, 2016.

K. Eguro and R. Venkatesan, “FPGAs for trusted cloud
computing”, in Field Programmable Logic and Applications
(FPL), 22nd Int’l Conf. on, IEEE, 2012, pp. 63-70.

J. Dondo Gazzano, F. Sanchez Molina, F. Rincon, and J. C.
Lopez, “Integrating reconfigurable hardware-based grid for
high performance computing”, The Scientific World Journal,
2015.

S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA
accelerators for efficient cloud computing”, in Cloud Comput-
ing Technology (CloudCom), Int’l Conf. on, IEEE, 2015.

ISBN: 978-1-61208-585-2

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne,
“Designing a virtual runtime for FPGA accelerators in the
cloud”, in Field Programmable Logic and Applications, Int’l
Conf. on, 2016.

J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf,
“Enabling FPGAs in Hyperscale Data Centers”, in Cloud and
Big Data Computing (CBDCom), Int’l Conf. on, IEEE, 2015.
R. Kirchgessner, G. Stitt, A. George, and H. Lam, “VirtualRC:
a virtual FPGA platform for applications and tools portability”,
in FPGAs, Proc. of the ACM/SIGDA Int’l Symp. on, 2012.
H. K.-H. So and R. Brodersen, “A unified hardware/soft-
ware runtime environment for FPGA-based reconfigurable
computers using BORPH”, ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 2, p. 14, 2008.

W. Wang, M. Bolic, and J. Parri, “pvFPGA: Accessing an
FPGA-based hardware accelerator in a paravirtualized envi-
ronment.”, Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2013 Int’l Conf. on, pp. 1-9, 2013.

F. Chen, Y. Shan, Y. Zhang, et al., “Enabling FPGAs in the
cloud”, in Computing Frontiers, Proc. of the 11th ACM Conf.
on, ACM, 2014, p. 3.

S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and
P. Chow, “FPGAs in the Cloud: Booting Virtualized Hardware
Accelerators with OpenStack™, in Field-Programmable Cus-
tom Computing Machines (FCCM), 22nd Annual Int’l Symp.
on, IEEE, 2014, pp. 109-116.

M. Happe, A. Traber, and A. Keller, “Preemptive Hardware
Multitasking in ReconOS”, in Applied Reconfigurable Com-
puting, Springer, 2015, pp. 79-90.

J. Rettkowski, K. Friesen, and D. Gohringer, “RePaBit: Au-
tomated generation of relocatable partial bitstreams for Xilinx
Zynq FPGAs”, in ReConFigurable Computing and FPGAs
(ReConFig), 2016 International Conference on, IEEE, 2016,
pp- 1-8.

J. E. Smith and R. Nair, “The architecture of virtual ma-
chines”, Computer, vol. 38, no. 5, pp. 32-38, 2005.

O. Knodel, P. GenBler, and R. Spallek, “Migration of long-
running tasks between reconfigurable resources using virtu-
alization”, in ACM SIGARCH Computer Architecture News
Volume 44, HEART 2016, ACM, 2016.

O. Knodel and R. G. Spallek, “Computing framework for
dynamic integration of reconfigurable resources in a cloud”, in
2015 Euromicro Conference on Digital System Design, DSD
2015, IEEE, 2015, pp. 337-344.

Xillybus Ltd., Haifa, Israel, An FPGA IP core for easy DMA
over PCle, Website, Online: http://xillybus.com, 2017.

X. Zhang, S. Mclntosh, P. Rohatgi, and J. L. Griffin,
“Xensocket: A high-throughput interdomain transport for vir-
tual machines”, in Middleware 2007, Springer, 2007, pp. 184—
203.

Amazon Inc., Amazon EC2 FI Instances — Run Custom
FPGAs in the AWS Cloud, Website, Online: https://aws.
amazon.com/ec2/instance-types/f1/, 2017.

38

