
Energy-Efficient Real-Time Operating Systems: An Approach using Dynamic

Frequency Scaling and Worst-Case Execution Time Aware Scheduling

Thomas Jerabek, Benjamin Aigner, Florian Gerstmayer, Jürgen Hausladen

University of Applied Sciences Technikum Wien
Vienna, Austria

Email: {thomas.jerabek, benjamin.aigner, florian.gerstmayer,
juergen.hausladen}@technikum-wien.at

Abstract—Embedded systems are at the core of many new
emerging technologies and applications, deeply integrated into
our daily lives. Especially, the demand for battery-powered
solutions in consumer-related applications is growing, to support
different environments and fields of application. Therefore, en-
ergy efficiency measures for embedded systems become even more
important. In this paper, a dynamic frequency scaling approach
for embedded systems is presented to reduce the overall energy
consumption while still meeting time constraints within a real-
time operating system. Starting with a general discussion and
mathematical derivation along with an elaboration of the state
of the art, our concept and implementation is discussed. This
includes primarily the developed Worst-Case Execution Time
(WCET) aware Earliest Deadline First (EDF) scheduler which is
used to dynamically scale the frequency at runtime. Moreover, a
use case targeting a real-time smart home application is provided,
which was used to evaluate and compare our implementation in
regard to it’s energy consumption. The respective results are
elaborated alongside possible future work and improvements.

Keywords—dynamic frequency scaling; worst-case execution
time analysis; energy-efficient computing.

I. INTRODUCTION

Embedded systems are the key to many new technologies,
deployed in numerous products and applications, such as smart
homes or modern cars. Especially their interconnection and
coupling with existing networks – in particular, the Internet –
enables new services and functionalities such as sensor fusion,
maintenance, firmware updates, or remote access/control.

However, numerous challenges such as safety and security
concerns emerge, but also energy consumption needs to be
targeted. The latter, is especially of relevance for battery
powered devices deployed in constraint environments. By
developing new storage technologies, or by further reducing
power consumption, battery run- & lifetime can be stretched to
reduce the number of recharge cycles or battery replacements.
Although devices, e.g., ones used in smart homes, require
only a fraction of energy, in sum, the recorded overall power
consumption is not to be neglected. Power usage optimiza-
tions can thus have a significant impact, facilitating also the
development of more maintenance friendly products.

Hence, while originally motivated for general purpose com-
puters and servers, Dynamic Frequency and Voltage Scaling

(DFVS) approaches find their way in the embedded systems
domain. The idea is to reduce clock frequency and/or voltage,
when no computational resources are required, to reduce the
overall energy consumption. At the same time, responsiveness
and other properties must still be ensured in case computation
intensive tasks are raised.

In the context of embedded systems, this is especially of
relevance for real time applications which have to deliver
results in specified time frames, e.g., to guarantee deadlines.
While some being hard ones that have to be met under any
circumstances, e.g., X-by-wire systems, as life threatening
incidents may be the result, others are soft that may be missed
rarely without consequences. The system and its resources
are designed to ensure that the deadline of each task is met
even in worst-case scenarios. One such critical scenario can
be compliance with the Worst-Case Execution Time (WCET),
determined either by code instrumentation and runtime mea-
surements or by static analysis. The latter can be done, e.g.,
by using numerous autonomous tools such as [1] for the
respective embedded architecture. However, these worst-case
scenarios will scarcely occur in the field.

Therefore, the Central Processing Unit (CPU) will fre-
quently be underutilized, consuming power for doing nothing
of purpose for tasks that have already been finished in time be-
fore being scheduled again. This circumstance leaves room for
improvement, e.g., by applying Dynamic Frequency Scaling
(DFS) approaches, to optimize each task according to its dead-
line. In particular, the CPU’s clock frequency can be reduced
to a minimum that is required by a task, but which still ensures
that all deadlines are met. As a result, the time the CPU is idle
and the overall energy consumption can be reduced. Another
positive side-effect of reducing the power consumption is, that
less heat is generated by the device which directly influences
the mechanical design. This in turn can make the difference
for the need of a passive or active cooling system, further
reducing costs and mean time to failure. However, for this
approach, schedulers are required which not only take the
task’s deadlines into consideration but also their WCET to
set the clock frequency accordingly depending on the current
workload to prevent deadline violations. In this context, also

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

numerous requirements regarding the system’s architecture and
peripherals have to be anticipated. For instance, separate clock
domains are necessary to prevent errors in clock sensitive com-
munication channels, e.g., Universal Asynchronous Receiver
Transmitter (UART), that are caused by frequency variations.
In this paper, the challenges and opportunities of DFS in
embedded systems are elaborated. Moreover, the concept and
implementation of a Earliest Deadline First scheduler (EDF)
is discussed which takes the derived WCETs from [1] into
account in this scheduling algorithm. To ease the deployment
in existing workflows, an autonomous approach is pursued to
reduce entry barriers and enhance usability. The applicability
and effectiveness of our approach is shown by a use case
targeting a real time smart home application.

The remainder of this paper is structured as follows. In Sec-
tion II, the theoretical background of this paper is elaborated.
Besides the energy consumption model, this also includes the
two major strategies in the context of DFS pursued, being
race-to-halt and frequency variation. Afterwards, in Section III
related work is discussed. Then, in Section IV the developed
EDF scheduler is elaborated as well as the architectural
prerequisites. Section V discusses the use case and identified
problems in regard to DFS and embedded systems. Moreover,
the effectiveness of our approach in regard to energy con-
sumption reduction is shown. Finally, in Section VI this paper
concludes and gives an outlook regarding future work.

II. THEORETICAL BACKGROUND

For the concept and implementation, the effectiveness of
energy saving approaches and scheduling algorithms has to
be estimated and compared. Therefore, the following para-
graphs elaborate the defined energy consumption model and
its components which will be used and referenced in this
paper. Moreover, possible approaches for energy consumption
reduction are discussed.

A. Energy-Model

Generally speaking, power consumption of a CPU is a
function of voltage (V), frequency (f), and capacitance (C),
as in (1).

P = V 2 ∗ C ∗ f (1)

In other words, depending on the platform’s layout, e.g.,
wire lengths and peripherals, a certain capacitance is present.
Hence, optimizations in regard to the printed circuit board
design can be made to lower energy consumption. However,
one can expect that this results only in marginal improve-
ments. Another key element in this equation is voltage due
to its square contribution. Lowering the supply and operating
voltage of a device can therefore have a major impact on
energy consumption. However, in the context of this paper,
embedded devices deployed in a smart home environment are
assumed, which already run on lower voltages. Considering
that several peripherals also require a minimum supply voltage,
further improvements in this field of application are considered

marginal in contrast to advances in frequency scaling. Thus,
the focus of this paper is primarily on this, last, contributor of
the equation. Variations in frequency have a direct proportional
impact on energy consumption. For instance, a reduction of
frequency by a tenth, yields in an energy reduction of a tenth.
In theory, lowering the frequency to zero in (1), results in
a power consumption of zero. In reality, this is not feasible
due to parasitical effects and leaks on devices, e.g., caused by
peripherals and other components, a static power consumption
is present. Hence, in (2), a more accurate equation is provided
which takes this factor into consideration by adding a constant
energy drain.

P = (V 2 ∗ f ∗ C) + Pstatic (2)

Slight deviations due to different hardware instructions, e.g.,
more or less high bits that have to be applied on the instruction
and data bus are not taken into consideration in our energy
consumption model.

Based on (2), several power consumption levels can be
derived, depending on the frequency used. Besides zero, the
lower bound is derived from the platform dependent minimum
frequency (fmin). This frequency depends on peripherals or
system requirements, e.g., guaranteed response time. The
corresponding equation can be seen in (3). The upper bound
is, again dependent on the target platform and its maximum
frequency fmax, shown in (4). In between these boundaries,
several discrete frequencies fdsc are applicable, cf. (5). A
continuous frequency spectrum is not possible as neither a
phase locked loop component does provide that functionality
nor do certain peripherals support it, e.g., UART.

Pmin = (V 2 ∗ fmin ∗ C) + Pstatic (3)

Pmax = (V 2 ∗ fmax ∗ C) + Pstatic (4)

Pdsc = (V 2 ∗ fdsc ∗ C) + Pstatic (5)

B. Approaches

In regard to how energy consumption can be reduced, two
major strategies [2] are prevalent, which are elaborated more
in detail in the following paragraphs.

Race-to-Halt: In a race-to-halt strategy, calculations are per-
formed with maximum frequency, so that the result
is available as soon as possible. Afterwards, the CPU
switches to the idle state which operates at the mini-
mum frequency, until the respective deadline is reached.
Hence, energy consumption consists of two parts. A
certain amount of time t1, using the maximum frequency
and thus, considering (4), results in maximum power
consumption, and the time t2, while in idle state which
has minimum power consumption according to (3). Equa-
tion (6) describes this coherence.

Eavg = t1 ∗ Pmax + t2 ∗ Pmin (6)

Dynamic Frequency Scaling: In case of the dynamic fre-
quency scaling [3] approach, the WCET and the deadline

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

of a task are used as parameter to modify the operating
system frequency of the processor. It is designed for
systems that provide high peak performance when needed
and in turn dynamically reduces the power consumption
by decreasing the operating frequency of the CPU when-
ever possible. When a task is scheduled, the processor’s
highest frequency is multiplied with the rate calculated
from the previous parameters, which results in the fre-
quency of the processor. The lowered processor frequency
in turn stretches the execution of the task that still meets
the required deadlines. This principle can be seen in
Figure 1. In contrast to (6), the sum of a certain amount

Task1

Task2

Task1

Task2

Cycle Time
f

f

f

f

Idle Time

DT1 DT2

1

1

 1

1

0.5

0.5

Figure 1. DFS - Concept.

of time t1 and t2, using the discrete frequency and thus,
considering (5), results in reduced power consumption.
Equation (7) describes this coherence.

Eavg = (t1 + t2) ∗ Pdsc (7)

III. RELATED WORK

In general, power-aware scheduling [4][5] is a significant
key strategy for battery powered real-time embedded systems
to reduce the power consumption and extend battery life time.
Real-time embedded systems consist of a set of tasks that
are scheduled in a specific order, leaving time slots in which
the processor is underutilized but still draining the battery.
Therefore, modern processors offer a range of sleep modes,
to reduce power consumption. However, due to periodic task
execution (often on an average of a few milliseconds), these
are generally not applicable. In contrast, the time required to
first enter and later on leaving the sleep mode is in the order

of tens of milliseconds which can easily be in the order of a
magnitude of a task’s period. Hence, sleep modes are often not
suitable for real-time embedded systems. However, reducing
the frequency of the processor for the execution while still
satisfying the given deadlines as done with DFS is a feasible
solution, which leads to a remarkable reduction of the energy
consumption.

A general overview on the energy-efficiency of DFS in
resource constraint embedded devices, as well as desktop and
server grade processors is conducted in [6]. Cho et al. [3]
proposes a different approach where frequency and voltage is
scaled down when processing external peripherals. The idea
is to save energy during the time waiting for the results from
the external peripheral. Shin et al. [7] developed a tool that
converts existing programs into a low-energy version based
upon the remaining WCET. The tool automatically retrieves
the appropriate locations in the program where voltage scaling
mechanisms can be inserted.

There exist different scheduling algorithms such as earliest
deadline first that can be used in conjunction with DFS. An
evaluation of several scheduling algorithms is provided in
[8]. The authors conducted an exhaustive simulation in which
they retrieved the most important parameters that affect the
energy consumption. In [9], an optimized version of the EDF
algorithm has been proposed, that further improves energy
savings by about 28% to the original algorithm. [10] extended
the DFS approach for the use with multicore processors.

IV. IMPLEMENTATION

The implementation of our DFS concept needs modifica-
tions in the Real-Time Operating System (RTOS) components
(A) task management, (B) scheduling, (C) context switching,
and (D) application tasks, as described subsequently.

A. Task Management

In real-time systems, it is common to split the application
into tasks where each of them is responsible for a certain
functionality. Each task has an application specific priority
and stack size that needs to be configured by the developer.
This information along with runtime parameters such as the
current task state or associated event flags is maintained in
a data structure called Task Control Block (TCB). Every task
requires a TCB, which is only accessed by the real-time kernel
and never by the application code due to consistency reasons.
For our implementation, an extension of the TCB is necessary
to preserve the task’s (a) WCET and (b) deadline. These
two parameters are provided as 32-bit unsigned integer and
specified in microseconds. Thus, the maximum value for a
WCET or deadline can be 71.58 minutes which is precise
enough for most applications. The deadline is set to zero
in case of an uncritical task where no deadline is given.
The implemented scheduler needs to consider this as well as
an unspecified WCET (equals zero) to avoid starvation. In
addition, the task control block is extended by two parameters
to define (c) the deadline type, and (d) the time when a task’s

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

deadline will be reached. Parameter (c) defines if a deadline
occurs cyclic (e.g., every 10 ms) or depends on a certain event
(e.g., 10 ms after falling edge on a designated input pin).
Parameter (d) defines the absolute deadline as time value in
order to create a reference point for the scheduler. In summary,
these four arguments are added to the TCB for scheduling
purposes.

B. Scheduling

The scheduler selects a process from the ready list to
execute, which is determined by scheduling criteria. Our
scheduling algorithm is based on an earliest deadline first
approach with additional knowledge about the WCET as
shown in Figure 2. The scheduler creates a temporary task
control block for the Task To Schedule (TTS) and sets its
deadline initially to zero. Afterwards, an iteration loop on the
list of Ready Tasks (RT) evaluates the task with the earliest
deadline. In the case of equal deadlines of two or more tasks,
the algorithm chooses the task with the longest WCET. If there
are no deadlines specified, a task selection is not possible with
this algorithm, therefore, a priority based scheduling will be
performed. At this point, the scheduling is completed and the
RTOS continues with the dynamic frequency scaling algorithm
followed by the context switch and the clock adjustment.

1 WCET_AWARE_EDF_Sched()
2 DISABLE_INTERRUPTS()
3 TCB TTS
4 TTS.curDeadline = 0
5 i = 0
6 while i < MAX_TASKS
7 if RT[i].curDeadline < TTS.curDeadline
8 TTS = RT[i]
9 else if RT[i].curDeadline == TTS.curDeadline

10 if TTS.WCET < RT[i].WCET
11 TTS = RT[i]
12 i = i +1
13

14 if TTScurDeadline == NONE
15 TTS = PRIO_Sched()
16

17 dfs_div = DFS(TTS)
18 if(dfs_div < 1)
19 dfs_div = 1
20 error
21 OS_TASK_SW()
22 cpu_clk = Set_CPU_CLK(dfs_div)
23 Adj_PB_CLK(cpu_clk)
24 SysTickUpdate(cpu_clk/TickRate)
25

26 ENABLE_INTERRUPTS()
27 return

Figure 2. WCET-Aware EDF Scheduler.

C. Context Switching

The dynamic frequency scaling algorithm is executed right
before the actual context switch, as shown in Figure 2. This
algorithm (cf. Figure 3) starts with the maximum clock divider
and evaluates if the frequency scaling does not violate any
deadlines.

Since the ratio between execution time and processor fre-
quency is considered linear, a temporary WCET for the task to
schedule can be calculated by multiplying its WCET with the

1 DFS(TTS)
2 dfs_flag = true
3 dfs_div = MAX_DFS_DIV
4 sort(RT,DEADLINE_ASC)
5 while dfs_div > 0
6 WCETtemp = dfs_div*TTS.WCET + AO
7 if WCETtemp < TTS.curDeadline
8 i = 0
9 dfs_flag = true

10 while i < MAX_TASKS
11 WCETtemp = WCETtemp + RT[i].WCET + AO
12 if WCETtemp >= RT[i].curDeadline
13 DFS_Flag = false
14 break // config not possible!
15 i = i + 1
16

17 if dfs_flag == true // config works!
18 return dfs_div
19

20 dfs_div = dfs_div - 1
21 return dfs_div

Figure 3. Dynamic Frequency Scaling.

clock divider. An Administrative Overhead (AO) for context
switch, scheduling etc. is added. If this DFS dependent WCET
is below the task’s deadline, the DFS divider is applicable.
However, it is mandatory to consider that all subsequent tasks
need to meet their deadlines too. By adding the WCET and
AO of the task with the next larger deadline, one can verify
its compliance. This step is repeated for all ready tasks. For
this iteration (cf. Figure 3 Line 9-14), the algorithm assumes
that the RT array is sorted by ascending deadlines, which is
done at the very beginning of the function. Once a divider
is applicable for the entire system, the algorithm returns this
value. A divider of one means, the deadlines can only be
reached without downscaling. An early detection of deadline
violation in the RTOS is also done by returning a value of zero,
which means that at least one deadline cannot be fulfilled even
without reducing the CPU clock. This can be used to settle
appropriate measures, e.g., implement a callback function to
bring the system to a safe and secure state.

D. Deadline Handling by Application Tasks

Since an absolute value for each deadline is necessary to
calculate the DFS divider, the function in Figure 4 needs
to be implemented. It updates the task’s deadline either on
a periodic base where the deadline is added to the current
value or event triggered where the deadline is set according to
the current system time. To guarantee a proper functionality
of the scheduler and DFS algorithm, this function is called
after each task completion (e.g., task cycle done) by the
application’s tasks themselves. For event triggered use cases,
it is mandatory to update the deadline at the occurrence of
influencing events either by the task itself or another task.
Therefore, the developer is responsible to trigger the deadline
updates.

E. Deployment

The selected real-time operating system is Micrium uCOS-
III because it enables the necessary kernel modifications and
supports the chosen target hardware, the Infineon XMC4500-
F100K1024 microcontroller. The microcontroller features an

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

1 updateDeadline(TCB Task)
2 if Task.DeadlineType == PERIODIC
3 tempDeadline = Task.curDeadline + Task.Deadline
4 else // deadline event triggered
5 tempDeadline = getSysTime_uS() + Task.Deadline
6 Task.curDeadline = tempDeadline
7 return

Figure 4. Deadline Handler.

ARM Cortex-M4 processor core and allows a system clock
division up to 256 in single steps. Thus, one can adjust the
system clock from 120 MHz down to 468.75 kHz, which
is ideal to test the presented concept. In previous work,
the OTAWA Stack and Worst-case execution time Analysis
(OSWA) tool [1] was developed to evaluate a tasks WCET and
is therefore used for the evaluation in Section V. This analysis
tool is provided by our cloud-based Integrated Development
Environment (cloud-IDE), as presented in [11].

V. EVALUATION

For the evaluation of our concept, a dedicated use case with
a generic implementation of a gateway for smart home devices
was used. The requirements for the use case are as follows:

• Bluetooth Low Energy (BLE) to ZigBee Gateway
• Soft-deadlines for usability reasons

According to [12], a device with human-machine interaction
requires that the maximum response time is ≤ 100 ms to
be experienced as reacting instantaneously by the operator.
In order to provide a well-founded maximum execution time
limit for the implementation of this use case, the following
boundary conditions are defined:

• 60 ms reaction time, sensor from or to ZigBee gateway
• 13 ms reaction time, BLE gateway from or to actuator

The ZigBee latency is assumed and based on the work
of Baviskar et al. in [13], where an average latency of 58
ms was measured. Moreover, an additional safety margin is
added, resulting in an assumption of 60 ms latency from the
ZigBee device to the gateway. A BLE network is usually fast
regarding the time required for the connection establishment
and subsequent data transfer. According to [14], BLE needs
approximately 3 ms for these tasks. Concerning a relay-based
actuator, an additional time overhead of 10 ms for the relay
operation is required.

When using the maximum 100 ms reaction time (TmaxRT),
the subtraction of the delay times for each hardware interface
results in a maximum execution time limit of 27 ms for the
defined task structure, as shown in Equation (8).

Ttasklimit = TmaxRT − TZigBee − TBLE

Ttasklimit = 100ms− 60ms− 13ms = 27ms (8)

Each radio frequency interface (BLE and ZigBee) utilizes
two different tasks, one for receive operations and one for
transmit operations, as depicted in Figure 5. Data is shared
via queues, which are used to transport data from the RF-
controller to the bridge task and vice-versa. The bridge task

is used to determine any operations that are required to share
data between these two links. In addition, a processing task
can be used to insert data, e.g., a gateway condition.

To eliminate influencing external factors on the DFS mea-
surements, the BLE and ZigBee connections are replaced by a
physical loopback via the corresponding UART RX/TX pins,
as shown in Figure 5.

Bridge task
BLE-RX task

BLE-TX task ZigBee-RX task

ZigBee-TX task

Processing task

UART0-TX UART1-RX

UART0-RX UART1-TX

Figure 5. Task Structure with Loopback.

A. Results

According to Equation (8), the maximum execution time
limit for receiving, processing and transmission is 27 ms. Thus,
the deadlines of involved tasks are estimated in order to do not
exceed this limit. In particular, the segmentation is as follows:
7.5 ms for the receive task, 12 ms for the bridge task, and
another 7.5 ms for the transmit task. The deadlines and types
are described in the application, as shown in Table I.

TABLE I. TASK PARAMETERS.

Task Deadline type Deadline WCET
BLE RX once 7.5 ms 1.21 ms
BLE TX once 7.5 ms 1.26 ms
ZigBee RX once 7.5 ms 1.16 ms
ZigBee TX once 7.5 ms 1.20 ms
Bridge once 12 ms 0.96 ms
Processing periodic 1000 ms 1.13 ms

The tasks WCET already include an administrative over-
head [1] and were estimated with the OSWA tool. The
WCET analysis also considers internal RTOS functions that
are relevant. However, no program flow information, e.g.,
loop bounds are available for RTOS internal sections. The
evaluation of these is the most sophisticated part of the entire
analysis because loop bounds cannot be directly derived from
the RTOS source code, since they depend on application
specific parameters. Once the WCET analysis is successfully
accomplished for each task as can be seen in Table I, the
results are imported into the application.

Depending on the deployed peripherals, it is not feasible
to use any CPU frequency because it can prevent specific
peripheral clock configurations that are necessary for external
devices or certain tasks. In case that the peripheral clock
is derived from the CPU clock, the DFS implementation
is rather limited as the peripherals cannot operate at their

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

appropriate frequency. Therefore, this use case only considers
the maximum CPU frequency (120 MHz) and the half CPU
frequency (60 MHz), since the peripheral clock can remain on
the same 60 MHz independent of the selected frequency.

Table II shows the three evaluated configurations where the
CPU clock is either set to 120 MHz, variable (DFS) or set
to 60 MHz. The measurements show, that in our use case the
power consumption can be reduced by 19.01% using the DFS
implementation. This is very close to the case where the CPU
clock is generally set to the lower frequency. However, there
are situations where the RTOS switches the CPU frequency to
120 MHz to avoid deadline violations. Operating only on 60
MHz is no option as it would lead to deadline violations.

TABLE II. COMPARISON OF POWER CONSUMPTION.

CPU frequency current power consumption
120 MHz 151.5 mA 499.95 mW
variable (DFS) 122.7 mA 404.91 mW
60 MHz 121.5 mA 400.95 mW

Our DFS implementation closes the gap between power
efficiency and performance for this application. Other use
cases may leave even more space for optimization, while
others cannot be optimized at all because the peripheral clock
configuration would be too restrictive for DFS.

VI. CONCLUSION

In this paper, the implementation and evaluation of a WCET
aware earliest deadline first scheduler for uCOS-III is pre-
sented. The principle of dynamic frequency scaling is applied
therein to achieve a power consumption reduction for real-time
embedded systems applications.

The proof-of-concept and benefits are shown in an exem-
plary use case, by reference of a smart home application
that implements a ZigBee to BLE gateway requiring certain
responsiveness. By the use of the implemented WCET aware
scheduler, a power reduction of 19% was achieved while still
meeting the given deadlines.

The process of deriving the WCET bounds was accom-
plished with the aid of our previously implemented and in
[1] presented OSWA tool. Its integration in state-of-the-art
IDEs provides the possibility to offer the herein presented
DFS implementation with ease to numerous developers due
to it’s seamless integration in prevalent workflows. Therefore,
a widespread field of possible applications is derived as a
developer neither requires in-depth knowledge on DFS nor
its implementation.

The contribution of the herein presented approach leads to
the conclusion, that a major energy consumption reduction is
achieved through the application of the DFS algorithm while
preserving the full capabilities of the system. This is especially
beneficial for low-power devices through:

• Reduced hardware costs by reducing battery capacity
• Dynamic adjustment of CPU utilization determined by

deadline constraints

• Real-time and power constraints are met in different
usage scenarios

Future work is geared towards the possible problem of
deadline inversion, similar to the well known priority inversion
problem. In particular, considering task 1 having a dispropor-
tional or no deadline, task 2 might have to wait for task 1 to
complete, resulting in a miss of the deadline of task 2. This
problem might be solved by the application of mechanisms,
such as priority inheritance, e.g., by inheriting deadlines.

ACKNOWLEDGMENT

This work has been conducted in the context of the public
funded R&D projects Toolbox for Rapid Design of Smart
Homes & Assistive Technologies (ToRaDes) and Software
Analysis Toolbox (SAT) managed by the Vienna City Council
MA23.

REFERENCES

[1] T. Jerabek and M. Horauer, “Static worst-case execution time analysis
tool development for embedded systems software,” in 9th International
Conference on Dependability (DEPEND), Jul. 24-28, 2016, pp. 7–14.

[2] L. Tan and Z. Chen, “Slow down or halt: Saving the optimal energy for
scalable hpc systems,” in Proceedings of the 6th ACM/SPEC Interna-
tional Conference on Performance Engineering, ser. ICPE ’15. New
York, NY, USA: ACM, 2015, pp. 241–244.

[3] K. M. Cho, C. H. Liang, J. Y. Huang, and C. S. Yang, “Design and
implementation of a general purpose power-saving scheduling algorithm
for embedded systems,” in 2011 IEEE International Conference on
Signal Processing, Communications and Computing (ICSPCC), Sept
2011, pp. 1–5.

[4] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-aware
scheduling for real-time systems: A survey,” in ACM Trans. Embed.
Comput. Syst. ACM, 2016, pp. 7:1–7:34.

[5] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg, “Fast:
Frequency-aware static timing analysis,” in Proceedings of the 24th
IEEE International Real-Time Systems Symposium (RTSS). IEEE
Computer Society, 2003, pp. 40–51.

[6] E. Le Sueur and G. Heiser, “Slow down or sleep, that is the question,”
in Proceedings of the 2011 USENIX Conference on USENIX Annual
Technical Conference. USENIX Association, 2011, pp. 1–6.

[7] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low-
energy hard real-time applications,” in IEEE Design Test of Computers,
March 2001, pp. 20–30.

[8] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, 2001, pp. 89–102.

[9] H. El Ghor and E. Aggoune, “Energy efficient scheduler of aperiodic
jobs for real-time embedded systems,” in International Journal of
Automation and Computing. Springer, 2016, pp. 1–11.

[10] J. L. March, S. Petit, J. Sahuquillo, H. Hassan, and J. Duato, “Dynamic
wcet estimation for real-time multicore embedded systems supporting
dvfs,” in 2014 IEEE International Conference on High Performance
Computing and Communications (HPCC), Aug 2014, pp. 27–33.

[11] J. Hausladen, B. Pohn, and M. Horauer, “A cloud-based approach
to development of embedded systems software,” in 2015 ASME/IEEE
International Conference on Mechatronic and Embedded Systems and
Applications, Aug. 2-5, 2015., pp. 1–7.

[12] R. B. Miller, “Response time in man-computer conversational transac-
tions,” in Proceedings of the December 9-11, 1968, Fall Joint Computer
Conference, Part I, ser. AFIPS ’68 (Fall, part I). New York, NY, USA:
ACM, 1968, pp. 267–277.

[13] J. Baviskar, A. Mulla, M. Upadhye, J. Desai, and A. Bhovad, “Perfor-
mance analysis of zigbee based real time home automation system,” in
2015 International Conference on Communication, Information Com-
puting Technology (ICCICT), Jan 2015, pp. 1–6.

[14] A. J. Jara et al., “Evaluation of bluetooth low energy capabilities for
tele-mobile monitoring in home-care.” in Journal of Universal Computer
Science, vol. 19, no. 9, 2013, pp. 1219–1241.

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

	Introduction
	Theoretical Background
	Energy-Model
	Approaches

	Related Work
	Implementation
	Task Management
	Scheduling
	Context Switching
	Deadline Handling by Application Tasks
	Deployment

	Evaluation
	Results

	Conclusion
	References

