
Reconfigurable Hyper-Structures for Intrinsic Digital Circuit Evolution

S. Kazarlis, J. Kalomiros, V. Kalaitzis, D. Bogas,
P. Mastorokostas, A. Balouktsis
Dept. of Informatics Engineering

Technological Educational Institute of Central Macedonia,
62124 Serres, Greece

email: kazarlis@teicm.gr, ikalom@teicm.gr

V. Petridis
Dept. of Electrical and Computer Engineering

Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
email: petridis@eng.auth.gr

Abstract— A workbench for intrinsic evolution of digital
circuits is presented, based on a Cartesian Genetic
Programming algorithm running on a personal computer and
a reconfigurable platform suitable for run-time
reconfiguration. Two types of Cartesian cell structures are
proposed, based on a cylindrical interconnection grid. In
addition to a feed-forward network, the cylindrical grid can
allow feedback loops as well. The proposed structures are
combined with dedicated communication and control logic,
producing automatically a fitness result for each circuit
configuration. The proposed system is tested with known
digital circuits and evaluated in terms of resource usage and
configuration speed.

Keywords - Evolvable Hardware; intrinsic evolution;
reconfigurable hardware; Cartesian structures;

I. INTRODUCTION
A lot of research has been directed in recent years

towards the study of evolvable hardware (EHW), which is a
field of evolutionary computation that employs evolutionary
algorithms for the building of electronic circuits [1]-[3].
Evolvable hardware is an offspring of Genetic
Programming, an evolutionary technique originally
proposed for the evolution of software. In EHW, the circuits
are encoded into genotypes, traditionally using tree
structures, and more recently using Cartesian lattices or
other forms, like binary strings. From the genotype the
actual circuit or phenotype is constructed and tested, either
in a simulator, as in the case of extrinsic evolution [4] [5] or
in a reconfigurable device, as in intrinsic evolution [6]-[8].
Evolvable hardware can have a number of important
applications, most notably in the automatic design of
adaptive and fault-tolerant systems [3] and in the design of
digital circuits, where new unconventional forms of known
circuits can be found and new design principles can be
derived [9] [10].

A variation of Genetic Programming, called Cartesian
Genetic Programming (CGP), encodes a digital circuit as a
directed graph, where functional units are represented by a
rectangular array of nodes connected together to perform a
computational task on binary input data [9] [11]. The
genotype is a binary string that represents connections and
gate functions. Based on this concept evolvable hardware

platforms have been proposed, both for extrinsic and for
intrinsic evolution of digital circuits [5] [8] [9]. Also,
following the notion of a Cartesian node array, a new type
of reconfigurable platform has been introduced, the Virtual
Reconfigurable Circuit, or VRC [12] [13]. A VRC is a new
reconfigurable device realized on top of an ordinary Field
Programmable Gate Array (FPGA), consisting of an array
of Programmable Elements, interconnection network and
configuration memory, all implemented on the available
resources of a common FPGA device. The VRC concept has
been utilized for the evolution of combinational circuits
[14], and the evolution of components for image and signal
processing [8].

The simple merit of such circuits is that while they
adhere to the basic LUT cell structure of an FPGA chip,
they are still open to full run-time reconfiguration by the
user, through well determined configuration rules set by the
matrix designer. In this way, the VRC reconfiguration
circumvents the need for low-level configuration. The latter
requires complicated low-level knowledge of the particular
FPGA chip and the development of custom compilation
tools. Both tasks are daunting and are usually hindered by
undisclosed information or by the advent of new devices
that revolutionize the field.

In this paper, a workbench for intrinsic digital evolution
experiments is designed and implemented in a Field
Programmable Gate Array. The system includes a host
computer running a genetic programming application and a
communication channel that allows the run-time
reconfiguration of the evolvable platform. The configuration
string is composed of the genotype encoded according to the
CGP principles, while the phenotype is implemented and
evaluated in the reconfigurable device.

The concept implemented in the proposed workbench is
based on reconfigurable hyper-structures following the
general idea of the VRCs. They form two-dimensional
arrays of cells, which are interconnected with a predefined
fixed or programmable switching array. The proposed
structures adhere to specific interconnection properties
derived from a cylindrical interconnection grid. In addition
to the feed-forward network, the cylindrical grid can allow
feedback loops as well. The proposed Configurable
Cylindrical Structures or CCS are combined with custom

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-430-5

CENICS 2015 : The Eighth International Conference on Advances in Circuits, Electronics and Micro-electronics

communication and control logic, implemented as finite
state machines. The peripheral logic allows communication
with a PC host application over a serial port. An embedded
register file is used in order to store the configuration
values. Additional logic automatically produces a fitness
result for each circuit configuration. The controller returns
this fitness result to the host computer and the host CGP
application proceeds to reconfigure the CCS.

In this preliminary phase, the proposed workbench is
tested using configuration strings corresponding to typical
test-benches for evolutionary design. The overall time for
CCS configuration and fitness response is measured as a
function of CCS dimensions. The required FPGA resources
for the implementation of the CCS are also measured as a
function of circuit complexity. In this way, the suitability of
the proposed workbench for intrinsic evolution experiments
is evaluated.

The remaining of the paper is organized as follows. In
Section II, two alternative CCS circuits are reported and
their differences are discussed. In Section III, the overall
architecture, including the dedicated controllers and fitness
logic, is presented. In Section IV, test configurations are
conducted and evaluation results are reported, while in
Section V, the paper is concluded.

II. THE CONFIGURABLE CARTESIAN STRUCTURES

A. CCS-1: A feed-forward Cartesian structure
The proposed configurable structures are developed as

parameterizable blocks using the hardware description
language VHDL, where external parameters are the required
number of rows and columns in the Cartesian structure and
the number of inputs and outputs in the CCS device. In Fig.
1, the first hyper-structure (CCS-1) implemented in the
proposed workbench is presented. It is a two-dimensional
lattice of two-input one-output cells connected with a fixed
feed-forward interconnection grid. Each output can feed two
separate forward inputs. In addition, the interconnection
grid has a cylindrical structure, meaning that the lower-row
cells are seamlessly interconnected with the upper-row cells.
As a result, all cells of the hyper-structure receive inputs
adhering to the same interconnection rules and the structure
can automatically expand using a FOR GENERATE
statement in VHDL.

The first column in the design of Fig. 1 is a set of
multiplexers the role of which is to distribute the input
signals to the front-end cells. There are two p-input
multiplexers per cell, where p is the number of inputs of the
target circuit. Depending on the required number of outputs
q, q N:1 multiplexers in the output stage select one among
the N possible outputs.

Each cell is composed by a 2-input LUT implemented
by a four to one multiplexer, as shown in Fig. 2. The LUT is
able to implement in total sixteen different two-input functions,
including the basic digital gates.

Figure 1. A simple 4x4 Cartesian structure (CCS-1) with a fixed grid of
interconnections.

An embedded register file is used in order to store the
configuration scheme. The cell can easily be enhanced, in
future expansions, to include a flip-flop in each cell, for
sequential circuit design. A 4-bit register, where the
configuration bits are stored, corresponds to each cell in the
hyper-structure. Additionally, configuration registers are
attributed to the selection bits of the input multiplexers. The
register file is rewritten during reconfiguration at run-time,
at all instants when the genetic algorithm updates the
evolving circuit. Table I presents all possible gates and logic
functions that a cell can implement, along with their
corresponding binary configuration patterns. A and B are the
cell inputs. In order to configure the four-input, four-output
4x4 lattice of Fig. 1, a total of eighty eight configuration bits
is required nominally. These bits are distributed between the
selection bits of the eight 4:1 input multiplexers (2x8=16
bits), the sixteen lattice cells (4x16=64 bits) and the four
output multiplexers (2x4=8 bits).

Figure 2. Four–to-one multiplexer implementing the 2-input LUT for
each cell of the proposed hyper-structure.

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-430-5

CENICS 2015 : The Eighth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE I. THE SIXTEEN LOGIC FUNCTIONS CORRESPONDING TO 4-BIT
CONFIGURATION PATTERNS

X3 X2 X1 X0 Implemented logic Boolean
function

0 0 0 0 Always outputs zero 0=F
0 0 0 1 F=A NOR B BAF +=
0 0 1 0 F=A AND NOT(B) BAF ⋅=
0 0 1 1 F=NOT(B) BF =
0 1 0 0 F=NOT(A) AND B BAF ⋅=
0 1 0 1 F=NOT(A) AF =
0 1 1 0 F=A XOR B BAF ⊕=
0 1 1 1 F=A NAND B BAF ⋅=
1 0 0 0 F=A AND B BAF ⋅=
1 0 0 1 F=A XNOR B BAF ⊕=
1 0 1 0 Transfers A AF =
1 0 1 1 If B then F=A BAF +=
1 1 0 0 Transfers B BF =
1 1 0 1 If A then F=B BAF +=
1 1 1 0 F=A OR B BAF +=
1 1 1 1 Always outputs 1 1=F

The configuration file increases according to the dimensions
of the Cartesian structure and the number of inputs and
outputs. In the present implementation, the register file
consists of 8-bit registers, since they are compatible with 8-
bit communication over the serial port. The proposed
register file architecture is shown in Fig. 3. Following this
scheme, the configuration of the hyper-structure of Fig. 1
requires four bytes for input routing and sixteen bytes for
cell configuration. If the circuit produces two outputs, then
two additional bytes are needed. In this, way, the
configuration file includes many redundant bits which
however can be used in future expansions. For example,
attributing one byte to each pair of input multiplexers,
allows for up to four useful selection bits or up to sixteen
input channels. This is more than the number of inputs
required in most of our present evolution tests. Also,
according to Fig. 3, one 8-bit register is attributed per lattice
cell. Although only the four lower bits are useful in the
present design, the higher bits can be used in later upgrades
in order to support function generators with 3-input LUTs.
The role of input, output and configuration bits in the basic
2-input LUT cell is shown in Fig. 2.

B. CCS-2: A more General Cartesian Structure

An alternative Cartesian Structure (CCS-2) is presented
in Fig. 4. The configurable cells belong again to an NxM
lattice; however the interconnection grid is more flexible
than that of CCS-1, since it is implemented by multiplexers
allowing sets of predefined connections. The output of each
cell can be selected to provide input to four different
neighboring cells, namely to three forward cells in the next
column and to the adjacent cell on the row below.

Figure 3. Architecture of the 8-bit register file used for the configuration
of the CCS structure of Fig. 1. Indices correspond to the cells of the 2D
lattice.

Each cell input can be connected to one of two possible
outputs. The selection process is achieved by two-to-one
multiplexers. The interconnection grid has again a
cylindrical structure as indicated by the arrows in Fig. 4. In
this case, the cylindrical interconnections allow the creation
of feedback loops, since an output can be transferred
through a column and return as input to the same cell. For
example, the output of cell 3 can go through cells 7, 11, 15
and return as input to cell 3.

Figure 4. The hyperstructure CCS-2. Two-input multiplexers are used for
the routing of interconnections between cells.

Muxin1-B Muxin1-A
Reg(1,1)
Reg(1,2)

.

.

.
Reg(1,M)

Muxin2-B Muxin2-A
Reg(2,1)
Reg(2,2)

.

.

.
Reg(2,M)

.

.

.
MuxinN-B MuxinN-A

Reg(N,1)
.
.
.

Reg(N,M)
Mux_out1
Mux_out2

b7 b6 b5 b4 b3 b2 b1 b0

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-430-5

CENICS 2015 : The Eighth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 5. Architecture of the 8-bit register file used for the configuration
of CCS-2. Indices correspond to the cells of the 2D lattice.

The register file employed for the configuration of CCS-
2 is shown in Fig. 5. In this file, each 8-bit cell register is
divided in a four-bit nibble for cell configuration (b3 down
to b0) and a nibble for multiplexer configuration (only bits
b4 and b6 are used). Input multiplexers have dedicated
registers at the beginning of each row, while first column
cells use only the lower nibble of a configuration register.

Variations of the above Cartesian structures can lead to a

trade-off between interconnection flexibility and reduced
complexity. More interconnection options increase the
possibility to reach a solution. At the same time, the search
space is expanded and complexity is increased. A fixed
interconnection grid can reduce complexity for some
problems but it may also require a larger grid in order to
implement a solution.

III. CONTROLLER ARCHITECTURE
The main setup of the proposed workbench consists of a

PC running the evolutionary algorithm and an FPGA board.
The FPGA is configured to implement the CCS design and
supportive hardware logic for configuration, testing and
control. A dedicated custom controller and datapath was
designed for the configuration of the Cartesian structure in
the FPGA device. The datapath includes logic which
produces the test patterns for the evaluation of each circuit
configuration and returns a fitness result to the evolutionary
algorithm. The overall architecture is based on 8-bit
registers and is presented in Fig. 6. It includes a UART
peripheral controller supporting communication with the
host PC application over the serial port and a streaming
controller implementing the algorithmic steps of the
configuration and testing procedure, in the form of a finite
state machine. Other system blocks are the register file for
the storage of configuration data, the CCS structure which is
configured by the evolutionary algorithm and a “ground
truth” block, where the target logic is implemented. Finally,
a computational block extracts the Hamming distance
between the truth tables of the target logic and the CCS
logic under test.

The heart of the system is the streaming controller. It
produces clock and control signals to all other blocks and
makes data available to other blocks through the system bus.
It can initiate a UART “receive” or “transmit” operation, it
clocks successive test inputs to the CCS and returns the
Hamming distance to the host computer, as a fitness result

Figure 6. Block diagram of the implemented system architecture.

Muxin1-B Muxin1-A
muxb-1,1 muxa-1,1 Config(1,1)
muxb-1,2 muxa-1,2 Config(1,2)

.

.

.
muxb-1,M muxa-1,M Config(1,M)

Muxin2-B Muxin2-A
muxb-2,1 muxa-2,1 Config(2,1)
muxb-2,2 muxa-2,2 Config(2,2)

.

.

.
muxb-2,M muxa-2,M Config(2,M)

.

.

.
MuxinN-B MuxinN-A

muxb-N,1 muxa-N,1 Config(N,1)
.
.
.

muxb-N,M muxa-N,M Config(N,M)
Mux_out1
Mux_out2

 b7 b6 b5 b4 b3 b2 b1 b0

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-430-5

CENICS 2015 : The Eighth International Conference on Advances in Circuits, Electronics and Micro-electronics

for circuit evaluation. Then, the genetic algorithm evaluates
the result and produces a new genotype in the form of a new
configuration array. This procedure is repeated until the
genetic algorithm reaches a predefined number of
generations. Fig. 7 presents the basic state diagram of the
streaming controller, between successive configurations. At
the beginning, the controller is at the “idle” state waiting for
a protocol character, signaling the beginning of a
configuration stream. The controller enters the “receive”
state and counts the number of received data. It repeats the
reception until all expected data in the configuration array
have been received. Then, a “test” process begins, where the
controller employs a finite state machine in order to create
successive test patterns as input to the CCS and the ground
truth blocks. At each repetition, a clock pulse is sent to the
Hamming distance block, where the Hamming distance is
accumulated. When all test patterns have been tested, the
total Hamming distance is transmitted back to the computer
via the serial port. The controller returns to the “idle” state
waiting for a new configuration array.

IV. TESTS AND EVALUATION
At the present stage, the proposed workbench is used to

configure a number of test circuits in the CCS. The system
is evaluated in terms of the required hardware resources and
total response time. The response time is significant in
evolution experiments, since the configuration cycle is
repeated for hundreds of thousands times.

Figure 7. State diagram of the implemented controller.

Figure 8. Example configuration of the full-adder, implemented with the
Cartesian structure of Fig. 1 (CCS-1).

The structures were verified with a number of test
configurations. The following widely used test circuits were
implemented: a. the half adder, b. the full adder, c. the 2:4
binary decoder, d. the 2:1 and 4:1 multiplexer, e. the 2-bit
multiplier. These circuits can be effectively implemented by
both hyper-structures employing grids of variable sizes. The
possibility for feedback loops in CCS-2 can be used to
implement latches. The list of our test-circuits is therefore
concluded with f. the S-R latch g. the D-latch.

An interesting implementation is that of the full adder.
CCS-1 can implement the full adder using a 4x3 cell grid
configured as shown in Fig. 8. Several cells are configured
as “transfer” gates. Eighteen configuration bytes are
required in this example. Two bytes correspond to the
output multiplexers. CCS-2 can implement the same circuit
in a 3x3 grid. An implementation of the S-R latch is shown
in Fig. 9.

The resource requirements of the overall system shown
in Fig. 6 are quite low. As shown in Table II, the supportive
control-and-test logic requires 220 logic elements (LE) and
150 registers, while the CCS structures require an increasing
amount of LE out of a Cyclone II 2C35 FPGA device.

Figure 9. S-R latch implemented using the CCS-2 structure.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-430-5

CENICS 2015 : The Eighth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE II. RESOURCE USAGE (CYII 2C35F672)

Hardware block Logic Elements Total registers
Control and test logic 220 150

CCS-1 (2x2) 19 18
CCS-1 (4x4) 126 79
CCS-1 (8x8) 438 293

CCS-1 (16x16) 1521 1099
CCS-2 (2x2) 79 40
CCS-2 (4x4) 208 127
CCS-2 (8x8) 591 429

CCS-2 (16x16) 2003 1603

CCS-1 and CCS-2 refer to the structures of Figures 1 and
4, respectively. The number of required LEs follows an
almost linear dependence on the number of cells in the
structure. The FPGA device used in our experiments
provides a total of 33216 LE; therefore, very large structures
can be implemented. The system was clocked at 100 MHz.

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200 250 300

number of cells (NxM)

to
ta

l t
x-

rx
 ti

m
e

(m
s)

Figure 10. Total time for configuration and fitness response, as a function
of grid size.

Another test concerns the response time for the full CCS
configuration and response loop. Fig. 10 shows the total
response time measured from the beginning of the
transmission of the configuration string until the reception of
the Hamming distance, for various sizes of the cell array.
The implemented baud rate is 115Kbps. Since the total
response time is within several milliseconds, the system can
implement and test a large number of phenotypes within a
reasonable time interval.

V. CONCLUSIONS
A workbench for intrinsic evolution of digital circuits is

proposed. Genotypes are encoded following the principles
of Cartesian Genetic Programming, while phenotypes are
implemented in a reconfigurable device, making use of
expandable 2D arrays of cells. As opposed to previous
implementations, the proposed hyper-structures are based
on a cylindrical interconnection grid, which reduces
complexity and increases interconnection flexibility. Also,
the proposed grids allow for feed-forward as well as for
feed-back connections between the matrix cells.

A custom embedded controller configures the hyper-
structures at run time while additional supportive task logic
produces the required test patterns for fitness evaluation.
The system is verified by implementing a series of test
circuits and is evaluated in terms of the required resources
and response time, for various matrix dimensions.

ACKNOWLEDGMENT
This work has been co-financed by the European Union

(European Social Fund – ESF) and Greek national funds
through the Operational Program "Education and Lifelong
Learning" of the National Strategic Reference Framework
(NSRF) - Research Funding Program: ARCHIMEDES III,
Investing in knowledge society through the European Social
Fund.

REFERENCES

[1] Evolvable Hardware, T. Higuchi, Y. Liu, and X. Yao, Eds.
Springer Science & Business Media, vol. 11, 2006.

[2] P.C. Haddow and A. M. Tyrrell, “Challenges of evolvable
hardware: past, present and the path to a promising future”,
Genetic Programming and Evolvable Machines, vol. 12,
no. 3, 2011, pp. 183-215.

[3] A. Thompson, P. Layzell, and R.S. Zebulum, “Exploration
in design space: unconventional electronics design through
artificial evolution”, IEEE Transactions on Evolutionary
Computation, vol. 3, no. 3, 1999, pp. 167-196.

[4] J. Miller, P. Thomson, and T. Fogarty, “Designing
electronic curcuits using evolutionary algorithms.
Arithmetic circuits: a case study”, Genetic Algorithm and
Evolution Strategies in Engineering and Computer Science,
D. Quagliarella, J. Periaux, C. Poloni, and G. Winter, Eds.
Chechester, UK: Wiley, 1997, pp. 105-131.

[5] S. Kazarlis, J. Kalomiros, A. Balouktsis, and V. Kalaitzis,
“Evolving optimal digital circuits using Cartesian genetic
programming with solution repair methods”, in Proc. of the
2015 International Conference on Systems, Control, Signal
Processing and Informatics (SCSI 2015), Barcelona, Spain,
April 7-9, 2015, pp. 39-44.

[6] Z. Vasicek and L. Sekanina, “An evolvable hardware
system in Xilinx Virtex II Pro FPGA”, International
Journal of Innovative Computing and Applications, vol. 1,
no. 1, 2007, pp. 63-73.

[7] A. Thompson, Hardware evolution: Automatic design of
electronic circuits in reconfigurable hardware by artificial
evolution, Springer Science & Business Media, 2012.

[8] L. Sekanina, “Evolvable computing by means of evolvable
components”, Natural Computing, vol. 3, 2004, pp. 323-
355.

[9] J. Miller, D. Job, and V. Vassilev, “Principles in evolutio-
nary design of digital circuits - part I”, Genetic Program-
ming and Evolvable Machines, vol. 1, 2000, pp. 7-35.

[10] J. R. Koza, M. A. Keane, and M. J. Streeter, “What’s AI
done for me lately? Genetic programming’s human-
competitive results”, IEEE Intelligent Systems, vol. 18,
no.3, 2003, pp. 25-31.

[11] J. F. Miller and P. Thompson, “Cartesian genetic program-
ming”, in LNCS, Euro GP 2000, vol. 1802, R. Poli, W.
Bazhaf, W.B. Langdon, J. Miller, P. Nordin, and T.C.
Fogarty, Eds. Heidelberg: Springer, 2000, pp. 121-132.

[12] L. Sekanina, and R. Ruzicka, “Design of the special fast
reconfigurable chip using common FPGA”, in Proc. of the
IEEE Design and Diagnostics of Electronic Circuits and
Systems Workshop, Bratislava, Smolenice, 2000, pp. 161-
168.

[13] L. Sekanina, Evolvable components: from theory to
hardware implementations, Springer Science & Business
Media, 2012.

[14] L. Sekanina and S. Friedl, “An evolvable combinational
unit for FPGAs”, Computing & Informatics, vol. 23, no. 5,
2004, pp. 461-486.

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-430-5

CENICS 2015 : The Eighth International Conference on Advances in Circuits, Electronics and Micro-electronics

	I. Introduction
	II. The Configurable Cartesian Structures
	A. CCS-1: A feed-forward Cartesian structure
	B. CCS-2: A more General Cartesian Structure

	III. Controller Architecture
	IV. Tests and Evaluation
	V. Conclusions
	Acknowledgment
	References

