
Unsupervised Image Segmentation Circuit Based on Fuzzy C-Means Clustering

Wen-Jyi Hwang, Zhe-Cheng Fan, Tsung-Mao Shen

Department of Computer Science and Information Engineering,

National Taiwan Normal University

Taipei, Taiwan

e-mails: whwang@ntnu.edu.tw; 699470137@csie.ntnu.edu.tw; 698470594@csie.ntnu.edu.tw

Abstract—This paper presents a novel VLSI architecture for

unsupervised image segmentation. The circuit is a hardware

implementation of fuzzy c-means algorithm for the

unsupervised clustering. The number of segments is

determined by Xie-Beni index. An efficient pipeline circuit is

proposed for the computation of the index. The circuit is used

as a hardware accelerator of a softcore processor in a system-

on-programmable chip for physical performance measurement.

Experimental results reveal that the proposed architecture is

an effective alternative for realtime segmentation with low

error rate and area costs.

Keywords-FPGA; Image Segmentation; Unsupervised

Clustering; System-on-Chip.

I. INTRODUCTION

The goal of image segmentation is to cluster image

pixels into multiple segments. The segmentation results can

be used to identify regions of interest and objects in the

scene for the subsequent image analysis or annotation. The

fuzzy c-means algorithm (FCM) [1] is one of the most used

techniques for image segmentation [2][3]. The effectiveness

of FCM is due to the employment of fuzziness for the

clustering of each image pixel.

Nevertheless, there are some drawbacks to employ the

FCM algorithm. The first is its high computational

complexity for membership coefficients computation and

centroid updating. In addition, the size of membership

matrix grows as the product of data set size and number of

segments. As a result, the corresponding memory

requirement may prevent the algorithm from being applied

to large images. Finally, the number of segments should be

pre-specified. Therefore, it is difficult to use FCM for the

fully unsupervised realtime image segmentation.

A number of algorithms [4][5] have been proposed for

accelerating the computational speed and/or reducing

memory requirement of FCM. Most of these algorithms are

implemented by software, and only moderate acceleration

can be achieved. In [6][7], hardware implementations of

FCM are proposed. However, the design in [6] is based on

analog circuits. The clustering results therefore are difficult

to be directly used for digital applications. Although the

architecture shown in [7] adopts digital circuits, the

architecture aims for applications with only two classes. The

architecture may then not be useful for applications

demanding the clustering of larger number of classes.

With the above observation, our earlier work [8]

introduced a digital FCM architecture which can process

more than two classes. Although the architecture is effective,

its area cost is very high. The large hardware resource

consumption arises from the employment of broadcasting

scheme for membership coefficients and centroid

computation at centroid level. As a result, the area cost

grows with the number of segments. The FCM architecture

may then only be used for clustering applications with small

number of segments. Moreover, the architecture does not

provide the function of determining the number of segments.

The FCM architecture presented in [9] is able to reduce the

area cost. However, the number of classes still needs to be

pre-specified. There architectures are therefore not suited

for the implementation of fully unsupervised realtime image

segmentation.

The goal of this paper is to present a novel FCM

architecture for fully unsupervised realtime image

segmentation. In order to eliminate the large storage size for

membership matrix, our implementation combines the usual

iterative updating processes of membership matrix and

cluster centroid into a single updating process. In our

approach, the updating process is divided into three steps:

pre-computation, membership coefficients updating, and

centroid updating. The pre-computing step is used to

compute and store information common to the updating of

different membership coefficients. This step is beneficial for

reducing the computational complexity for the updating of

membership coefficients.

The membership updating step computes new

membership coefficients based on a fixed set of centroids

and the results of the pre-computation step. The weighted

sum of data points and the sum of membership coefficients

are also updated incrementally here for the subsequent

centroid computation. This incremental updating scheme

eliminates the requirement for storing the entire membership

coefficients.

Following the updating process of membership matrix

and cluster centroid, a cluster validation process is

performed to find the optimal number of segments. The Xie-

Beni index [10] is employed for this purpose because of its

simplicity and effectiveness. Partial results of the updating

process can be used for the computation of this index. In

addition, an efficient pipeline architecture is proposed to

further enhance the throughput of the computation.

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

For each class number, the updating process of

membership matrix and cluster centroid, and the cluster

validation process are performed sequentially. The resulting

Xie-Beni index is stored, and compared with that associated

with other class numbers. The class number with minimum

index value is then selected as the class number for the

image segmentation.

The proposed architecture has been implemented on

field programmable gate array (FPGA) devices [11] so that

it can operate in conjunction with a softcore CPU. Using the

reconfigurable hardware, we are capable of constructing a

system on programmable chip (SOPC) system for the

physical performance measurement. Experimental results

show that the proposed architecture has the advantages of

high speed computation, low area cost and low error rate for

image segmentation. In addition, because of its effectiveness,

the proposed architecture can also be directly used for other

clustering applications where the number of clusters is

desired to be determined in an unsupervised manner such as

spike sorting [12].

The remaining parts of this paper are organized as

follows: Section 2 gives a brief review of the FCM

algorithm. Section 3 describes the proposed FCM

architecture. Experimental results are included in Section 4.

Finally, the concluding remarks are given in Section 5.

II. PRELIMINARIES

This section gives a brief review of the FCM algorithm.
Let X = {x1, …, xt} be a data set to be clustered by the FCM
algorithm into c classes, where t is the number of data points
in the design set. Each class i, 1 ≤ i ≤ c, is identified by its
centroid vi. For the image segmentation applications, X is an
image to be segmented, xk is a block in X, t is the number of
blocks in X, and c is the class number. The goal of FCM is to
minimize the following cost function:


 


c

i

t

k

ik

m

ki vxuJ
1 1

2

,
,

(1)

where m

kiu ,
 is the membership of xk in class i, and m > 1

indicates the degree of fuzziness. The cost function J is

minimized by a two-step iteration in the FCM. In the first

step, the centroids v1, ..., vc, are fixed, and the optimal

membership matrix is computed by

1

1

)1/(2

,)/(




















 

c

j

m

jkikki vxvxu

. (2)

After the first step, the membership matrix is then fixed,

and the new centroid of each class i is obtained by

vi = (


t

k

k

m

ki xu
1

,)/(


t

k

m

kiu
1

,). (3)

Pre-Computation

unit
Control unit

Membership Coefficient

Updating unit

On-Chip Centroid

RAM

Cost Function

Computation unit

Centroid Updating

unit

Xie-Beni Index

Computation unit

New

Centroids

J

XB index

Centroids

Training Datas

 Figure 1. The proposed FCM architecture.

The FCM algorithm requires large number of floating

point operations. Moreover, from (1) and (3), it follows that

the membership matrix needs to be stored for the

computation of cost function and centroids. As the size of

the membership matrix grows with the product of t and c,

the storage size required for the FCM may be impractically

large when the data set size and/or the number of classes

become high.

In the FCM, the number of classes c needs to be pre-

specified. For the fully unsupervised image segmentation,

the class number also needs to be determined. One way to

find the optimal class number is to evaluate the clustering

results for each c based on a cluster validation index. The

class number producing the optimal index value is selected

as the actual class number for image segmentation. A

commonly used cluster validation index is the Xie-Beni

index [10], which is defined as






 





2||||min

)(

ji
ji

vvt

J
cXB

, (4)

where J is the cost function of FCM defined in (1).

III. THE PROPOSED ARCHITECTURE

As shown in Figure 1, the proposed FCM architecture can

be decomposed into six units: the pre-computation unit, the

membership coefficients updating unit, the centroid

updating unit, the cost function computation unit, the on-

chip centroid RAM, and the control unit.

A. Precomputation Unit

The pre-computation unit is used for reducing the
computational complexity of the membership coefficients
calculation. Observe that (2) can be rewritten as

  1)1/(2

, |||| 
 k

m

ikji Pvxu (5)

where

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics





c

j

m

jkk vxP
1

)1/(12

)/1(. (6)

Given xk and centroids v1, ..., vc, membership coefficients

ku ,1 , ...,
kcu ,

 have the same .kP Therefore, the complexity

for computing membership coefficients can be reduced by

calculating kP in the pre-computation unit. For the sake of

simplicity, we set m = 2 for our design.
Figure 2 shows the architecture of the pre-computation

unit, where the xk is obtained from the on-chip memory of
the SOPC system, and vi is obtained from the on-chip
centroid RAM of the FCM architecture. As depicted in
Figure 2, the circuit in its simplest form can be divided into
two stages, which involve the squared distance computation,
and inverse computation, respectively. The circuit can easily
be separated into multistage pipeline for enhancing the
throughput.

B. Membership Coefficient Updating Unit

Figure 3 depicts the architecture of the membership

coefficients updating unit based on (5). It can be observed

from Figure 3 that, given a training data xk, the membership

coefficients updating unit computes 2

,kiu for i= 1,..., c, one at

a time. Similar to the pre-computation unit, the xk remains as

the input until all the centroids vi, i= 1,...,c, have been fetched

from the on-chip centroid RAM for the computation of 2

,kiu .

Based on (5) with m = 2, it follows that the circuit contains 3

multipliers and 1 divider. Similar to the precomputation unit

architecture, the circuit can be separated into multistage

pipeline for efficient computation.

C. Centroid Computation Unit

The centroid updating unit incrementally computes the

centroid of each cluster. The major advantage for the

incremental computation is that it is not necessary to store

the entire membership coefficients matrix for the centroid

computation. The centroid updating unit computes the

incremental centroid when xk and
2

,kiu are received, and

clusters will only be updated when the final centroid is

generated after completing the computation of last training

vector. Thus, no membership coefficients matrix is needed.

Define the incremental centroid for the i-th cluster up to

data point xk as

vi(k) = (


k

n

n

m

ni xu
1

,
)/(



k

n

m

niu
1

,
). (7)

When k = t, vi(k) is then identical to the actual centroid vi

given in (3).
Figure 4 shows the architecture of the centroid update

unit, which contains a multiplier, an intermediate on-chip

RAM and a divider. The unit has three inputs: centroid

index i, training vector xk and membership coefficient
2

,kiu .

As shown in Figure 4, both kki xu2

, and
2

,kiu are used as the

inputs to the intermediate on-chip RAM for computing vi(k).

D. Cost Function Computation Unit

Similar to the centroid updating unit, the cost function unit
incrementally computes the cost function J. Define the
incremental cost function J(k) up to data point xk as

J(i, k) = 
 


k

z

i

j

jzzj vxu
1 1

2
2

, . (8)

Squared

Distance

Unit
x

vi Inverse

Unit
2

vx i


2

1 vx i


(from SDRAM)

(from on-chip

memory)







1

1

2

1
i

j
jvx

Adder Register





i

j
jvx

1

2

1







1

1

2

1
i

j
jvx

Figure 2. The architecture of precomputation unit.

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

Squared

Distance

Unit

xk

vi

Inverse

UnitPk
Multiplier Multiplier

2

,1 kiu (from

Pre-computation unit)

(from

Pre-computation unit)

(from

On-chip memory)

2

ik vx 

kik Pvx
2

 12

1)(

 kik Pvx

2

ik vx 

xk

Figure 3. The architecture of membership coefficient updating unit

2

,kiu

Intermediate

on-chip

RAM

Multiplier
xk

i

kki xu 2

,




k

j

jji xu
1

2

,




k

j

jiu
1

2

,
Divider

vi (k)

i

(from

Membership coefficient

updating unit)

(from

Membership coefficient

updating unit)

(from

Membership coefficient

updating unit)

Figure 4. The architecture of centroid computation unit

2

,kiu

2

ik vx  Multiplier
22

, ikki vxu 
Adder Register









k

z

i

j

jzzj vxu
1

1

1

22

,









k

z

i

j

jzzj vxu
1

1

1

22

,

Figure 5. The architecture of cost function computation unit

Decoder

Cell 1

Mux

Cell 2

．
．
．

Cell Q

Cell i

．
．
．

Cell 1

Cell 2

．
．
．

Cell Q

Cell i

．
．
．

．．．
．．．

Memory Bank 2

iv
iv

Memory Bank 1

Index of new centroid

(from control unit)

(from centroid
computation unit)

New centroid

enable
(from control unit)

Current centroid

Index of current
centroid i

(from control unit)

Figure 6. The architecture of on-chip centroid RAM

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

As shown in Figure 5, the cost function computation

circuit receives
2

,kiu and
2

ik vx  from the membership

coefficients updating unit. The product
22

, ikki vxu  is then

accumulated for computing J(i, k) in eq. (7).
When i = c and k = t, J(i, k) then is identical to the actual

cost function J given (1). Therefore, the output of the circuit
becomes J as the cost function computations for all the
training vectors are completed.

E. On-Chip Centroid RAM

This unit is used for storing the centroids for FCM
clustering. An shown in Figure 6, there are two memory
banks (Memory Bank 1 and Memory Bank 2) in the on-chip
centroid RAM. The Memory Bank 1 stores the current
centroids v1, ..., vc. The Memory Bank 2 contains the new
v1, ..., vc obtained from the centroid updating unit. Only the
centroids stored in the Memory Bank 1 are delivered to the
pre-computation unit and membership updating unit for the
membership coefficients computation. The updated centroids
obtained from the centroid updating unit are stored in the
Memory Bank 2. Note that, the centroids in the Memory
Bank 2 will not replace the centroids in the Memory Bank 1
until all the input training data points xk, k = 1, ..., t, are
processed.

It can also be observed from Figure 6 that there are Q
cells in each memory bank, where Q is the upper limit of the
number of centroids c. Therefore, the proposed FCM circuit
is able to conduct image segmentation with number of
classes c less than or equal to Q.

F. Xie-Beni Index Computation unit

The goal of Xie-Beni Index computation unit is to

compute XB(c) given in (4). The numerator of XB(c) is

actually the cost function. Hence, we can directly use the

output of the cost function unit as the numerator of XB(c).

The denominator contains mini,k ||vi-vk||. The
corresponding circuit should be implemented in the cluster
validity index computation unit. Although the direct
implementation of mini,k ||vi-vk|| is possible, the time and area
complexity would be O(c

2
). Therefore, the complexities

would be very high when c becomes large. The proposed
circuit is able to reduce the overhead. Figure 7 shows the
architecture of Xie-Beni index computation unit, which
contains the minimum computation unit, a multiplier, and a
divider. The minimum computation unit contains an efficient
pipeline for the computation of mini,k||vi-vk||, as depicted in
Figure 8. The circuit can be viewed as a c–stage pipeline,
where each stage contains one processing module (PM). The
centroids are delivered to the pipeline from on-chip centroid
memory one at a time. Each centroid will traverse through
the pipeline. As shown in the figure, the latest input entering
the pipeline will be broadcasted to all the PMs. Let

Dmin(vp)=
2

, ||||min kppkk vv  . (9)

Suppose now the centroid vp arrives at PM i, and the

centroid vq is the newest centroid entering the pipeline. In

the PM i, the distance between vp and vq will be computed,

and will be compared with the current Dmin(vp). If ||vp-vq||
2
 <

current Dmin(vp), then ||vp-vq||
2

will be the new current

Dmin(vp). As vp reaches stage c of the pipeline, the current

Dmin(vp) becomes the actual Dmin(vp). When all the centroids

have reached the stage c, the actual mini,k ||vi-vk|| can be

computed by
2||||min ji

ji
vv 


 = minp Dmin(vp). (10)

The time and area complexities of the proposed pipeline

are only O(c). The proposed architecture is therefore

effective for Xie-Beni index computation. Finally, we note

that, because it is necessary to compute the XB(c) for various

c values, the pipeline actually will be implemented in Q

stages, where Q is the upper bound of the c value.

c

Multiplier Divider

J

XB(c)
Minimum Computation

Unit

vi

2

,min kiki vv 
2

,min kiki vvt 
(From On-Chip

Centroid RAM)

(From Cost Function

Computation unit)

(From Control

Unit)

(Number of

Training Datas)
t

Figure 7. The architecture of Xie-Beni index computation unit.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

PM 1

Register

MUX Comparator

PM 2

PM Q

Current

Minimum

c

Output… …

Current Dmin(vq-2)

Current Dmin(vq-1) = ∞

Current Dmin(vq-3)

vq

vq-1

vq-2

vq-3

(From On-Chip

Centroid RAM)

Figure 8. Architecture of minimum computation unit

(a) “Strawberry”

(b) “Pear & Cup”

Figure 9. The original images and their segmentation results produced by
the proposed FCM architecture: (a) “Strawberry,” (b) “Peer & Cup.”

IV. EXPERIMENTAL RESULTS

This section presents some physical performance

measurements of the proposed FPGA implementation. The

design platform of our system is Altera Quartus II 8.0 with

SOPC Builder and NIOS II IDE.
Figures 9 and 10 shows the segmentation results of the

proposed FCM architecture with Q=10. Therefore, the circuit
is able to conduct fully unsupervised segmentation for
images with number of classes c less or equal to 10.

(a) “Gulf Balls”

(b) “Fruits”

Figure 10. The original images and their segmentation results produced

by the proposed FCM architecture: (a) “Gulf Balls,” (b) “Fruits.”

Table I. The estimated and actual number of classes, and the segmentation
success rate of the proposed FCM architecture for the images shown in

Figures 9 and 10

Images Strawberry Peer & Cup Gulf Balls Fruits

Est. Class

Number ĉ
2 3 4 4

Actual Class
Number c

2 3 4 4

Segmentation
Success Rate

98.97% 97.13% 94.77% 98.87%

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

Table II. The CPU time of various FCM implementations

Q Proposed
Architecture

Basic Software
FCM

Fast Software
FCM [5]

2 15.47 ms 256.20 ms 62.40 ms

3 30.97 ms 709.45 ms 151.65 ms

4 50.05 ms 1404.70 ms 272.65 ms

5 69.11 ms 2404.70 ms 428.85 ms

6 88.20 ms 3720.30 ms 613.05 ms

7 107.28 ms 5410.90 ms 825.45 ms

8 126.36 ms 7535.90 ms 1067.78 ms

9 145.46 ms 10149.15 ms 1345.03 ms

10 164.55 ms 13389.75 ms 1648.23 ms

All the images have the same dimension 320 × 320. The

images are separated into 2 × 2 blocks for FCM training and

segmentation. Table 1 shows the estimated and actual

number of classes, and the segmentation success rate of

these images. The segmentation success rate of an image is

defined as the number of pixels which are misclassified

divided by the total number of pixels of the image. From

Figures 9 and 10, and Table 1, it can be observed that the

proposed architecture is able to correctly identify the

number of classes with high classification success rate.

The speed of various FCM implementations is revealed in

Table 2. The target FPGA device is Altera Stratix III

EP3SL150F1152C2N [13]. The speed of the proposed

architecture is the CPU time of the softcore NIOS processor

[14] using the proposed architecture as the hardware

accelerator. The clock rate of the NIOS processor is 75 MHz.

The software implementations are running on 2.8 GHz Intel

Pentium D processor. Two software implementations are

considered: the basic FCM implementation, and the fast

FCM implementation [5].
Figure 10 shows the speedup of the proposed architecture

over the fast FCM [5]. It can be observed from Table 2 and
Figure 11 that the proposed architecture has significantly
lower computation time as compared with its software
counterparts. Although the NIOS processor is running at a
lower clock rate as compared with Intel CPU (i.e., 75 MHz
versus 2.8 GHz), it still has higher computational speed
because of the efficiency of the proposed architecture for the
membership matrix and centroid computation.

The hardware utilization of the proposed architecture for
various Q values is shown in Table 3 for Altera Stratix III
EP3SL150F1152C2N. It can be observed from the table that
the consumption of ALMs and DSP block grow linearly with
Q. Nevertheless, only a small fraction of hardware resources
are consumed. In particular, when Q=10, only 20 %, 27 %
and 19% of the ALM, block memory bits, and DSP blocks
are consumed by the proposed architecture.

Finally, Table 4 compares the hardware utilization of the
proposed architecture with that of the architecture in [8] with
block size 2×2. The target device is Altera Cyclone III
EP3C120. The logic elements (LEs) are the hardware
resources considered in the table.

Figure 11. The speedup of the proposed architecture over the fast FCM in
[5].

From Table 4, we can see that the proposed architecture

has significantly lower utilization of LEs as compared with
the architecture in [8]. In fact, the proposed architecture is
able to operate up to Q=64 with the consumption of only
40% of LEs of the target FPGA. By contrast, the architecture
in [8] consumes almost all the LEs when Q reaches 32. All
these facts demonstrate the effectiveness of the proposed
architecture.

Table III. The hardware utilization of the proposed architecture.

Q ALMs Block Memory
Bits

DSP Block
Elements

2 10738/56800

(18%)

1535264/5630976

(27%)

40/384

(10%)

3 10814/56800

(19%)

1535840/5630976

(27%)

44/384

(11%)

4 10893/56800
(19%)

1535904/5630976

(27%)

48/384
(13%)

5 11056/56800

(19%)

1536992/5630976

 (27%)

52/384

(14%)

6 11199/56800

(19%)

1537056/5630976

(27%)

56/384

(15%)

7 11308/56800

(19%)

1537120/5630976

(27%)

60/384

(16%)

8 11405/56800

(20%)

1537184/5630976

(27%)

64/384

(17%)

9 11612/56800

(20%)

1539296/5630976

(27%)

68/384

(18%)

10 11793/56800
(20%)

1539360/5630976

(27%)

72/384
(19%)

Table IV. The LE utilization of various architectures.

Q Proposed Architecture

Architecture in [8]

4 16553/119088 (14%) 21084/119088 (18%)

8 18504/119088 (16%) 35423/119088 (30%)

16 22568/119088 (19%) 59868/119088 (50%)

32 30827/119088 (26%) 114117/119088 (97%)

64 47412/119088 (40%) N/A

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

V. CONCLUDING REMARKS

Experimental results revealed that the proposed
architecture is able to correctly estimate the number of
classes of an image with segmentation success rate above
94%. For the cases where the upper bound of the number of
classes is 10, the proposed architecture consumes less than
30% of the ALMs, block memory bits, and DSP blocks of
the Stratix III FPGA device. It also attains speedup of 10
over its software counterpart running on the Intel general
purpose CPU. The proposed architecture, therefore, is
effective for unsupervised image segmentation with low area
costs and high computation speed.

REFERENCES

[1] J.C. Bezdek, Fuzzy Mathematics in Pattern Classification,
Cornell University: Ithaca, NY, USA, 1973.

[2] S.C. Chen and D.Q. Zhang, “Robust image segmentation
using FCM with spatial constraints based on new kernel-
induced distance measure,” IEEE Trans. Syst. Man Cybern. B,
2004, pp. 1907-1916.

[3] K.S. Chuang, H.L. Tzeng, S. Chen, J. Wu, and T.J. Chen,
“ Fuzzy c-means clustering with spatial information for image
segmentation,” Comput. Med. Imaging Graphics, 2006, pp. 9-
15.

[4] S. Eschrich, J. Ke, L.O. Hall, and D.B. Goldgof, “Fast
Accurate Fuzzy Clustering Through Data Reduction,” IEEE
Transaction on. Fuzzy Systems, 2003, pp. 262-270.

[5] J. F. Kolen and T. Hutcheson, “Reducing the Time
Complexity of the Fuzzy C-Means Algorithm,” IEEE Trans.
Fuzzy Systems, pp. 263-267, Vol. 10, 2002.

[6] J. Garcia-Lamont, L.M. Flores-Nava, F. Gomez-Castaneda,
and J.A. Moreno-Cadenas, “CMOS Analog Circuit for Fuzzy
C-Means Clustering,” IEEE Proceedings 5th Biannual World
Automation Congress, 2002.

[7] J. Lazaro, J. Arias, J.L. Martin, C. Cuadrado, and A. Astarloa,
“Implementation of a Modified Fuzzy C-Means Clustering
Algorithm for Realtime Applications,” Microprocessors and
Microsystems, 2005, pp. 375-380.

[8] H.Y. Li, C.T. Yang, and W.J. Hwang, “Efficient VLSI
Architecture for Fuzzy C-Means Clustering in Reconfigurable
Hardware,” Proc. IEEE International Conference on Frontier
of Computer Science and Technology, 2009, pp. 168-174.

[9] H.Y. Li, W.J. Hwang, and C.Y. Chang, “Efficient Fuzzy C-
Means Architecture for Image Segmentation”, Sensors, 2011,
pp.6697-6718.

[10] X.L. Xie and G. Beni. “A Validity measure for Fuzzy
Clustering”, IEEE Transactions on Pattern Analysis
andmachine Intelligence, 1991.

[11] S. Hauck and A. DeHon, Reconfigurable Computing: The
Theory and Practice of FPGA-Based Computation, Morgan
Kaufmann, USA, 2008.

[12] M.S. Lewicki,“A review of methods for spike sorting: the
detection and classification of neural action potentials,”
Network Computer Neural System, 1998, pp. R53-R78.

[13] Altera Corporation, Stratix III Device Handbook, 2011,
http://www.altera.com/literature/lit-stx3.jsp (accessed on 6
August, 2012).

[14] Altera Corporation, NIOS II Processor Reference Handbook,
2011, http://www.altera.com/literature/lit-nio2.jsp (accessed
on 6 August, 2012).

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

http://www.altera.com/literature/lit-stx3.jsp
http://www.altera.com/literature/lit-nio2.jsp

