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Abstract—In breeding test fields, where tens or even hundreds
of thousands of corns are planted, measurements of numerous phe-
notypic traits—such as plant height, tassel height, stem thickness,
fruiting characteristics (e.g., tassel length, tassel width, awnless
tip, row number), disease resistance, and lodging resistance—are
typically required. Traditional methods rely on pen-and-paper
recordings or basic spreadsheets, which are highly inefficient and
prone to human errors, including serial mistakes and incorrect
data entries. This makes it difficult to ensure data accuracy and
quality. To address these challenges, this paper explores the use of
Unmanned Aerial Vehicles (UAVs) and deep learning technologies
to monitor the entire growth process of corn plants throughout
their life cycle and select high-quality seedlings. Using experiments
conducted in corn fields in Henan Province as a case study, the
research focuses on identifying the growth and development
stages of corn plants, as well as monitoring the timing of tassel
emergence. A high-quality dataset covering the entire growth
and development process is constructed. Based on UAV remote
sensing images with Real-Time Kinematic (RTK) coodinates and
timestamps, and 3D point cloud coordinates, we employ You Only
Look Once (YOLO)v8 to conduct object detection to accurately
identify tassel emergence times during growth. We also collect
images of mature corn plants and their point clouds to calculate
the height of each mature corn. These approachs aim to achieve
precise monitoring of corn growth conditions and facilitate the
digital and precise management of the corn cultivation process.

Keywords-Unmanned Aerial Vehicles (UAVs), Real-Time Kine-
matic (RTK), Deep Learning (DL), You Only Look Once (YOLO).

I. INTRODUCTION

The growth and development of corn are critical factors
influencing both yield and quality. Currently, crop growth mon-
itoring primarily relies on manual sampling, which struggles
to meet the demands of modern agriculture for precision and
automation. In recent years, the rapid advancements in UAV
remote sensing technology and deep learning have opened new
possibilities for breakthroughs in crop growth monitoring [1].

UAVs have a wide range of potential applications in agriculture,
including reducing manual labor and enhancing productivity.
Drones are extensively used for monitoring crop growth and
managing fields. They may also provide early detection of
plant diseases, enabling farmers to take preventive measures
against costly crop failures [2]. In particular, in scenarios such
as seedling cultivation and breeding, it is essential to conduct
highly detailed monitoring of each seedling’s growth conditions,
nutritional status, and pest and disease occurrences.

Drones have become widely used in precision agriculture
to capture high-resolution images of crops, offering farmers
valuable insights into crop health, growth patterns, nutrient
deficiencies, and pest infestations. While several machine
learning and deep learning models have been proposed for
detecting plant growing status and diseases, their accuracy and
computational efficiency still need improvement, especially
when working with limited data [3]. The integration of
Autonomous Aerial Vehicles (AAVs) has significantly advanced
image processing and remote sensing, particularly in the field
of precision agriculture [4].

This paper explores how drone technology can be utilized
to achieve full-cycle monitoring of corn breeding experimental
fields, including detecting and identifying the emergence time
of corn tassels and the height of mature corn plants. The goal
is to identify corn plants with optimal growth conditions and
cultivate superior seeds. The contributions of our work are
summarized as follows:
i) RTK point positioning technology is used to accurately

analyze and determine the precise location of each corn
plant.

ii) A UAV fitted with an H20 camera captures orthographic
images of the corn test fields throughout the entire growth
period. The pixel coordinates of these images correspond to
RTK coordinates, and each image is also time-stamped. We
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perform segmentation on these images and use YOLOv8 to
detect the tassel (the fluffy structure at the top) status of each
plant, along with their positions and emergence times. In
our experiments, the identification accuracy reaches 82.5%.

iii) A UAV equipped with an L1 laser camera scans the plot to
create a point cloud. The coordinates of the point cloud are
then aligned with RTK coordinates in the same projection
system. This equipment allows us to capture 3D point clouds
and images of mature corn test fields. Based on elevation
data from the top point cloud and the root point cloud of a
mature corn plant, we can calculate the height of each corn
plant.
The remainder of the paper is organized as follows. Section II

provides a review of representative studies on digital crop
management using UAVs and deep learning technologies. In
Section III, we present a set of methods for identifying corn
tassel emergence and measuring plant height using UAVs.
Section IV details the implementation of our experiments.
Finally, we conclude our work in Section V.

II. RELATED WORK

Khan et al. [5] proposed an innovative deep learning
framework that employs an encoder-decoder architecture to
classify each pixel in drone images into categories such as
weed, crop, and others. Effective weed control is crucial for
enhancing crop yields. Traditionally, weed management relied
heavily on herbicide use, but the indiscriminate application
of herbicides poses risks to both crop health and productivity.
Fortunately, the advent of advanced technologies like UAVs
and computer vision has paved the way for automated and
efficient weed control solutions. These technologies leverage
drone images to detect and identify weeds with a high degree
of accuracy.

Gallo et al. [6] created a weed and crop dataset called the
Chicory Plant (CP) dataset and tested state-of-the-art deep
learning algorithms for object detection. A total of 12,113
bounding box annotations were generated to identify weed
targets (Mercurialis annua) from over 3,000 RGB images
of chicory plantations, collected using a UAV system at
various stages of crop and weed growth. Deep weed object
detection was conducted by applying the latest You Only
Look Once version 7 (YOLOv7) on both the CP and publicly
available datasets, such as the Lincoln Beet (LB) dataset, which
previously used an earlier version of YOLO for mapping weeds
and crops.

Wu et al. [7] leveraged drone remote sensing data combined
with deep object detection models, specifically employing
the YOLO-v3 algorithm based on loss function optimization,
for the efficient and accurate detection of tree diseases and
pests. Utilizing drone-mounted cameras, the study captures
insect pest image information in pine forest areas, followed by
segmentation, merging, and feature extraction processing. The
computing system of airborne embedded devices is designed to
ensure detection efficiency and accuracy. The improved YOLO-
v3 algorithm combined with the CIoU (Complete Intersection
over Union) loss function was used to detect forest pests and

diseases. Compared to the traditional IoU loss function, CIoU
takes into account the overlap area, the distance between the
center of the predicted frame and the actual frame, and the
consistency of the aspect ratio.

Deng et al. [8] proposed an end-to-end Global-Local Self-
Adaptive Network (GLSAN), in order to address the Object
detection from a drone’s perspective due to the blurriness
of small-scale objects and inefficient detection in areas with
uneven or dense object distribution. The key components in
their GLSAN include a global-local detection network (GLDN),
a simple yet efficient self-adaptive region selecting algorithm
(SARSA), and a local super-resolution network (LSRN). They
integrate a global-local fusion strategy into a progressive scale-
varying network to perform more precise detection, where the
local fine detector can adaptively refine the target’s bounding
boxes detected by the global coarse detector via cropping the
original images for higher-resolution detection.

Lan et al. [9] proposed a rice spike detection method
that integrates deep learning algorithms with drone-based
perspectives. Building on an enhanced version of YOLOv5,
the method introduces an Efficient Multiscale Attention (EMA)
mechanism, designs a novel neck network structure, and incor-
porates SCYLLA Intersection over Union (SIoU). The results
demonstrate that this approach enables real-time, efficient,
and accurate detection and counting of rice spikes in field
environments.

Hosseiny et al. [10] proposed an automated and fully
unsupervised framework for plant detection in agricultural lands
using very high-resolution drone remote sensing imagery. The
core idea is to automatically generate an unlimited amount of
simulated training data from the input images, which addresses
the common limitation of deep learning methods—requiring
large amounts of training data. This framework is based on a
Faster Regional Convolutional Neural Network (R-CNN) with
a ResNet-101 backbone for object detection. The framework’s
efficiency was evaluated on two different image sets from
cornfields, captured using an RGB camera mounted on a drone.

Mota et al. [11] created a database of aerial RGB images of
corn crops in weedy conditions to implement and evaluate deep
learning algorithms for detecting and counting corn plants.

Kusumo et al. [12] investigated several image-processing-
based features for detecting diseases in corn. They examined
various features, such as RGB color, local image features like
Scale-Invariant Feature Transform (SIFT), Speeded Up Robust
Features (SURF), and Oriented FAST and Rotated BRIEF
(ORB), as well as object detectors like Histogram of Oriented
Gradients (HOG). They evaluated the performance of these
features on several machine learning algorithms, including
Support Vector Machines (SVM), Decision Tree (DT), Random
Forest (RF), and Naive Bayes (NB). Experimental results
indicated that RGB color features were the most informative
for this task.

Quan et al. [13] presented an improved Faster R-CNN model
for a field robot platform (FRP) designed to automatically
extract image features and detect maize seedlings quickly and
accurately during different growth stages in complex field
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environments, with the goal of enabling intelligent inter-tillage
in maize fields. The FRP, equipped with five industrial USB
cameras, captured a large number of sample images from
a 0–90° shooting angle range. These images were used to
create a database containing 20,000 images of soil, maize,
and weeds. Ten pretrained networks were used to replace
the network in the CNN feature-computing component of the
classic Faster R-CNN. The proposed method, a Faster R-CNN
with VGG19 processed by pretrained networks, was developed
for this purpose.

Velumani et al. [14] explored the impact of image ground
sampling distance (GSD) on maize plant detection performance
at the three-to-five leaf stage using the Faster-RCNN object
detection algorithm. The Faster-RCNN model achieved excel-
lent plant detection and counting performance (rRMSE = 0.08)
when trained and validated with native high-resolution images.
Similarly, good performance (rRMSE = 0.11) was observed
when the model was trained on synthetic low-resolution images,
obtained by downsampling the native high-resolution images,
and applied to synthetic low-resolution validation images.
However, poor performance was seen when the model was
trained on one spatial resolution and applied to another. Training
on a mix of high- and low-resolution images resulted in
very good performance on both native high-resolution images
(rRMSE = 0.06) and synthetic low-resolution images (rRMSE
= 0.10).

Cho et al. [15] proposed a real-time measurement system for
obtaining precise target-plant growth information in precision
agriculture. They used a smart farm robot that accurately
measures plant growth by utilizing object detection, image
fusion, and data augmentation with fused images. The system
employed image fusion using both RGB and depth images to
distinguish the target plant from surrounding plants.

Ahangir et al. [4] addressed the challenge of accurately quan-
tifying corn production by developing an enhanced YOLOv8-
based deep learning model, which integrates dynamic and fixed
labeling techniques. The model was tested on 810 images and
video data for real-time detection.

Daraghmi et al. [3] conducted a comparative analysis of
three state-of-the-art object detection deep learning mod-
els—YOLOv8, RetinaNet, and Faster R-CNN—and their
variants, to identify the model with the best performance for
high-resolution crop images. Their study highlighted YOLOv8’s
robustness, speed, and suitability for real-time aerial crop
monitoring, especially in data-constrained environments.

In this paper, we focus on using UAVs and deep learning
technology to monitor the entire growth process of each corn
plant in an experimental field throughout its life cycle, with
the goal of selecting high-quality seedlings. We employ RTK
technology to determine the position of each corn plant and
use the YOLOv8 model to detect the tassels. By unifying point
cloud coordinates with RTK coordinates in the same projection
system, we facilitate the calculation of the corn plant’s height.

III. METHODS

In this section, we will demonstrate the workflows of using
drones for corn inspection.
A. Locating the Position of Each Corn Plant with RTK

Coordinates
RTK equipment is used to accurately analyze and determine

the location of each corn plant. RTK (Real-Time Kinematic)
is a global satellite navigation system (GNSS) technology that
provides real-time, high-precision positioning. RTK coordinates
include two-dimensional positioning data, such as latitude and
longitude (e.g., longitude: 113.758619, latitude: 35.445592),
offering centimeter- or even millimeter-level accuracy. This
technology is widely used in fields like surveying and mapping.
In our case, it provides precise coordinate data that serves as
a reference for coordinate transformation.

The UAV then captures aerial images of the corn field, which
are exported as image files for further analysis.
B. Method for Identification of Corn Tassel
1) Capturing Images of Corn Fields at Different Growth Stages

for Tassel Emergence Identification
The DJI M300 drone, equipped with RTK and the H20

camera, regularly captures orthographic images of the corn
fields. By combining these orthographic images with the RTK
coordinates provided by the drone, a direct correspondence
between the pixel positions in the images and the RTK
coordinates is established. A square frame with a side length
of 25 cm is placed at the center of each corn plant, within
which the tasseling status of the plant is detected, along with
its position—specifically, the pixel coordinates of the root and
top of the corn plant. It is important to note that these images
include both a timestamp and the RTK coordinates of the pixel
positions.
2) Identification of Corn Tassels

We construct a high-quality dataset by collecting images
from test fields that cover the entire growth and development
process of corn plants. Image segmentation and object detection
are performed using YOLOv8 to identify the male tassel of
corn. YOLOv8 is a hierarchical, multi-scale feature extraction
and fusion network. It supports not only object detection but
also instance segmentation. Known for its robustness, speed,
and suitability for real-time aerial crop monitoring, YOLOv8
is particularly effective in data-constrained environments [3].

First, we perform image segmentation on the collected test
field images. We extract the pixels of each corn from an image,
which is a square frame with a side length of 25 cm centered
on the corn plant’s center, and serves as the detection frame
of the corn.

Next, YOLOv8 is used to identify the male tassel of the
corn. The human visual system employs a selective attention
mechanism that automatically focuses on key areas of a
scene. Integrating this attention mechanism into a recurrent
neural network can significantly enhance image classification
performance and improve the model’s ability to accurately
identify multiple types of targets. Based on this principle, the
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Convolution Block Attention Module (CBAM) is integrated
into YOLOv8’s feature extraction network.

When detecting the male tassel of corn, it is labeled as
“tassel" along with a timestamp.
C. Calculation of Corn Plant Height
1) Capturing Images of Corn Field During the Mature Period

for Corn Plant Height Calculation
To calculate the height of corn plants, the DJI M300

drone, equipped with a laser radar (L1), captures images of
mature corn plants along with point cloud coordinates in local
coordinates.

The 3D point cloud coordinates are represented as (x, y, z).
Additionally, these images include pixel-to-RTK coordinate
correspondence, which helps in locating the position of each
corn plant and recording the timestamp when the images are
taken.

Two key points need to be marked on each corn plant: the
“root" (the base of the stem close to the ground) and the “tip"
(the top of the male spike or the highest point of the plant). The
pixel coordinates of the tip are crucial for height measurement.

It is particularly important to note that the local point cloud
coordinates (x, y, z) must be aligned with the RTK coordinates
in the same global coordinate system in order to accurately
locate each corn plant and calculate its height. The coordinate
conversion method is detailed in the next subsection.
2) Unifying Point Cloud and RTK Coordinates into a Global

Coordinate System
First, we unify the point cloud coordinates and RTK

coordinates into the same projection coordinate system.
A point cloud is a data set consisting of a large number of

points, each containing information such as three-dimensional
coordinates (x, y, z) in space. Point clouds can be used to
represent the three-dimensional shape and spatial distribution
of objects. In this paper, point clouds are utilized to obtain
the 3D spatial information of target objects, such as corn
plants, for tasks like coordinate transformation and stem height
calculation.

The conversion formula, using a seven-parameter model, is
employed to convert the local coordinates of the point clouds
(x, y, z) into global coordinates (X, Y, Z), as follows:

XY
Z


global

=

∆X
∆Y
∆Z

+ (1 + k) ·R ·

xy
z


local

, (1)

where
[
X Y Z

]⊤
stands for global coordinates,[

x y z
]⊤

stands for local coordinates of point cloud,[
∆X ∆Y ∆Z

]⊤
is a translation vector, used to represent

the position offset transformation model formula for the origin
of the local coordinate system in the global coordinate system,
k represents the scaling factor, and R represents a rotation
matrix:

R = RZ(ω) ·RY (ϕ) ·RX(κ), (2)

RX(κ) =

1 0 0
0 cosκ − sinκ
0 sinκ cosκ

 , (3)

RY (ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 , (4)

RZ(ω) =

cosω − sinω 0
sinω cosω 0
0 0 1

 . (5)

3) Method for Calculating Corn Height
Plant height refers to the vertical distance from the root

to the top of a corn plant. At the center of each corn plant,
a square frame with a side length of 25 cm is placed. The
highest point in the point cloud within this frame is detected
as the center elevation of the plant, which corresponds to the
“tip"—the top of the male spike or the highest point of the
plant. The base of the stem, close to the ground, is defined as
the “root." Therefore, the height of the corn plant is calculated
as the difference between the global coordinates of the tip and
the root.

The formula for calculating the actual height of the corn
plant is as follows:

Height = Ztip −Zroot, (6)

where Ztip represents the elevation of the tip’s coordinates of
the corn in the global coordinate system, and Zroot represents
the elevation of the root’s coordinates of the corn in the global
coordinate system.

IV. IMPLEMENTATION AND CASE STUDY

In this section, we describe our experiments conducted in
corn breeding test fields in Xinxiang, Henan Province, using the
DJI M300 drone equipped with various devices and cameras
to capture images for different purposes.
A. Locating Corn Plants with RTK

RTK equipment is used to accurately analyze and determine
the location of each corn plant in the test fields of Xinxiang,
Henan Province.

For example, Figure 1 (a) and (b) show two corn seedlings,
each marked with their respective RTK coordinates.
B. Identification of Corn Tassel

The DJI M300 drone, equipped with the H20 camera,
captures orthographic images of cornfields. By combining these
orthographic images with the RTK coordinates, a correspon-
dence between the pixel positions in the images and the RTK
coordinates is established.

We collected 1,000 images taken in corn test fields in
Xinxiang, Henan Province, at fixed intervals (i.e., every three
days) throughout the entire growth period, using the DJI M300
drone. A correspondence between the pixel positions in the
images and the RTK coordinates is established. These images,
captured by the drone, are marked with both RTK coordinates
and time stamps.

At the center of each corn plant, a square frame with a side
length of 25 cm is placed, and the tasseling status of each
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Figure 1: Corn plants with RTK coordinates.

plant within the frame is detected, along with their positions
and timestamps.

Figure 2 shows a corn plant with its male tassel spike
emerging. The image clearly reveals the main axis of the
male spikelet and several male spikelet branches.

The detection model we used is the deep learning-based
YOLOv8 (medium) network, which is applied to these images
to identify the corn tassels.

First, we perform image segmentation on the collected test
field images. We extract the pixels of each corn from an image,
defining a square frame with a side length of 25 cm centered
on the middle of each corn plant, which serves as the detection
frame for the plant.

We used 810 images for the training set and 190 images
for the test set. The corn tassel at each plant position within
the detection frame is detected. The test results show that
the accuracy rate can reach 82.5%. This demonstrates the

Figure 2: Photo of corn plants.

effectiveness of YOLOv8 in capturing fine plant features
under real field conditions, while also indicating that further
optimization of parameters and training data could yield even
higher detection performance.
C. Calculatiion Corn Height

The DJI M300 drone is equipped with an L1 laser camera
that scans the plot to generate a 3D point cloud. The point
cloud coordinates are then aligned with the RTK coordinates
within the same projection coordinate system. At the center
of each corn plant, a square frame with a side length of 25
cm is placed, within which the highest point cloud elevation
is detected, serving as the plant’s center elevation.

Figure 3 shows three corn plants in a field, with the global
coordinates of their respective 3D point clouds. The points
marked in the figure represent the highest point of each corn
plant’s point cloud, enclosed by the 25 cm frame.

For example, Figure 4 shows an image of a mature corn test
field, highlighting a corn plant with the global coordinates of
its tip and root, represented by three-dimensional point clouds.

As shown in the figure, the tip and root of a mature corn
plant share the same longitude and latitude coordinates, but
their elevation coordinates differ. The elevation coordinates of
the tip and root are 66.911 m and 64.602 m, respectively, with
the unit defaulted to the international standard of meters.

Based on the coordinate values marked in Figure 4, and
using Eq. (6) from Section III-C3, we can calculate the height
of this corn plant as follows: 66.911 - 64.602 = 2.309 m.
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Figure 3: Photo with three global point cloud coordinates.

Figure 4: Photo with tip and root point cloud coordinates of
corn plants.

This straightforward calculation confirms the vertical growth
measurement method and provides a reliable reference for
evaluating plant height across the test field.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed and validated an integrated frame-
work that combines UAV imagery and deep learning techniques
to monitor tassel emergence timing and plant height in corn
breeding fields. By leveraging high-resolution drone images,
precise RTK positioning, YOLOv8-based tassel detection, and
3D point cloud analysis, we achieved accurate and automated
extraction of critical agronomic traits at the single-plant level.
This approach not only reduces the labor intensity and potential
errors associated with manual measurements but also provides
efficient data support for large-scale breeding trials, thereby
improving the efficiency of high-quality germplasm selection.

However, the relatively small dataset may limit generaliz-
ability, and the evaluation relied mainly on accuracy; future
work should include precision, recall, and F1 score for a
more complete assessment. We also plan to expand monitoring

to traits such as tassel height, stem thickness, and fruiting
characteristics, and to integrate multi-source data with advanced
models to enhance robustness. Overall, this work provides a
practical foundation for UAV-based phenotyping and highlights
directions for future improvement.
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