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Abstract—Xylella fastidiosa (Xf) is one of the most aggressive
vascular pathogens threatening woody crops, particularly almond
trees, in the Mediterranean region. This paper presents a statistical
framework for the early detection of Xf infection prior to the onset
of visible symptoms, leveraging multitemporal physiological and
spectral data collected at the leaf level. The approach integrates
measurements from porometry, fluorometry, and spectrometry
with a non-parametric bootstrap resampling method to identify
traits that differentiate health states and reveal physiological
responses linked to disease progression. Results reveal that Xf-
infected trees, which later develop visible symptoms, exhibit
significant differences in median values of both spectral indices
and physiological variables compared to healthy and intermediate
health groups. Grounded in real field data, this work contributes
to data-driven plant health monitoring and precision agriculture,
demonstrating the potential of combining physiological and
spectral indicators for early, non-invasive diagnosis of vascular
diseases in perennial crops. The findings support the development
of predictive tools for timely disease detection and management
in almond and olive orchards.

Keywords-bootstrap-based non-parametric test; leaf scorch; phys-
iological indices; hyperspectral indices; precision agriculture.

I. INTRODUCTION

Almond (Prunus dulcis) is a crop of major economic and
cultural importance in Mediterranean regions [1]. However,
its cultivation is increasingly threatened by pathogens such
as the vascular bacterium Xylella fastidiosa (Xf) [2][3] which
has emerged as one of the most devastating pathogens in
Europe. The bacterium colonizes and obstruct the xylem vessels,
disrupting water transport and leading to symptoms (e.g., leaf
scorching, branch dieback or canopy desiccation) and eventually
plant death [4][5]. Early detection of the diseases caused by
Xf is challenging due to the asymptomatic infections and
latency of visual symptoms and the systemic nature of the
infection, highlighting the need for more sensitive and non-
invasive diagnostic approaches.

The need for improved in early detection strategies extend to
other vascular pathogens affecting woody crops. For example,
the highly virulent defoliating pathotype D of Verticillium
dahliae (Vd) [6] showed early physiological stress signals in
infected olive trees, such as changes in canopy temperature,
chlorophyll fluorescence, and spectral indices, well before
visual symptoms appeared, using airborne hyperspectral and
thermal imaging [7]. Subsequent studies [8][9] refined this
approach, proving that foliar temperature, chlorophyll content,
and pigment-based indices could serve as early indicators of
plant disease, with Machine Learning (ML) models to classify
disease severity across multiple levels.

Based on prior findings, recent studies have extended the
use of remote sensing and ML techniques to differentiate
between Xf and Vd infection in tree host. Although both
pathogens share aspects of their pathogenesis that lead to
similar visual symptoms, such as canopy desiccation and
leaf scorching, they induce distinct physiological responses
in host plants. A study in 2021 [10] proposed a three-
stage classification approach that combined hyperspectral and
thermal traits with ML algorithms to discriminate between
Xf and Vd infections in olive trees, achieving over 90%
accuracy for both pathogens. Their findings showed that each
pathogen follows divergent physiological pathways: Xf is more
associated with chlorophyll degradation (mainly captured by
the Normalized Phaeophytinization Index, NPQI), anthocyanin
accumulation, and changes in photochemical reflectance indices
(e.g., normalized Photochemical Reflectance Index, PRI,),
while Vd is characterized by alterations in carotenoid content
and water stress indicators (e.g., Crop Water Stress Index,
CWSI). Building on this work, [2][11] demonstrated that
these pathogen-specific spectral signatures remain consistent
across both olive and almond trees. In particular, NPQI and
Solar-Induced Chlorophyll Fluorescence at 760 nm (SIF@760),
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indicator of photosynthetic efficiency and physiological stress,
were identified as key traits for detecting Xf in olives. In
contrast, other indices such as PRI, and Modified Carotenoid
Reflectance Index centered at 700nm (CRI;gon) were found
to be more relevant in almonds, underscoring the importance
of host-specific physiological responses in disease detection
models. Finally, [12] focused specifically on Xf in almond trees,
proposing the integration of hyperspectral and thermal imagery
with an epidemic spread model. Their method enhanced
early detection of asymptomatic Xf-infected almond trees,
achieving up to 59% accuracy. These results highlight the
value of integrating plant physiological traits with spatial
epidemiological models for large-scale monitoring.

In this study, we aim to identify early physiological indicators
of Xf infection in almond trees, prior to the onset of visible
symptoms. To this end, we analyse multi-temporal leaf-level

data acquired through spectrometry, porometry and fluorometry.

Using bootstrap-based statistical testing, we identify the most
informative traits for discriminating health states over time.
Our goal is to establish a foundation for predictive models that
support early and non-invasive diagnosis of Xf in almond trees,
with potential transferability to other woody crops affected by
vascular pathogens.

The paper is organized as follows: Section II introduces the
database, detailing the preprocessing steps and the instance
labelling procedure. It also presents the statistical test employed
to identify relevant variables Section III reports and discusses
the results, while Section IV concludes the study and outlines
directions for future research.

II. MATERIALS AND METHODS

In this section, we describe the dataset used in the study and
also detail the preprocessing procedure. We present the criteria
for instance labelling based on visual symptoms and molecular
diagnostics, along with the strategy adopted to ensure temporal
consistency in label assignment. Finally, we introduce the
statistical framework employed to identify the most informative
variables for early infection detection.

A. Dataset. Labelling and Preprocessing

The dataset provided by TAS-CSIC includes data from 96
almond trees located in several commercial almond orchards on
Mallorca Island (Balearic Islands, Spain). Each tree, identified
by a unique ID, has four records corresponding to different
measurement dates in 2024: May 15th, June 5th, June 25th,
and July 15th. Measurements were taken from one or two
branches per tree, depending on whether the tree showed
visual symptoms of the disease in the previous crop season. If
symptoms were present in 2023, two branches were measured in
2024; otherwise, only one branch was measured. All measured
branches were tested for the presence of Xf using a molecular
diagnosis based on the quantitative Polymerase Chain Reaction
(qPCR) analyses [13].

Leaf-level spectral reflectance data were collected using
the PolyPen RP410-UVIS (Photon Systems Instruments, Brno,
Czech Republic), a portable spectroradiometer that captures

reflectance across 246 discrete wavelengths ranging from
326.2 nm to 791.8 nm. These data were used to calculate
several vegetation indices, including physiological traits such
as pigment concentration, leaf structure, and photosynthetic
activity, serving as potential indicators of plant stress related
to vascular diseases. This approach follows established method-
ologies developed by the IAS-CSIC team [3][14][15], where
spectral traits have proven useful for detecting early plant
responses to vascular pathogens.

In addition to spectral data, we incorporated physiological pa-
rameters measured with the portable instrument LI-600 porom-
eter/fluorometer (LI-COR Biosciences, Lincoln, NE, USA).
This device measures stomatal conductance, leaf temperature,
ambient humidity, and steady-state chlorophyll fluorescence
(Fs), providing information on plant water status and dynamic
photochemical activity. Together, these physiological traits
complement spectral data. As a result, 43 variables, hereafter
referred to as physiological traits, were preserved from the
LI-600 for further analysis.

For the exploratory analysis, missing values were removed
on a per-variable basis. Outliers in physiological traits, defined
as values exceeding the mean *+ 20 times the interquartile
range (IQR), were imputed using the mean of the correspond-
ing branch. Additionally, some hyperspectral measurements
exhibited anomalous values across the entire spectral range for
specific leaves; these were considered unreliable and similarly
imputed using the branch-level mean.

All leaf-level observations were labelled according to the
health status of their corresponding branch. Four mutually
exclusive groups were defined based on a combination of three
criteria: (i) visual symptoms observed at the measured branch,
(i1) molecular diagnosis via qPCR [13] conducted during the
final measurement in July, and (iii) overall health status assessed
by using a severity score.

Initially, each branch was assigned a single label per time
point, which was then applied to all leaf samples collected
from that branch. Importantly, branches from the same tree
could receive different labels depending on their individual
condition. Thus, the four categories were defined based on
expert knowledge and measurements taken in July, as follows:
Label 0: Negative qPCR result, no visual symptoms, and no
suspicion of disease (severity score = 0); Label 1: Branches
with negative qPCR result, no visual symptoms, but suspected
disease (severity score > 0); Label 2: Branches with positive
gPCR result, but no visual symptoms, regardless of the
severity score; Label 3: Branches presenting visual symptoms,
regardless of the qPCR result.

Figure 1 (a) provides a schematic overview of the labelling
procedure described above. Each row represents one of the four
measurement dates, while each column corresponds to a single
tree identified by its ID. In cases where two branches from
the same tree were measured, both labels are displayed within
the same cell, separated by a diagonal line. The figure uses a
colour coding: green for Label 0; yellow for Label 1; orange
for Label 2; red for Label 3. Cells without colour indicate
not available data. This visual format illustrates the temporal
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(b)

Label assignment scheme: (a) initial labelling based on visual symptoms, qPCR results in July, and overall health status based on a severity score; (b)
retrospective labelling after backward propagation from the final measurement date (July 15th).

progression of the assigned labels and highlights variability

within individual trees.

For subsequent analyses, a retrospective labelling approach
was adopted: the label assigned at the final measurement (July
15th) was propagated backward to all earlier observations of the
same branch. This approach aligns with the goal of identifying
physiological and spectral markers linked to the final health
status, ultimately aiming to develop predictive models for early-
season detection of Xf infection. Figure 1 (b) displays this
backward label propagation using the same structure and colour
coding as in panel (a), where labels are redefined as follows:
o Label 0: Branches with neither visual symptoms nor sus-

pected disease throughout the monitoring period (severity

score = 0) and negative qPCR result in July.

o Label 1: Branches with no visual symptoms over time and
negative qPCR result in July, but with suspected disease
(severity score > 0).

o Label 2: Branches with no visual symptoms over time but a
positive qPCR result in July, indicating Xf-infection.

o Label 3: Branches that eventually develop visual symptoms
during the monitoring period.

To better illustrate the backpropagation labelling process, let
us take tree ID 209 as an example. Neither of its branches
showed visible symptoms on May 15 or June 5", and were
therefore initially assigned to Label 2 (Figure 1(a)). However,
symptoms became evident on 25/ and July 15", leading to
the retrospective assignment of Label 3 to the earlier dates,
May 15" and June 5 (Figure 1(b)). This situation is not
uncommon: branches ultimately assigned to Label 3 may not
exhibit visible symptoms until the third or fourth measurement.
Therefore, although they are retrospectively assigned to the
most severe health status group from the first measurement,
their actual condition may be milder in the early stages.

B. Statistical Analysis. Non-Parametric Difference Test

To identify which of the D variables are most discriminative
in differentiating between the defined groups, a non-parametric

test for statistical differences was employed. This approach
requires the definition of a test statistic, denoted as 7°(-), which
depends on the variable 6, where d = {1,...,D}.

In our context, two test statistics 7(-) were used: (i) the
difference in medians between two groups, denoted as u and v
(Eq. 1), and (ii) the difference in standard deviations between
the same groups (Eq. 2).

T1(64) = median(6,),
T2(04) = std(04)u — std(a)y

— median(6y),

(1)
2)

A statistical comparison between groups was carried out by
performing a hypothesis test for each variable. The aim was to
determine whether the observed differences between groups for
a given variable were statistically significant. The hypotheses
for each test were defined as follows:

Hp : There is no significant difference between groups
with respect to 64
H; : There is a significant difference between groups

with respect to 64

where Hy and H; denote the null and alternative hypotheses,
respectively.

To robustly estimate the value of the test statistic T(0y),
particularly in scenarios with limited sample sizes and unknown
population distributions, we employed a non-parametric Boot-
strap resampling approach [16][17]. This approach involves
repeatedly resampling the observed data with replacement to
generate an empirical distribution of the statistic. The resulting
estimate, f‘(Gd), closely approximates the true value, i.e.,
T(04) ~ T(64).

The bootstrap procedure involves generating multiple re-
samples B* of size m by randomly drawing observations
from the original sample B of size n, with m < n. In
this study, when comparing two groups, m was set to the
size of the minority group to ensure balanced resampling.
Importantly, resampling was performed with replacement,
allowing individual observations to appear more than once
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within a given B*. This process was repeated N times, yielding
a collection of N bootstrap estimates for the test statistic 7(6),
denoted as {Tl*(ed), .. .,T;(,(Gd)}. These estimates form an
empirical approximation of the sampling distribution of the
statistic. Choosing a sufficiently large number of resamples N
is essential to reduce variability in the bootstrap estimates and
to obtain stable and reliable statistical inference.

Finally, to evaluate the statistical significance of the estimated
test statistic 7'(6,4), we computed its empirical Confidence
Interval (CI) based on the bootstrap distribution. The CI defines
a range within which the true value of 7T(6,4) is expected
to lie with a specified probability, serving as a criterion for
accepting or rejecting the null hypothesis. To construct the CI,
a significance level « is defined, typically set to 0.05, which
corresponds to a 100(1 — @)% confidence level. This implies
that the true value of T(6,) is expected to fall within the
interval with probability approximately 1 — a. Accordingly,
the hypothesis test can be reformulated in terms of the CI as
follows:

Hy:0e CI(T(04)uy)
Hy:0¢ CHT(0a)uv)

In this framework, if the CI does not include zero, there is
sufficient evidence to reject Hy in favour of Hj, indicating a
statistically significant difference between the groups.

Based on this framework, the statistical test was applied at the
leaf level. Each bootstrap instance corresponded to data from an
individual leaf, allowing the analysis to capture within-branch
variability in physiological and spectral traits. This procedure
was performed independently for each of the D variables and
across all four measurement time points. By treating each leaf
as a distinct observation, the analysis achieves the highest
granularity, enabling the detection of subtle group differences
at the most localized scale.

III. REsuLTs AND DiscussioN

The non-parametric bootstrap test was applied across all
variables, including vegetation indices from the literature [3]
and a broad set of physiological traits, to assess group-level
differences. For each variable and time point, we evaluated
differences in median values between health groups and also ex-
amined differences in variability (standard deviation) to capture
physiological heterogeneity linked to disease progression.

To streamline the presentation, Figure 2 highlights hyperspec-
tral and physiological traits that at least in two measurement
dates showed significant differences between the two most
contrasting health states, Label 0 (asymptomatic and qPCR-
negative) and Label 3 (symptomatic). These comparisons
are shown as the first CI for each variable. Additional CIs
represent comparisons involving intermediate labels, which
were also examined to evaluate their potential for early detection.
Green CI indicate statistically significant differences, while red
intervals indicate non-significant ones. The black dot indicates
the median of each bootstrap distribution. While the Label O vs.
Label 3 comparison was expected to yield the most pronounced
differences, when comparing groups with intermediate labels

(1 and 2), relevant differences also emerged. This reinforces
the potential utility of these variables for early detection
of physiological and spectral changes prior to symptom
onset. Table I lists the variables whose Cls are displayed in
Figure 2, along with their corresponding descriptions. Spectral
indices (MCARI, to RGI) were computed from leaf-level
hyperspectral reflectance data, while physiological traits (GSW
to Tiear) Were obtained from direct measurements with the
porometer/fluorometer.

A. Hyperspectral Indices

The results in Figure 2 (a) indicate that several spectral
indices consistently differ in median values between the
healthiest leaves (Labels 0 and 1) and those showing advanced
symptoms (Label 3), particularly during the early measurements
in May 15th and June 5th. This suggests that certain spectral
indices may serve as early indicators of physiological disruption
before visible symptoms appear. In contrast, differences in
standard deviation were generally less conclusive (data not
shown due to space constraints). The most notable variability
differences were observed at the second time point (June 5th),
particularly between the most severely affected groups (Labels
2 and 3). In some cases these differences persisted into later
stages of the season, including late June and July, suggesting
progressive physiological divergence as the infection advanced.

The indices DCabxc and TCARI, both associated with
chlorophyll content, showed consistent differences between
leaves labelled as 0 and those leaves labelled as 3 across all mea-
surement dates. Additionally, both indices occasionally showed
significant differences when comparing leaves labelled as 1 or
2 to those labelled as 3. Notably, TCARI has previously been
identified as one of the most discriminative indices for detecting
Vd symptoms in olive trees at both early and advanced stages,
due to its sensitivity to chlorophyll degradation [9]. Similarly, in

TABLE I. SUMMARY OF VARIABLES.

Variable | Description

MCARI, | Modified Chlorophyll Absorption Index

MSAVI Modified Soil-Adjusted Vegetation Index

TVI Triangular Vegetation Index

MTVI, Modified Triangular Vegetation Indices

MTVI,

CTR; Carter Index

DCabxc Reflectance Band Ratio Index

TCARI Transformed Chlorophyll Absorption in Reflectance Index
To TCARI / Optimized Soil-Adjusted Vegetation Index
xgg; Vogelmann Indices

PRIM3 Photochemical Reflectance Index

G Greenness Index

RGI Red-Green Index

GSW Stomatal conductance
GTW Total conductance
Eapparent Transpiration

VPiear Leaf vapor pressure
H20\cqf Leaf H20 mole fraction

Fs Minimum fluorescence in light

Fm’ Maximum fluorescence in light
PhiPS, Quantum efficiency in light
ETR Electron transport rate

Tieat Calculated leaf temperature
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Figure 2. CI of bootstrap distributions for median differences between labelled groups pairs across time points: (a) spectral indices; (b) physiological traits.
Each variable includes three CI, corresponding to comparisons between Label O vs. 3, Label 1 vs. 3, and Label 2 vs. 3, shown from top to bottom.

almond trees infected with Xf, TCARI also played a key role in
remote sensing-based classification models, forming part of the
index subset that most effectively distinguished symptomatic
from asymptomatic trees [12]. The same study also highlighted
the relevance of structural indices, such as MCARI, which
are linked to leaf nutritional status. A progressive decline in
MCARI values was reported as symptom severity increased,
consistent with reduced nitrogen content in Xf-infected leaves.
Our analysis aligns with these findings, showing statistically
significant differences in MCARI between leaves from label
group O and 3 during the first three measurement dates, and
between Labels 1 and 3 during the first two. In all cases,
the distribution shifted to the right, indicating lower MCARI
values in the most affected group. In contrast, differences in
standard deviation between groups were negligible, suggesting
that overall variability in MCARI remained relatively stable

regardless of Xf infection status.

Other structural indices, including TVI, MTVI;, and MTVI,,
also showed significant median differences between leaves
labelled as O and 1 and those labelled as 3, particularly
during the first two measurement dates. In particular, when
comparing label groups 1 and 3 at the second time point,
TVI and MTVI; exhibited significant differences in dispersion,
indicating increased variability in the physiological response
of Xf-infected trees. Previous studies [9] have incorporated
both TVI and MTVI; into discriminant analysis frameworks to
classify Vd infection severity in olive trees. These indices
significantly contributed to distinguish symptomatic from
asymptomatic trees and to finer severity stratification. Further
support is provided in [7], which identified these indices as part
of a core set of structural traits frequently used in early disease
detection models, likely due to their sensitivity to subtle canopy
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structure changes associated with early pathogen infection.

Studies by [7] and [9] also identified Optimized Soil-Adjusted
Vegetation Index (OSAVI), part of the soil-adjusted vegetation
index family, as informative for plant health assessment. In
our analysis (see Figure 2), we present results for MSAVI,
which, like OSAVI, is derived from Normalized Difference
Vegetation Index (NDVI) and uses the same spectral bands.
However, MSAVI is often preferred in environments with sparse
or discontinuous canopy cover and strong soil background
influence, conditions typical of almond orchards. In our
work, MSAVI consistently showed differences between the
symptomatic reference group (Label 3) and the other label
groups, particularly during the earlier measurement dates. This
pattern supports the potential of soil-adjusted vegetation indices
as effective early indicators of canopy-level physiological
changes associated with pathogen infection.

Other notable pigment-related indices included To
(TCARI/OSAVI), which estimates chlorophyll content while
minimizing the soil reflectance effects, and the Vogelmann
indices VOG; and VOGg;, which are sensitive to chlorophyll
content and based on red-edge spectral bands. To has consis-
tently been identified as one of the most responsive indices for
detecting Xf infection in both olive trees [2][18] and almond
trees [12]. In our analysis, To showed significant differences
between leaves labeled as 0 and 3 during the June and July
measurements, with higher values in leaves from healthy
branches, indicating greater chlorophyll content. Similarly, the
Vogelmann indices, previously reported for Xf detection in
olive [2][18] and almond trees [12], showed differences
between Labels 0 and 3 across several dates. Differences were
also observed between intermediate groups (Labels 1 or 2)
and group 3, highlighting the sensitivity of these indices to
progressive chlorophyll degradation. Notably, VOG; showed
significant differences in variability (standard deviation) only
between the most severely affected groups (Labels 2 and 3)
during early time points, with variability remaining relatively
stable later in the season.

Figure 2 also includes the xanthophyll-related index PRIM3,
which, along with the G and RGI indices, demonstrated
significant differences between leaves labelled 0 and those
labelled 3 on June 5th and 25th. Furthermore, G and RGI
also showed significant differences between groups 2 and 3
in the July measurement, highlighting their potential to detect
progressive stages of Xf infection. The PRI and its variants, such
as the normalized PRI, are well known for their effectiveness
in identifying plant stress symptoms, including those caused
by Xf [2]. These indices are closely linked to the xanthophyll
cycle, which reflects changes in photosynthetic activity and
efficiency under stress conditions [12].

Overall, these results confirm that several spectral indices,
particularly those associated with pigment content and vegeta-
tion structure, can effectively discriminate between healthy and
Xf-infected trees, even in asymptomatic stages. The strongest
differences were observed between fully healthy leaves (Label
0) and infected and symptomatic leaves (Label 3). Significant
differences among intermediate groups (Labels 1 and 2) further

support the potential of these indices for early detection and
large-scale monitoring of Xf infection.

B. Physiological plant traits

Figure 2 (b) shows the CI for physiological plant traits de-
rived from porometer/fluorometer median differences between
the healthiest (Label 0) and most affected (Label 3) trees, as
well as the intermediate labelled groups against Label 3. Similar
to spectral indices, certain physiological traits consistently differ
between these groups, particularly in earlier measurement dates.
This pattern suggests that these variables may be sensitive
to early physiological alterations caused by Xf infection,
even before visible symptoms appear. However, by the final
measurement in July, these differences tend to diminish likely
due to a general increase in thermal and water stress affecting all
trees. This is supported by the relevance of temperature-based
indices like the Crop Water Stress Index (CWSI) in Xf detection
[71[9]-[12]. Under such uniform stress conditions, physiological
responses among trees may converge, making it harder to
distinguish between healthy and infected trees. It is plausible
that trees labelled as O could recover post-stress, while those
labelled as 3 may not, due to their compromised physiological
state. Unlike these indices, the dispersion of variables across
groups shows significant differences, particularly between
Labels 0 and 3 in May and June. This highlights the potential
of porometer/fluorometer-derived traits as early and sensitive
indicators of Xf infection, though their discriminatory power
may decrease under widespread environmental stress later in
the season [10][11].

Conductance variables (GSW and GTW) exhibit significant
differences in median values between the healthiest leaves
(Labels 0 or 1) and the most affected ones (Label 3) at early
stages, linking leaf health to conductance [12]. Interestingly,
both conductance and transpiration, estimated by the Egpparent
variable, are higher in Label 3 leaves (potentially infected
but still asymptomatic) than in healthy ones. This contrasts
with reported findings that Xf infection typically reduces
conductance and transpiration due to xylem blockage and
impaired water transport [3]. This discrepancy may reflect
a transitional infection phase, where physiological decline
is not yet fully established or is masked by compensatory
mechanisms [3]. Among the most affected groups (Labels
2 and 3), median values of conductance and transpiration
(i.e., Eapparent) do not differ clearly. While conductance shows
greater dispersion in May and June measurements than in
the last measurement, transpiration variability does not differ
significantly. These patterns suggest that early or asymptomatic
stages of infection can produce variable physiological responses
that may not always align with the typical decline reported in
advanced stages [3][19].

The VPjey¢ variable shows significant differences between
leaves labelled O and 3, as well as between groups 2 and 3 in
early stages. In May, the most affected leaves (Label 3) have
higher CI values for vapour pressure, but this trend reverses in
June. Vapour pressure deficit is recognized as an early indicator
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of water stress caused by Xf infection [7][12][18]. Similarly,
H2Oe,¢ exhibit similar group differences as VPjeqs.

For fluorescence parameters, the healthiest leaves showed
significantly higher median values of minimum (F) and
maximum (Fp,’) fluorescence early in the season, with all
group comparisons becoming significant by June. This aligns
with previous findings that fluorescence is a sensitive indicator
of Xf infection, typically decreasing as photosynthetic activity
declines [12]. However, these differences fade as visual symp-
toms appear later in the season, and variability in fluorescence
remains inconclusive. Another fluorescence-related variable,
PhiPS,; , only showed significant differences between groups
1 and 3 during the first two measurement dates. In contrast,
ETR values were higher in Label 3 leaves compared to Label
0 during the second and third time points.

Finally, leaf temperature Tj.,s was significantly higher in
group 3 compared to groups 0 and 2 in June, consistent with
previous findings [2]. However, this trend reverses in the second
measurement date, with Tje,r being higher in groups 0 and 2
than in group 3. At more advanced infection stages, significant
differences in Tjear are no longer observed between groups.

IV. ConcrLusioN AND FUTURE WORK

The results directly support the main objective of the study
of identifying early physiological indicators of Xf infection in
almond trees, prior to the onset of visible symptoms. Multi-
temporal leaf-level data, analyzed through non-parametric
bootstrap testing, consistently revealed that both spectral
and physiological traits can detect infection at early stages.
Specifically, hyperspectral indices linked to pigment content
(e.g., TCARI, DCabxc, MCARI) and structural traits (e.g.,
TVI, MTVI;, MSAVI), along with physiological variables
such as stomatal conductance, transpiration, vapour pressure,
fluorescence, and leaf temperature, consistently distinguished
healthy from infected trees in early stages.

These findings may suggest that physiological stress re-
sponses precede visible symptom development and can be
captured through targeted measurements. Moreover, they align
with recent evidence indicating that remote sensing traits,
particularly fluorescence and thermal signals, enable accurate,
large-scale, and early detection of Xf, supporting their use
in disease monitoring and management. Interestingly, though
differences were most pronounced in May and June, they tended
to diminish by July. This likely reflects a general increase in
thermal and water stress affecting all trees, which may mask
infection-specific responses. It is plausible that healthy trees
(Label 0) may recover after the stress period, whereas infected
trees (Label 3) likely remain physiologically compromised.
Although our analysis focused on variables showing statistically
significant differences between the two most contrasting health
states (Labels 0 and 3) across at least two time points, relevant
differences also emerged among intermediate groups. This
reinforces the diagnostic potential of the selected indicators
and their applicability to early-stage detection.

This study represents an initial step toward developing a
comprehensive framework for early Xf detection using spectral

data acquired via proximal sensors. A limitation of this study
is the small size in intermediate health groups (Labels 1 and
2), which may reduce the statistical power in comparisons
involving these categories. To address this, future work will
aim to improve dataset balance by increasing representation in
these groups.

Given the complexity of Xf infections, further validation is
essential. This includes defining threshold values for vegetation
indices that reliably capture early physiological alterations.
Additional research should refine trait selection, account for
environmental variability, and validate findings across different
crops and landscapes. Future efforts should also focus on
integrating the identified physiological and spectral indicators
into operational remote sensing workflows, as well as ML
and spatial epidemiological models, to improve diagnostic
accuracy and scalability. Expanding the use of multispectral
and thermal sensors, along with optimized band selection, will
be essential for developing cost-effective, real-time tools for
disease surveillance and management.
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