
AURORA: An Automated Database Schema Change Logging System

Bradley Camilleri

Department of Computer Information Systems

Faculty of ICT, University of Malta

Msida, Malta

e-mail: bradley.camilleri.22@um.edu.mt

Joseph G. Vella

Department of Computer Information Systems

Faculty of ICT, University of Malta

Msida, Malta

e-mail: joseph.g.vella@um.edu.mt

Abstract— Database schema changes pose a critical challenge

when updating Computer Information Systems (CIS) since

they require careful synchronization between codebase updates

and the database. Traditional approaches to schema evolution

often lack automated tracking of schema changes, leading to

duplicated coding, data loss, inconsistency, and increased

downtime. This paper presents AURORA, an automated

solution that captures the Data Definition Language (DDL)

and Data Manipulation Language (DML) operations

performed by the data designer. The captured data is then

used to drive client-side database schema upgrades. By

leveraging Database Management System (DBMS) event

triggers, this system ensures that any relevant DML and DDL

events are logged and used for the generation of a schema

upgrade script. This script includes the schema changes

performed by the data designer and the respective pre and post

data checks to ensure database consistency and integrity at the

client’s database. This client-side script also includes a rollback

mechanism to reverse a schema upgrade in the case of failure.

AURORA was evaluated through a set of real-world scenarios

which highlighted its practicality, coverage and validity.

Keywords-schema evolution; computer information systems;

databases; software deployment; software upgrades.

I. INTRODUCTION

A Computer Information System (CIS) implementation,
e.g., codebase and database structures, is static in contrast to
the dynamic environment in which its clients operate.
Therefore, for a CIS to remain relevant for its clients, it is
subject to updates which are orchestrated by the software
provider [1][2]. However, if an application update includes
database changes, an issue arises since the client’s database
must undertake the appropriate script to migrate it to the
desired state while ensuring that its data is preserved. This
script must be distributed to all clients alongside the updates
to the application program and must be validated at each
client-side database prior to running the updated version of
the software. This local action is required as most
applications have a portion of their codebase with a hard-
coded representation of the schema in use [3].

Generating these database upgrade scripts is challenging
since, if the Structured Query Language (SQL) queries
performed on the database during development are not
explicitly logged, they are lost. As a result, this leads to the
tedious and time-consuming task of redoing the queries to
generate a change script for the schema upgrade. Other
challenges include ensuring that each change construct has

an undoing action, in case an update cannot proceed at the
client, and that schema changes that cause data loss, e.g.,
delete operations, are supported with redundant structures to
ensure that these operations remain undoable during the
upgrade process.

Moreover, one must account for any additional artefacts
that a client has added independently of the software
provider. For example, a view created on the old schema can
become nonsensical when an upgrade script changes the base
tables it depends on.

Upgrades to database schemas are not taken lightly.
Firstly, there is the issue of application availability, i.e., the
system is offline whilst a client is executing an upgrade.
Secondly, an upgrade must not purge nor make data
unreachable for the client. Thirdly, errors during the upgrade
process can leave the database in an inconsistent state.
Therefore, an adequate mechanism to roll back the database
to a stable checkpoint is required. An example of an upgrade
going wrong is the case of Revolut’s authentication system
[4] where the deletion of, what seemed to be, an unused table
column, caused the entire authentication system to fail.

AURORA addresses the issue of generating database
upgrade scripts by implementing a mechanism that
automatically tracks the Data Definition Language (DDL)
and Data Manipulation Language (DML) operations
performed by a data designer. This automation also generates
the respective pre, post, and undoing code fragments for the
captured DDL and DML constructs.

AURORA also aims to make it easier for the client-side
execution of a schema upgrade by generating an upgrade
script that only requires minimal manual database
administrator (DBA) intervention even when the upgrade
process fails, or the upgrade process cannot proceed.
Moreover, the client-side script keeps the client’s existing
data and adapts it to the new schema, and it also allows the
client’s DBA to easily reverse a database upgrade, therefore
reducing downtime and addressing recoverability.

At the software provider, AURORA tracks changes to
schemas, tables (for both DML and DDL changes), views,
functions, and table triggers. To achieve this, AURORA
requires the DBMS to support DDL and DML triggers since
these are the mechanisms which are used to track the schema
changes. Any application code that is external to the
database, e.g., front end code, is outside the system’s scope.

This paper is divided into six sections. Section one
provides the reader with an introduction to the area, its
challenges and the work in this paper. Section two provides

12Copyright (c) IARIA, 2025. ISBN: 978-1-68558-265-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

BUSTECH 2025 : The Fifteenth International Conference on Business Intelligence and Technology

the reader with an overview of some of the relevant literature
in the area, and a few existing vendor-specific solutions. In
Section three, the requirements and design of AURORA are
presented, and Section four details the implementation.
Section five includes a real-world evaluation of the system,
and Section six concludes this paper.

II. BACKGROUND & LITERATURE REVIEW

Version Control (VC) software allows development
teams to manage and keep track of their source code
revisions [5], allowing them to access, integrate and back
track to older versions of the code as needed. VC has been
used to track changes in code through tools like Git [6] and
to track document and file updates through cloud storage
solutions like OneDrive [7], Google Drive [8] and Dropbox
[9]. Moreover, numerous tools exist to perform VC on the
database during schema evolution [10]–[15].

Schema evolution in database design involves the
modification of a schema artefact through a sequence of
schema changes (see Table 1) while retaining the
consistency of existing constraints and data [16]. Schema
evolution implies codebase development (since queries that
depend on the changed artefacts need to be examined for
continued validity), but not all codebase development results
in schema changes. Software providers deploy application
program upgrades to their clients much more frequently than
database updates since the latter are usually delayed and
performed in a batch. This occurs due to the sensitive nature
of schema changes and the fact that, as discussed, a schema
change results in an application program update.

Apart from the application’s codebase, schema
evolutions also effect the Extract, Transform and Load
(ETL) [17] scripts which are used to generate Online
Analytical Processing (OLAP) systems and the global
schema of a multi-database system. The freshness rate of
Hybrid transactional/analytical processing (HTAP) systems
is also determined by the recency of the schema in use [18].
Therefore, understanding how a schema has evolved over
time is crucial to ensure that these scripts and systems are
adequately updated with the newest version of the schema.

To better manage schema evolution during application
development, Curino et al. developed PRISM [2][19] which
allows developers to specify schema changes through
Schema Modification Operators (SMOs). PRISM then uses
these SMOs to update a schema, and its data, to the target
version. PRISM can also re-write a sub-set of queries to
match the target schema, ensure data preservation and create
undo operations from each SMO [19]. However, PRISM
limits the development team to using the provided SMOs,
which, as highlighted by Herrmann et al. [20], is not a
complete coverage. Moreover, the development team must
manually audit any changes performed on the database
through these SMOs since an SMO can result in many DML
and DDL operations on the database. Finally, the
development team must manually write these SMOs, and
PRISM does not consider additional database constructs
which were added by the client (e.g., views and functions).

In addition, numerous commercial solutions [10]–[12]
exist to manage schema evolution with Oracle [13], IBM

[14] and Microsoft [15] each having their own tools to
handle schema changes on their own database management
systems (DBMS). However, the development team must still
manually log the queries executed on the database as the
‘diff’ [21] comparison-based functionality provided by these
tools does not consider the changes that happened in between
two schema versions in a similar notion to performing a diff
between two text files.

TABLE I. A SUBSET OF SCHEMA CHANGES WHICH TARGET A TABLE

Granularity Description

Add Table

Table Level
With Indexes

Without Indexes

Attribute Level
Without Constraints

With Constraints

Purge Table

- Drop Table

-
Covert table to many tables, e.g., 1-to-
Many relation

-
Purge table and move its data to
another table

Amend Table

Table Level

Add/Alter/Delete Comment

Add/Alter/Delete Indexes

Enable/Disable Triggers

Attribute Level
Change Datatype

Add/Alter/Delete Constraints

Given two database schemas, the schema diff algorithm

returns the SQL statements that must be executed to
synchronize both schemas. However, this algorithm does not
consider the steps taken to arrive at the target point. For
example, consider the schema change presented in Figure 1.
The algorithm would generate the SQL operations found in
Figure 2. These operations would result in the loss of all user
addresses since the ‘Address’ column is dropped without
copying its data to the new table. Moreover, the schema diff
algorithm links the ‘AddressID’ column in the destination
schema to the ‘AddressID’ column of the ‘Address’ table
found in the source schema being compared, i.e., sch_b,

rather than using the newly generated ‘Address’ table in the
destination schema, i.e., sch_a, which does not represent the

developer’s original intention.
Another technique to perform schema evolution is

temporal versioning which stores the entire schema for each
schema change that occurs. This requires more annotations
but has powerful version reasoning constructs that allow the
DBA to move from one version to another and it also allows
for a few concurrent schema versions, e.g., possibly
depicting different functionalities.

A delicate part of the management of schema changes is
their recording, and this is mostly developer input. A tenable
method to automate the recording of schema changes is to
trigger actions on DDL constructs, as is done with DML
operations. In PostgreSQL, this can be achieved through
event triggers [22]. Event triggers can be fired either before

13Copyright (c) IARIA, 2025. ISBN: 978-1-68558-265-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

BUSTECH 2025 : The Fifteenth International Conference on Business Intelligence and Technology

or after a DDL event has occurred and they can also be
triggered by specific DDL events, e.g., only on delete
operations. This mechanism enables the automated recording
of schema changes without requiring any further explicit
action from the developer.

Figure 1. A schema change with data loss when using a schema diff

algorithm.

CREATE TABLE IF NOT EXISTS sch_a."Address"

("AddressID" text NOT NULL PRIMARY KEY,

"Address" text NOT NULL);

ALTER TABLE sch_a."User"

DROP COLUMN IF EXISTS "Address";

ALTER TABLE sch_a."User"

ADD COLUMN "AddressID" text NOT NULL;

ALTER TABLE sch_a."User"

ADD CONSTRAINT "Users_AddressID_fkey"

FOREIGN KEY("AddressID")

REFERENCES sch_b."Address" ("AddressID");

Figure 2. The SQL queries generated by a schema diff algorithm (found

within pgAdmin [23] version 8) for the schema change in Figure 1.

Software vendors can distribute code changes over-the-
air, e.g., through package managers or Docker [24], or
through manual techniques [25], e.g., file transfer. When run
at the client, the database upgrade script generated by the
vendor must do the necessary pre-checks (to ensure that none
of the changes affect the client’s data), schema updates, and
post-checks (to ensure that no data was lost during the
upgrade process). If any pre-checks fail, the database is not
compatible with the upgrades defined by the vendor and, if
any post-checks fail, this implies that the schema changes
resulted in an inconsistent database state and the old state
needs to be restored.

III. REQUIREMENTS & DESIGN

A software vendor that develops database-centric
application programs requires a system that automatically
transcribes schema changes over the database in an upgrade
script. This script must then be packaged and applied to the
client’s database when the application program is upgraded
at the client. The software vendor also requires that the
schema change has its respective undo action sequence in
case the upgrade needs to be reverted. Finally, apart from
creating the upgrade and undo script, the system must also

ensure that these changes were performed correctly on the
client’s database. If the client’s database instance loses
consistency, any data is lost from the client’s database, or the
update is not what was expected, then the client’s database
needs to be recovered to the state before the process started.

The software vendor is accepting that the system is based
on a single DBMS, e.g., PostgreSQL, and that a reasonable
subset of SQL’s DDL and DML operations are available.
Furthermore, the system must maximize the facilities
provided by the DBMS, i.e., programming interfaces and
data dictionaries. Moreover, the script generated is to have
adequate security profile requirements and should be
executed efficiently on client-side set-ups. Finaly, data
consistency, and availability need to be catered for as well.

Schema changes can be captured in a few ways. One
approach is to use a rule-based system, based on triggers and
event triggers, to capture the DML and DDL queries
generated by the data designer. This method attaches DDL
triggers to the schemas that need to be tracked and DML
triggers to the tables that need to have their data changes
tracked. Once a trigger action is fired, it stores the difference
in metadata between the current version and the proposed
change, thus encoding schema evolution [16] through trigger
action and the underlying data dictionary.

Another approach is to use a schema diff algorithm. This
algorithm could be used in one of two ways – one can either
compare the initial schema with the final schema, after all
the changes have been done, or one can apply the schema
diff algorithm incrementally after each schema change. The
former provides a succinct upgrade script but loses the
actions that happened in between the major versions while
the latter essentially generates the SQL query which was
input by the data designer.

When comparing the two approaches, it was decided to
adopt a rule-based system for AURORA. Such a decision
was taken as, to execute the schema diff algorithm
incrementally after each schema change, a system of DDL
and DML triggers is still required. Moreover, as discussed in
Section 2, the queries generated by the schema diff algorithm
are not adequate as these may lead to erroneous schema
upgrades.

PostgreSQL has DDL triggers and makes use of two data
dictionaries, the SQL information_schema and the

Postgres-specific pg_catalogue. AURORA uses the

pg_catalogue as this allows it to interpret implementation-

specific queries that the database designer may run.
Moreover, the pg_catalogue allows the system to

reference objects using a robust naming scheme across the
instance, i.e., the OID. Having a robust naming scheme is
crucial since it allows the system to accurately track an
object throughout its lifespan, from creation to deletion. One
must note that database objects can be renamed, and they
may also be dropped and re-created using the same name.
Therefore, the object’s schema-qualified name, which the
information_schema uses to identify objects, is not

adequate to identify an object throughout its entire lifespan.

14Copyright (c) IARIA, 2025. ISBN: 978-1-68558-265-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

BUSTECH 2025 : The Fifteenth International Conference on Business Intelligence and Technology

IV. IMPLEMENTATION

AURORA was implemented and tested on PostgreSQL
15. At the software vendor, the application’s database
includes a dedicated version_control schema which

includes all the tables and functions which are needed to
track the DML and DDL changes performed on that
database. DDL changes are tracked using event triggers
while DML changes are tracked using triggers which are
automatically attached to the version-controlled tables.

As depicted in Figure 3, when the database designer
enables the system, a snapshot of all the tracked objects in
the database is taken. Then, whenever a DML or a DDL
query is executed, a snapshot of the data dictionary entry of
the effected object(s) is re-taken. Each time a snapshot is
taken, a new version of the database is said to have been
generated.

When doing DDL operations, AURORA uses the OID
provided by the event trigger to get the object that was
directly modified; however, it also checks each database
object individually to determine if any other object has been
modified as a side-effect of the DDL operation. This is done
by generating and comparing the SHA1 hash of each object’s
metadata as found in the data dictionary and in the object’s
latest snapshot in the system. If the hashes don’t match, then
the object has been modified, and a snapshot of the object is
taken. If the hashes match, then the operation does not need
to be recorded.

Figure 3. A UML Sequence Diagram depicting how AURORA is used by

the developers.

With regards to DML operations, AURORA keeps a
snapshot of the old and new version of the modified
record(s) in JSON format. This allows all DML changes to
be stored at the same table, even though each table has its
own set of attributes.

Once the database designer performs all the changes to
the schema, they can then use the provided Python program
(referred to as the ‘script generator’) to generate the SQL
upgrade script from the snapshots captured. The DBA at the
client can then use another Python program (referred to as
the ‘script executor’) to execute the SQL upgrade script on
their database instance.

Given a specific range of versions, the script generator
gets all the snapshots in that range in JSON encoding, and it
compares each snapshot with the last snapshot of that object
using a JSON ‘diff’ algorithm. Depending on the attributes
that have changed between the snapshots, it then tries to
generate an SQL query like the one that was executed by the
data designer. This program also generates the respective
undo queries to reverse the operation. This allows the DBA
at the client to reverse the upgrade without needing to restore
an entire database backup since this extends downtime.

Once the upgrade script is created, the script generator
then generates a list of database objects that the script
executor should find in the client’s database instance. This
list along with the SQL upgrade script and the script executor
program are provided to the client to allow them to upgrade
their database instance to the latest version.

The script executor is split up into three parts: the pre-
checks, the execution of the SQL scripts and the post-checks.
As part of its pre-checks, the script executor uses the list of
objects generated by the script generator to ensure that the
state of the client’s database is as expected; otherwise, the
SQL upgrade script will not be compatible with the database
and might cause unexpected results.

If additional constructs are found in the database, e.g.,
views and functions that are created by the client, and they
do not depend on any object that will be modified by the
generated SQL upgrade script, they are left untouched.
However, if the pre-checks determine that these objects will
be affected by the upgrade script, the process is stopped and
the user is informed that these objects need to be maintained
for the script to run.

Before running the upgrade script, another pre-check is
performed to ensure that any new integrity constraints do not
affect any of the client’s data in the database. If this is the
case, the client’s DBA is asked to remove the violating data
from the appropriate table.

Once all the pre-checks are done, the script executor gets
the number of records in all the tables and a hash for each
record is generated. This information will then be used at the
end of the upgrade to ensure that no data loss occurred (apart
from that which was expected).

Figure 4. A UML Sequence Diagram depicting how AURORA is used on

the client-side.

Before starting the upgrade itself, the script executor
generates a backup of the entire database. This is done to
ensure that no data is lost if something goes wrong and the

15Copyright (c) IARIA, 2025. ISBN: 978-1-68558-265-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

BUSTECH 2025 : The Fifteenth International Conference on Business Intelligence and Technology

database needs to be restored. Once the backup is generated,
the script executor starts running the upgrade script on the
client’s database. As each query is being executed, an audit
is kept of which queries were run. This allows the script
executor to know which queries have been run and which
reverse queries to execute if the upgrade fails. Once the
upgrade is done, the script executor ensures that no data loss
occurred based on the data recorded before the database was
upgraded. This process can be seen in Figure 4.

To make it easier to reverse an upgrade, the script
executor puts a ‘tombstone’ on any objects that need to be
deleted. In this way, if a drop operation needs to be reversed,
the tombstone is simply removed and the object, and all its
data, is once again accessible.

AURORA’s code was thoroughly tested with standard
methods to ensure that it works as expected. Numerous DML
and DDL queries with different variations were tested to
ensure that the triggers were working as expected and to
ensure that the system was correctly logging the objects’
changes from the data dictionary. The script generator was
tested by generating a set of JSONs, which represented both
valid and invalid schema changes, and ensuring that the
correct output, i.e., an SQL forward and backward query or
error, is provided by the program. The script executor was
tested by ensuring that any additional constructs generated
by the client are detected, that any missing database objects
are detected, that the script can adequately undo its actions if
an error occurs, and that any unexpected data loss is
detected.

V. EVALUATION

AURORA was evaluated by simulating how it would be
used in real-world scenarios. This was done by performing a
set of schema changes on one database to simulate the
changes performed at the vendor and then running the
resulting script on another database to simulate the client’s
context. The goal of this evaluation was to ensure that:

1. The client’s database ended up in the same state as
that of the vendor, i.e., the vendor’s DML and DDL
operations were correctly recorded and executed;

2. All the client’s data, in the unchanged schema
objects, is preserved;

3. If the client’s database has additional constructs
which were created by the client (and which do not
depend on the objects modified by the vendor), these
constructs are preserved after the upgrade.

This evaluation was designed to cover as much of the
schema changes that are tracked by AURORA. This was
achieved by running the DML and DDL operations needed
to generate the Scott schema [26], by going from version
7d4ca07595c6 [27] to 193312356621 [28] of the WikiMedia
database and by upgrading a custom-made database [29].

The Scott schema was used to ensure that AURORA can
handle a basic set of CREATE TABLE, ALTER TABLE
and INSERT commands. The WikiMedia schema was used
to test AURORA with a real-world database upgrade.
Finally, a custom-made database schema was used to
evaluate AURORA’s performance on the remaining database
objects that were not considered with the previous cases.

VI. CONCLUSION

Version Control plays a crucial role in software
development; however, its support in databases is lacking as,
although numerous systems exist to perform some form of
version control on a database, schema changes need to be
manually recorded by the development team. This increases
the risk of missing key operations while creating the
database upgrade script. Therefore, this paper introduced
AURORA which automatically tracks the DDL and DML
operations performed on a database. Using this tracked data,
the system can automatically generate a database upgrade
script along with a set of undo queries to rollback
unacceptable upgrades. The script generated is then given to
the client to apply the changes to their own database,
reducing downtime while ensuring data integrity throughout
the upgrade process.

AURORA was implemented on PostgreSQL, and it has
been shown to reliably handle schema evolutions. This
system’s techniques offer a significant advantage when
compared to techniques based on a schema diff algorithm
since this system offers a finer granularity of changes. It also
represents a significant step forward in database version
control as it has the ability to automate schema evolution
while minimizing downtime and preserving data consistency,
making it a valuable tool for both developers and clients. As
a result, AURORA can effectively improve the workflow
and the quality of software deployments for both the
software house and its client.

Unlike Git, which is a distributed and decentralized
version control system [6], AURORA only works on a
centralized database. If decentralized database support is
required, a causal consistency [30][31] mechanism is
indicated as it ensures a partial ordering between a schema
change and any operation that depends on it while providing
reasonable performance.

AURORA does not modify the DDL and DML
operations that were executed by the software provider. As a
result, there is the possibility that the upgrade script includes
redundant DDL and/or DML operations. For example, if the
data designer creates a table, deletes it and re-creates it with
the same name (without doing any other actions to the table),
the first two create and delete operations can be omitted from
the script as their net effect is nil. Future work involves
optimizing the upgrade script to address such redundant
processes.

Lastly, this system integrates with previous works such
as PRISM. By modifying AURORA to automatically
generate the Schema Modification Operations based on the
DML or DDL operations performed, one would be able to
take advantage of PRISM’s features, such as its query re-
writing facilities. Further query re-writing facilities can also
be provided to re-write SQL specific constructs, e.g., the
SQL query in a subset of Common Table Expressions
(CTEs). However, even if such query re-writing facilities
were provided in AURORA, the queries (to be re-written)
would have to be provided explicitly by the developer since
automatically identifying the SQL queries in the
application’s codebase would require a full scan of the entire

16Copyright (c) IARIA, 2025. ISBN: 978-1-68558-265-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

BUSTECH 2025 : The Fifteenth International Conference on Business Intelligence and Technology

source code and would require numerous heuristics, e.g., to
differentiate a string which is holding an SQL query against
a string which is holding a user prompt. Moreover, the
application may generate SQL queries during runtime,
meaning that the application’s codebase would only have
partially written SQL queries, which cannot be re-written.

REFERENCES

[1] C. A. Curino, H. J. Moon, L. Tanca, and C. Zaniolo,

"Schema Evolution in Wikipedia - Toward a Web

Information System Benchmark," in ICEIS2008 - Proc.

10th Int. Conf. Enterprise Inf. Syst., SciTePress, 2008, pp.

323–332, doi: 10.5220/0001713003230332.

[2] C. A. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo,

"Update rewriting and integrity constraint maintenance in a

schema evolution support system: PRISM++," Proc. VLDB

Endow., vol. 4, no. 2, pp. 117–128, Nov. 2010, doi:

10.14778/1921071.1921078.

[3] D.-Y. Lin and I. Neamtiu, "Collateral evolution of

applications and databases," in Proc. Joint Int. and Annu.

ERCIM Workshops Principles Softw. Evolution (IWPSE)

and Softw. Evolution (Evol) Workshops, in IWPSE-Evol

’09. New York, NY, USA: Association for Computing

Machinery, 2009, pp. 31–40, doi:

10.1145/1595808.1595817.

[4] D. Lucia. "Revolut app issues — 30th October. What

happened, and what we did to fix it,"

https://web.archive.org/web/20200812131530/https://blog.r

evolut.com/revolut-app-issues-30th-october-what-

happened-and-what-we-did-to-fix-it/ (accessed Feb. 04,

2025).

[5] M. J. Rochkind, "The source code control system," IEEE

Transactions on Software Engineering, vol. SE-1, no. 4, pp.

364–370, 1975, doi: 10.1109/TSE.1975.6312866.

[6] "Git Portal," Git. https://git-scm.com/ (accessed Oct. 07,

2024).

[7] "OneDrive Portal," https://www.microsoft.com/en-

us/microsoft-365/onedrive/online-cloud-storage (accessed

Feb. 08, 2025).

[8] "Google Drive Portal," Google.

https://workspace.google.com/products/drive/ (accessed

Feb. 08, 2025).

[9] "Dropbox Portal," Dropbox. https://www.dropbox.com

(accessed Feb. 08, 2025).

[10] "Atlas Portal," Atlas. https://atlasgo.io/ (accessed Dec. 17,

2024).

[11] "Liquibase Portal," Liquibase. https://www.liquibase.com/

(accessed Dec. 17, 2024).

[12] "Redgate Flyway Community Portal," Redgate.

https://www.red-gate.com/products/flyway/community/

(accessed Dec. 17, 2024).

[13] "Enterprise Manager Lifecycle Management

Administrator’s Guide," Oracle Help Center.

https://docs.oracle.com/cd/E24628_01/em.121/e27046/chan

ge_management.htm#EMLCM11767 (accessed Dec. 17,

2024).

[14] "Db2 Object Comparison Tool for z/OS 13.1.0

Documentation," IBM Documentation.

https://www.ibm.com/docs/en/db2objectcompare/13.1?topic

=131-overview (accessed Dec. 17, 2024).

[15] "SQL Server Data Tools Documentation," Microsoft Learn.

https://learn.microsoft.com/en-us/sql/ssdt/sql-server-data-

tools?view=sql-server-ver16 (accessed Feb. 06, 2025).

[16] J. F. Roddick, "A survey of schema versioning issues for

database systems," Information and Softw. Technol., vol.

37, no. 7, pp. 383–393, 1995, doi:

https://doi.org/10.1016/0950-5849(95)91494-K.

[17] T. Spiteri Staines and J. G. Vella, "High level architectural

modelling for representing the extract, transform and load

process," in Int. Conf. Inf. Syst. and Manage. Sci. (ISMS

2018), Valletta, Malta, Mar. 2018, pp. 1–10,

[18] C. Camilleri, J. G. Vella, and V. Nezval, "HTAP With

Reactive Streaming ETL," J. Cases Inf. Technol., vol. 23,

no. 4, pp. 1–19, 2021, doi: 10.4018/JCIT.20211001.oa10.

[19] C. A. Curino, H. J. Moon, and C. Zaniolo, "Graceful

database schema evolution: the PRISM workbench," Proc.

VLDB Endow., vol. 1, no. 1, pp. 761–772, Aug. 2008, doi:

10.14778/1453856.1453939.

[20] K. Herrmann, H. Voigt, J. Rausch, A. Behrend, and W.

Lehner, "Robust and simple database evolution," Inf. Syst.

Front., vol. 20, no. 1, pp. 45–61, Feb. 2018, doi:

10.1007/s10796-016-9730-2.

[21] J. W. Hunt and M. D. Mcilroy, "An algorithm for

differential file comparison," Computer Science, 1975,

Available: http://www.cs.dartmouth.edu/%7Edoug/diff.pdf.

[Accessed: Feb. 08, 2024]

[22] "Overview of Event Trigger Behavior," PostgreSQL

Documentation. https://www.postgresql.org/docs/16/event-

trigger-definition.html (accessed Jul. 04, 2024).

[23] "pgAdmin Portal," pgAdmin. https://www.pgadmin.org/

(accessed Feb. 11, 2025).

[24] "Docker Portal," Docker. https://www.docker.com/

(accessed Feb. 11, 2025).

[25] J. Humble and D. Farley, "The Problem of Delivering

Software," in Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation,

Boston, MA, USA: Addison-Wesley Professional, 2010, pp.

5–7.

[26] "SCOTT Schema," Pastebin.

https://pastebin.com/NcMVAfpL (accessed Feb. 11, 2025).

[27] "Merge ‘resourceloader: Fix line indent in

FileModuleTest’,"

https://phabricator.wikimedia.org/rMW7d4ca07595c67f4fb

e9ac5fbce9ce9837cc2cd70 (accessed Feb. 09, 2025).

[28] "Merge ‘schema: Add cl_target_id and cl_collation_id to

categorylinks’," Phabricator.

https://phabricator.wikimedia.org/rMW193312356621f8299

6a0351715f7d8074405f53f#change-CgIXeHctgWRI

(accessed Feb. 09, 2025).

[29] "Custom Upgrade Script," Pastebin.

https://pastebin.com/3SvthrP3 (accessed Feb. 19, 2025).

[30] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.

Hutto, "Causal memory: definitions, implementation, and

programming," Distrib. Comput., vol. 9, no. 1, pp. 37–49,

Mar. 1995, doi: 10.1007/BF01784241.

[31] C. Camilleri, J. G. Vella, and V. Nezval, "D-Thespis: A

Distributed Actor-Based Causally Consistent DBMS," in

Transactions on Large-Scale Data- and Knowledge-

Centered Systems LIII, A. Hameurlain and A. M. Tjoa,

Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2023,

pp. 126–165.

17Copyright (c) IARIA, 2025. ISBN: 978-1-68558-265-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

BUSTECH 2025 : The Fifteenth International Conference on Business Intelligence and Technology

