
Choice of Design Techniques for Scaling Mission Critical High Volume Applications

Muralidaran Natarajan Nandlal L. Sarda Sharad C. Srivastava
BIT Mesra IIT Bombay BIT Mesra

Mumbai, India Bombay, India Ranchi, India
Email: muralidaransk@gmail.com Email: nls@cse.iitb.ac.in Email: sharad.scs@bitmesra.ac.in

Abstract-- In today’s Services business, self-servicing models with
thousands of users operating “Anytime Anywhere” concurrently
and generating millions of transactions have increased the
performance requirements multi-fold. However, these systems are
monolithic and are not flexible for business transformations and
changes. To scale beyond this, many organizations have started to
transform these systems to new generation of multi-core platforms.
This being architecturally different, the existing applications will
have to be decomposed and re-architected to run as parallel
components, have near zero contention and take advantage of these
new generation platforms. This paper studies the choice of design
techniques with the elements of concurrency and parallelism to
arrive at an optimal setup to scale the performance of high volume
mission critical real time applications on modern platforms. The
choices are further validated with the simulation runs conducted to
narrow down the combination setup giving the best performance.
The results, analysis and the recommendations aim to provide an
approach to the design architects in transforming mission critical
applications.

Keywords- layering; concurrency; parallelism; mutual exclusion;
visibility of change.

I. INTRODUCTION

Any business today has a critical dependence upon
information that is acquired, processed, transported and
delivered with well-defined Quality of Service (QoS) [1].
The ultimate intention of these organizations is to attain a
competitive advantages in decision-making, customer
service, and to respond in a timely manner to changes in the
current market place and stakeholder expectations.

Traditionally, large enterprise On Line Transaction
Processing (OLTP) solutions relied on using clusters of
mainframes running proprietary information systems
software. Many of these applications were developed in low
level/procedural languages and evolved over a period of
time [2]. Originally, the applications were designed to
implement specific business models and related functions to
support enterprise automation in the monolithic form. The
monolithic form in the single processor offered good
performance benefits with very minimal inter process
communication overheads in the earlier era. As the
requirements expanded, the applications were modified
using wrapper-like methodology to satisfy the business
demands without any design change, thus ending up with
sub-optimal solutions [3].

With business growth and emerging markets, the
changes in the business scenario resulted in new business
models. Often, the transaction patterns and the

concentration/volume of each pattern turned out to be very
different from the original business objectives and
specifications based on which systems were designed and
developed. The emerging self-servicing models and ease in
customer service using pervasive new generation
devices/interfaces multiplied the access points and
interfaces. This resulted in an increase in security issues [4].

Over time, the flexibility of the monolithic systems
considerably reduced and reached a breakpoint beyond
which the system can only continue to run “AS IS” without
much modification; hence, unable to handle the changing
trends and demands of the emerging business. This resulted
in the need for transforming these legacy OLTP systems to
agile real-time data stream processing applications to assure
high throughput and low latency [4].

Typically, Pre-Processing, Core Business Processing
and Response Processing (R-Service, referred to as
“Response Delivery Layer” in this paper) are the key
components of any mission critical real time application.
The “Response Delivery Layer” can be parallelized for
performance using multiple senders as this stage is normally
stateless. This flow involves Central Processing Unit (CPU)
bound activities, memory bound activities and Input/output
(I/O) bound activities.

This paper analyses and provides insight to the
application developers on different architecture constructs to
scale the performance of only the “Response Delivery
Layer” in mission critical real time high performance
application systems towards meeting the QoS expectations
of the end customer. Section II describes some of the key
architecture approaches and implementation challenges in
the transformation. Section III describes the design
techniques that can be used in the process and the
implementation challenges. Section IV presents the
performance study for the implementation alternatives
discussed in previous sections, details and results analysis of
the simulation runs. Section V provides conclusion and
future work.

II. ARCHITECTURE APPROACHES AND
IMPLEMENATION CHALLENGES

In this era of multi CPU and multi-core, large computing
power is available at the disposal of the developer. It is
imperative that the developer looks at various architecture
approaches and design alternatives to exploit the computing
power available in delivering high throughput and low
latency in service oriented mission critical real time systems
that are in use.

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-395-7

BUSTECH 2015 : The Fifth International Conference on Business Intelligence and Technology

This paper examines the following architecture
approaches and provides design and implementation
recommendations to the developer in transformation of
mission critical real time business systems to take benefit of
the computing power available in the new generation
hardware: (i) Layered architecture, (ii) Concurrency and
Parallelism and (iii) Use of higher computing power of
multi-core technology [5][6]. In addition, these architecture
approaches are proposed to be studied with the possible
design models, design techniques, interaction models across
tasks and key aspects of implementation in the new multi-
core environment available.

A. Layered architecture approach for high throughput

The immediate previous generation mission critical real
time high volume application systems were architected for
clustered main frames, and were designed with procedural
languages and tools as building blocks. These systems
which support the core business functions of the
organization became large monolithic pieces, with more and
more interfaces getting added to support business growth
and changes without architectural redesign, rendering these
systems sub-optimal. Typical systems like railways and
airline reservations, retail banking, etc. have the following
tasks: (i) receiving the inputs, validations and pre-
processing, (ii) business processing and (iii) response and
delivery of output as part of a large monolithic module.
Although, this makes the coding and development simpler,
it poses limitations; it makes the modules tightly coupled
and rigid. Any addition/change, be it functional or technical,
results in changing the core of the system; thereby, making
the development, testing and release process complex and
lengthy [7]. Further, it also increases the risk to the
organization. Localizing the errors for a faster response to
guarantee the Service Level Agreement (SLA) becomes a
challenging task. To introduce self-servicing and straight
through processing, as the interface handling is not
standardized, the handshaking and processing are not clearly
demarcated from the core system functionality. This
introduces limitations in handling throughput and latency
thereby constraining the business expansion and customer
values. This necessitates the implementation of a multi-
tiered and layered architecture to introduce flexibility and
scalability [8][9].

In a layered architecture, the monolithic application is
split into manageable and logical functional layers [5]. In
each of the layers, the processing is decomposed into
various tasks, and each task is connected using a suitable
Inter Process Communication (IPC) mechanism. This IPC
mechanism, which enables the upstream/downstream
communication between the tasks, is referred to as
“connector” in this paper. Given that a complex process can
be divided into a series of sequential tasks, this approach
can provide increased performance under the following
three types of computational scenarios: (i) In a multi-step
business process, the modularity helps in initiating the next
task before the final completion of the previous task. As
soon as the core transaction is complete, the information can
be passed on to the next task in a modular design and

internal operations like logging and safe store commit can
continue off the critical path, thereby isolating the
performance of “critical transaction path” from other
internal operations [10]. (ii) if the processing can be done in
parallel for multiple data sets until a certain stage in the
processing path, the sequencing of the process steps assist in
creating multiple instances of these tasks. Having multiple
instances of a task minimizes the idle time of CPU and
offers faster response. Running multiple instances also
offers fault-tolerance and load balancing [11][12]. If an
instance fails due to exceptions, another instance can take
care of further processing. If there are multiple processors,
the instances can be distributed across those processors [10].
(iii) In a multi-step business process using the modular
design, any change can be localized at a task level, making
the development and deployment process simple with
moderate risk.

In order to introduce concurrency and parallelism, the
modular design uses various models, such as: data parallel
model, task graph model, master-slave model, pipeline
model and hybrid model [13]. In the data stream application,
pipeline and master-slave models are commonly used [14].
These models do not decrease the time for processing a data
element, but are aimed at increasing the performance of the
system while processing a stream of datasets. A modular
system requires more resources as one task cannot use the
resources of the previous task as compared to the monolithic
case. Also, the task to task communication introduces some
latency. It is therefore necessary to balance the number of
tasks carefully for optimal throughput and latency.

B. Concurrency and parallelism for high performance

Once a monolithic process is decomposed into multi-
step business sub-processes or tasks, the next goal is to
achieve concurrency and parallelism in execution of these
sub-processes or tasks to improve the overall end to end
throughput and latency of the process chain. In data stream
based service oriented systems, where thousands of retail
users accessing the self-service facilities are simultaneously
connected and transacting, implementation of concurrency
and parallelism plays a crucial role in the architecture
construct and choice of design techniques to achieve the
desired throughput and latency demands of the changing
business models and scenarios.

1) Concurrency for high performance
In software, concurrency is two or more tasks happening

in overlapping time period. They may be interacting with
each other and also they could contend on access to
resources. The contended resource may be a database, file,
socket or even a location in memory [15]. When a business
function can be segregated into logical tasks and they can
possibly interact and make progress in overlapping time
periods, they can be deployed in concurrency mode to
maximize the performance.

The interaction models for concurrent tasks are message
passing connectors and shared memory, and the mode of
interaction is either synchronous or asynchronous
communication [16][17]. The elements of concurrency are
threads, events, notification routines etc [5][15]. The

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-395-7

BUSTECH 2015 : The Fifth International Conference on Business Intelligence and Technology

challenges in concurrent execution are handling mutual
exclusion not resulting in deadlocks, serialization where
needed and visibility of change across concurrent tasks.

2) Parallelism for multi-fold performance scaling
While concurrency enables maximum throughput on a

single processor, parallelism increases the throughput multi-
fold by executing tasks simultaneously on a multi-
core/multiprocessor hardware that supports multiple process
execution at a time [15]. Over four decades, the
performance of the hardware processors has been
continuously increasing, and the software applications have
been constantly adopting upgrades to take benefit and
satisfy the business demands. With the single core
becoming more complex, power consumption was
becoming a bottleneck, which has resulted in a new era of
multiple simple cores on a chip. Due to the complete change
in hardware architecture, applications designed for single
core processors will have to be re-designed to take
advantage of the multi-core processors capabilities in
delivering high throughput and low latency.

The two key factors that decide the benefits of
parallelism are the (i) length of the critical path of the
business transaction and (ii) need based optimal access to
the shared resources [18]. If the length of the critical path is
nearly the same as total work, the parallelism is of no
significance, however powerful the parallel hardware is.
Similarly, the critical section that manages the shared
resources could be a bottleneck in parallelism as it serializes
the access [19][20]. The methods to control this are by
minimizing the length of the critical section and/or by
limiting the number of threads/tasks entering the critical
section at a time.

While more threads introduced for concurrency
minimize the idle time and maximize the CPU usage, the
optimal number of threads needs to be carefully architected
depending on the number of cores available and the
contention bottlenecks. The Operating System (OS)
schedules the threads to the CPU in a round-robin time-
priority scheduling. Every schedule change involves a
context switch and takes a few hundreds of CPU cycles
[21]. The transaction/data access patterns may not be
consistent and could vary widely under various scenarios. A
good implementation is the one that has bounded
contention, not completely driven by end user
transaction/data access patterns and limited context
switching. In high volume systems, it is recommended to
use thread pools to have bounded number of threads for
latency predictability rather than dynamically creating
threads [18][22]. CPU affinity may have to be introduced to
avoid threads being constantly shuffled across cores or
processors.

III. DESIGN TECHNIQUES AND
IMPLEMENTATION CHALLENGES

This section of the paper discusses the implementation
challenges and techniques to address those challenges in
interaction models such as message passing queues and
shared memory; concurrency elements such as threads,
events, notification routines; key aspects like mutual

exclusion and visibility of changes; the use of layering,
concurrency and parallelism [23]. Major mission critical
systems like banking, trading, telecom, aviation and e-
commerce applications that are reliable and flexible are
based on message driven and self-servicing business
models. These systems support low response time and high
throughput due to their ability to process multiple messages
concurrently using component based layers.

A. Techniques for high performance in message
passing

Queues and shared memory are used as connectors to
exchange information across concurrent tasks. However, in
high performance systems queues are preferred over shared
memory [16][17]. The message communication can be
point-to-point messaging queues or publish subscriber
model. The following sub sections describe the techniques
for boosting the performance of the message passing
systems [24]. Queues are introduced for point-to-point
communication. Senders publish or write the messages to
the queue and the receivers receive or read the messages
from the queue. Producers and consumers can be
dynamically added and deleted allowing the message queue
to enlarge and collapse as and when needed. The producer
can send a message irrespective of the consumer being up or
down, and the consumer can read when it comes up. The
order in which the messages are consumed depends on the
priority, expiration time and the processing capacity of
consumers.

A simple point-to-point messaging consists of a
producer and consumer sending and receiving messages
through a queue. It is possible to increase the throughput by
having multiple queues. The producer needs to maintain the
list of queues in an array, and select the next queue to be
used for sending from the array. The algorithm to choose the
right queue for sending is crucial.

Throughput of a messaging system can also be increased
by introducing multiple consumers to a queue under specific
conditions. Although multiple consumers can receive from a
queue, a message from the queue can be consumed by only
one consumer. Adding multiple consumers to a queue
increases the overall throughput of the messaging system,
provided the order of processing is not significant. When
multiple consumers access a queue, the load balancing
among them takes into account the consumer’s capacity and
the message processing rate. A more complex messaging
system would consist of multiple queues each having
multiple producers and consumers connected.

There are situations in which the multiple consumers
implementation cannot be used to increase the throughput,
due to high resource consumption and the need to preserve
the order of the messages. It then forces the configuration of
one consumer per queue. In such cases, the
publish/subscribe model is recommended. The
publish/subscribe model normally uses topics and is
generally used to broadcast information. This model is
significantly faster than point-to-point, as it is a push
technology. The queues are to be replaced with topics and
needs to ensure that more than one subscriber is not

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-395-7

BUSTECH 2015 : The Fifth International Conference on Business Intelligence and Technology

listening to the same topic; you get the implementation
similar to point-to-point but much faster because of less
overheads in such implementation.

While queues and topics are persisted and made durable
within the messaging system, there is an impact on
performance. Persistence can be selectively used in a
messaging system, depending on the need and criticality
[24]. For e.g., if you are running batch processing
application and reading the input from a file/database and
sending through a messaging component, in case of system
failure, you can restart the processing from the last
transaction and overwrite the prior processing and hence
persistence is not essential. The non-persistence is to be
implemented carefully to boost the performance.

B. Contention management for high performance

Real-time transaction processing with large volumes
demands scalable access to rapidly changing data, ensuring
consistency across millions of transactions and thousands of
users. The multi-threaded processes in these applications for
concurrency need to be re-designed to exploit the high
degree of hardware parallelism introduced in the recent
multi-core architecture towards boosting the performance.
The increasing number of parallel processes increases the
contention, and poses new challenges. The cost of mutual
exclusion locks and degrades the performance of parallel
applications significantly. The shared resource could be any
object ranging from a simple block of memory to a set of
objects, and instructions protected through a critical section.

In high performance applications, the design of
contention management plays a significant role. It is
therefore important to make the right choice of mutual
exclusion methodology. Blocking based approaches
introduce overheads on the critical path due to context
switching and is further complicated by scheduling
decisions resulting in priority inversion. Non-blocking
(spinning) approaches consume significant processor
resources. Non-blocking is attractive because there is no idle
time as soon as the shared resource becomes available to the
waiting process. However, non-blocking produces a type of
priority inversion by hindering the lock holder from running
and releasing the lock, thus limiting scalability [18][25][26].

But the blocking holds the waiting thread from running
and allows other threads to use the complete CPU resources.
Once the shared resource is available, the waiting thread has
to be scheduled again. This introduces bottlenecks in the
critical path, at least by 2x. Blocking is robust but makes
very bad outliers [26]. These outliers (around 0.1%) are
normally 5-10 times the normal latency. In high throughput
systems, any delay not only affects that event but thousands
of subsequent transactions. Any resource creation and
freeing has a cost and therefore, to avoid jitters, the design
needs to accommodate creation of synchronization objects,
reuse/recycle and free them as a housekeeping job.

The length of the critical section again is a factor with
the increase in number of threads and contention. The length
of the critical section, and the duration of the held locks
need to be optimal to achieve the desired result under heavy
loads [27].The cost of entering and leaving the critical

section has to be taken into account if there are too many
very short critical sections. In case of long critical sections,
the scheduling and priority inversions will impact the
performance. As critical sections have a direct impact on
performance, the coding should be done in language and
libraries with native support and not a wrapped up piece
which is meant for open systems integration. There has to be
careful balance in implementing the blocking approach,
non-blocking approach and the length of critical section. As
discussed above, with the increase in contention due to
concurrent and parallel processing there is a need to move
towards fine-grained synchronization instead of coarse-
grained synchronization [28][29].

C. Memory management for high performance

The technology advances have transformed the hardware
and software platforms for applications from single
processor to multiple cores and from single process to
multi-process/multi-threaded to increase the throughput.
However, the memory managers have not changed on par.
The memory management is a key factor in designing the
architecture of a system for high performance.

As the processors/cores are added, the application
gradually degrades due to heap contention. Memory
managers must therefore offer less space overheads, limited
defragmentation and speed. Memory allocation and freeing
has a performance cost in terms of CPU cycles as they
involve a switch between the user mode and kernel mode
and will impact the predictability of latency and response
time. In critical systems, unbounded memory consumption
poses the risk of crash with too many small, frequent
memory allocations and freeing. Every memory allocation
has the overhead of metadata and in too many small
allocations, the overhead will be high. The effective solution
is one having bounded memory by allocating a large chunk
and managing the application requirements within the chunk
[30].

IV. PERFORMANCE STUDY FOR THE DESIGN
ALTERNATIVES

A. Performance study - Overview of the “Response
Service” module taken up for study

In trying to address the transformation challenges
described in the previous sections, design options emerged
through a rigorous mix of the various approaches,
combining the design models, design techniques and
addressing the implementation challenges that we saw as
being deterrents in restricting the scalability and
performance of such real-time service oriented systems. The
approach also focuses on ensuring the minimization of
contention. In pipelined systems with multiple numbers of
readers and writers on queues, in our performance study, it
is ensured that any data should be owned by only one thread
for write access; thereby, eliminating write contention
completely.

This section describes the details of performance studies
conducted to arrive at a suitable design approach and
implementation nuances of design techniques to overcome

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-395-7

BUSTECH 2015 : The Fifth International Conference on Business Intelligence and Technology

the limitations, to meet the QOS objectives to support high
throughput and low latency. The typical flow of a mission
critical real time processing application is as follows; Pre-
Process takes care of routine housekeeping, filtering,
enrichment, master updates and just in time dynamic
validation if any. Besides, it handles the stateless validations
that may be carried out before reaching the business tier in
parallel. Core Business Process does the actual business
transaction processing taking into account the external
events and update/processing of the incoming transactions
and essential I/O that may be needed for recovery in a real-
time mission critical application. Response Service (R-
Service) is the process responsible for sending the output to
multiple receivers and interfaces over network (referred to
as “Response delivery Layer” in this paper). The same can
be parallelised for performance using multiple senders as
this stage is normally stateless. In this particular exercise,
the design alternatives are tested only in the response or
outbound path. However, the other two components are
retained to simulate end to end behaviour of such real-time
event processing systems.

In high performance systems, wherein the output of the
business process is to be sent real-time to the end-users, the
receiving of the input is independent of sending the
response. The two activities proceed independently. To
handle heavy loads and huge number of connections,
clusters of “Processing Machines” and “Connection
Machines” are deployed. However, if there is huge backlog
at the dispatching of response, it creates heavy back
pressure on all the previous stages. The “R-Service” process
that is after the “Core Business Process” stage in the end to
end processing path is considered for validating the design
alternatives towards improving the throughput and response
time.

In this, the “R-Service” process which is in the outbound
path is used to deliver the processed information to the end
consumer and there are no specific SLAs in the maintaining
sequence of the messages across the end users. Hence, this
service can be looked at as a potential candidate for
exploiting the abundant computing power using (i) modular
design approach, (ii) concurrency and parallelism in
introducing multiple publishers and (iii) dedicating
processing power by way of assigning individual cores to
the publishers in picking up the packets from their
respective queues and forwarding to the end consumers.

In the proposed design approach, “R-Service” process is
broken into the following 3 tasks (a) “R-Processor”, i.e.,
response processor, (b) “R-Sender”, i.e., response sender
and (c) “R-Gateway”, i.e., final end user delivery unit. In
addition, the design techniques and the limitations are
examined and factored to maximize the throughput and
reduce the latency. The following design techniques and
implementation variations are used in the performance study
(i) Queues vs. shared memory grid (ii) Bounded queues in
the form of ring-buffers vs. unbounded shared memory grid
(iii) Pre allocated memory buffers by pre-filling upfront for
the bounded queues for faster access and to overcome issues
of fragmentation (iv) With and without CPU core binding at
task level to make dedicated processing power available and

thereby improving the predictability of the task by
minimizing the jitter.

B. Performance study – Implementation alternatives

1) Design alternative 1: Pipelining with blocking
shared memory IPC connectors

In this setup, the approach of pipelining is used as
design model (Figure 1). The “R-Service” process is split
into 3 different tasks, the “R-Processor” and the “R-Sender”
on the business processing machine itself and the “R-
Gateway” on a different hardware. In addition, the
following are the design techniques considered for the
implementation. (i) The communication between the sub
process/task “R-Processor” (Writer) and “R-Sender”
(Reader) is through a shared memory grid. (ii) For
synchronization of access to shared grid, writer and reader
use locks, i.e., blocking mode of mutual exclusion is used
for the read write operation. (iii) Every “R-Sender” is single
threaded, which services a set of business users connected to
one “R-Gateway” (One to one). (iv) Communication
between the sub-process/task “R-Sender” to “R-Gateway” is
using topics of any messaging application.

Figure 1. Pipelining with Blocking Shared Memory IPC connectors
.

2) Design alternative 2: Using bounded circular
FIFO queues for IPC

In this setup shared memory grid is replaced by queues
and concurrency is introduced in “R-Sender” (Figure 2). In
addition, the following are the design techniques considered
for the implementation along with variation in number of
“R-Senders” and CPU core binding. (i) The communication
between the “R-Processor” (Writer) and “R-Sender”
(Reader) is through bounded circular First in First Out
(FIFO) queues. (ii) Bulk read is used for boosting the
performance in case of any lag in the “R-Sender”. (iii) The
queue elements are pre-filled and initialized to avoid
fragmentation and faster access to increase the throughput
(iv) Each “R-Sender” is connected through its own queue to
the “R-Processor” and hence there is a single reader and
writer for each queue. The Lock-free non-blocking design
technique is used in the implementation. (v) Concurrency is
introduced in “R-Sender” using multi-threaded in sending

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-395-7

BUSTECH 2015 : The Fifth International Conference on Business Intelligence and Technology

data to multiple “R-Gateways”. (One to Many) (vi) “R-
Sender” publishes data using different topics. Each “R-
Gateway” listens only to a specific topic. (vii) Parallelism is
used by varying the number of “R-Senders” and the CPU
core binding to arrive at the optimal implementation mix for
improved performance.

Figure 2. Bounded Circular FIFO Queues for IPC.

C. Implementation alternatives - Simulation studies

With the above setups, multiple runs were carried out to
ascertain the behaviour of the design alternatives and impact
of the design techniques by varying the number of “R-
Sender” with and without processor affinity enabled.

The study runs were executed with a 2 CPU Xeon Intel
processor with 8 Core each running linux6.x operating
system. The CPU 0 was used for the critical path services
and the CPU 1 was used for all other ancillary services.
Within CPU 0, Core 0 was assigned to OS; Cores 1-3 were
used for “Receiver” and “Business Processor” and 4-7 were
used for “R-Service” components.

“Blocking with Shared Memory (run 1)”: This run was
carried out using the setup in alternative-1 with 20 “R-
Senders” and 20 “R-Gateways”. This is to record the latency
response behaviour of the service using shared memory for
message exchange and in blocking mode. This is used as
baseline to compare the performance of non-blocking
implementation variations.

Non-blocking with Queues (run 2): This run was carried
out using setup in alternative-2 with 20 “R-Senders” and 20
“R-Gateways”. This is to record the latency response
behaviour of the service in the non-blocking mode using
FIFO circular-buffer. Queues were used instead of shared
memory for message passing.

Non-blocking with Queues and Resources binding (run
3): This run was carried out using setup in alternative-2 with
6 “R-Senders” and 3-4 “R-Gateways”. In addition dedicated
CPU core was allocated for each “R-Sender” and the
corresponding threads to study the concurrency and
parallelism. This is to record the latency response behaviour
of the system in the non-blocking mode and with dedicated
computing resources.

Non-blocking with Queues and Resource binding and
”R-senders” variation (runs 4-7): These runs were carried
out using setup in alternative-2 with 3, 4, 2 and 1 “R-

Senders” and each having multiple “R-Gateways”. In
addition, dedicated core was allocated for each “R-Sender”
and the corresponding threads to study the impact of
concurrency and parallelism. This experiment is to record
the latency response behaviour of the system in the non-
blocking mode and with dedicated computing resources and
variation in the number of “R-Senders” to arrive at a sweet
spot combination for optimal performance and throughput.

1) Performance study - Results and analysis
The percentage of packets processed for each of the

latency buckets is shown in Table 1.

TABLE 1. PERCENTAGE OF PACKETS PROCESSED FOR EACH
OF THE LATENCY BUCKETS.

Response Senders

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

Latency Baseline 20 6 4 3 2 1

21-30 0.131 24.117 47.103 86.954 83.946 81.684 77.379

31-40 6.193 63.822 86.802 96.045 94.470 93.937 88.011

41-50 16.171 83.320 94.035 98.500 97.902 97.629 92.370

51-60 34.237 89.286 97.432 99.419 99.189 98.987 94.884

61-70 62.610 93.289 98.915 99.741 99.685 99.581 96.559

71-80 82.029 95.674 99.523 99.862 99.858 99.807 97.746

81-90 91.530 97.400 99.754 99.920 99.926 99.893 98.594

91-100 95.296 98.554 99.843 99.945 99.956 99.932 99.211

101-110 97.091 99.275 99.889 99.955 99.969 99.951 99.638

111-120 98.109 99.664 99.913 99.962 99.975 99.960 99.881

121-130 98.732

131-140 99.110

• It is observed that in non-blocking mode (run2)
performance has improved over blocking mode (run1).

a) 90 percentile order latency reduced by 30µs.
Latency moved from 90µs to 60µs.

b) 99 percentile order latency reduced by 65µs.
Latency moved from 140µs to 110µs.

• Variation in number of “R-Senders” with dedicated
computing resources shows that optimal number of “R-
Senders” minimizes the contention and improves the
performance further.

• In case of 6 “R-Senders” (run 3) over the baseline, i.e.,
blocking (run 1), the following are the observations:

a) 90 percentile order latency reduced by 45µs.
Latency moved from 90µs to 45µs, 50%
improvement.

b) 99 percentile order latency reduced by 65µs.
Latency moved from 140µs to 75µs, 46%
improvement.

• In case of 3 “R-Senders” (run 5) over the baseline, i.e.,
blocking (run 1), the following are the observations:

a) 90 percentile order latency reduced by 55µs.
Latency moved from 90µs to 35µs, 61%
improvement.

b) 99 percentile order latency reduced by 80µs.
Latency moved from 140µs to 60µs, 57%
improvement.

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-395-7

BUSTECH 2015 : The Fifth International Conference on Business Intelligence and Technology

However, further reduction in “R-Senders” to 2 and 1 in
runs 6&7, the performance degrades compared to the above
two runs, indicating the number of parallel processes is not
sufficient to handle the load. Hence it is important to arrive
at the number that gives the optimal performance. The
results are under random rate of input arrival to simulate
real life conditions. Under uniform input arrival rates, the
performance is expected to be better. The architecture along
with design components are to be fine-tuned to specific
problem situation for optimal implementation. Specific care
is to be taken to keep the critical path short and concurrent
tasks with minimal or zero contention in the critical path.

V. CONCLUSION AND FUTURE WORK

This paper discusses the use of layering with
concurrency and parallelism for high throughput and
performance in a multi-core hardware platform. Also, the
research work covers the choice of design techniques for
interaction models and contention management in the
architecture approaches. In addition, memory management
strategy is suggested, taking into consideration the volume
of data handled by these systems. Based on the above
approach, simulation results are compared for the
implementation alternatives, viz., blocking with shared
memory, non-blocking with queues, non-blocking with
queues and resources binding, and all these parameters with
variation in number of R-sender processes. In summary, the
study is aimed at providing a ready reckoner to the
developer community the technical concept, implementation
alternatives and choice of implementation based on
simulation results in the transformation exercise.

In the end to end processing path, besides the “Response
Delivery Layer”, the other layers such as Pre-Process, Core
Business Process, I/O in the critical path and in-memory
database are being taken as future work items.

ACKNOWLEDGEMENTS

We acknowledge the support of National Stock
Exchange of India Limited for the lab facilities for the
research work.

REFERENCS

[1] D. A. Menasce, V. A. F. Almeida, L. W. Dowdy, and L.
Dowdy, Performance by design: computer capacity planning by
example, P. H. Professional, Ed. Prentice Hall Professional, 2004,
pp. 11–33.

[2] L. Wu, H. Sahraoui, and P. Valtchev, “Coping with legacy
system migration complexity,” in Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCSŠ05), June 2005, pp. 600-609.

[3] L. Zhang, I. Al-Azzoni, and D. G. Down, “Pele-an MVA-
based performance evaluation methodology for computer system
migration,” Journal of Software Evolution and Process, 2013, pp.
1-29.

[4] EDS, “Financial services legacy modernization,” EDS
View Point Paper, Tech. Rep., 2007.

[5] C. Michiels, M. Snoeck, W. Lemahieu, F. Goethals, and G.
Dedene, A Layered Architecture Sustaining Model Driven and
even driven software development, Springer, Ed. 5th International

Andrei Ershov Memorial Conference, PSI 2003, July 2003, vol.
34, no. 4, pp. 58-65.

[6] H. R. Simpson, “Layered architecre(s): Principles and
practice in concurrent and distributed systems,” in Engineering of
Computer-Based Systems, 1997. Proceedings, International
Conference and Workshop, March 1997, pp. 339–350.

[7] R. Rice, “Regression testing in large, complex and
undocumented legacy systems,” Technology Transfer, Tech. Rep.,
June 2012.

[8] R. Peacock, “Distributed architecture technologies,” IT
PRO, June 2000.

[9] IBM, “Building multi-tier scenarios for web sphere
enterprise applications,” IBM Redbook, Tech. Rep., 2003.

[10] B. Wilkinson and M. Allen, Parallel Programming
Techniques and Applications using Networked Workstations and
Parallel Computers. O Prentice Hall, 2006, pp. 140-158.

[11] E. M. Karanikolaou and M. P. Bekakos, “A load
balancing fault-tolerant algorithm for heterogeneous cluster
environments,” Neural, Parallel & Scientific Computations, March
2009, pp. 31-46.

[12] Y. Shi and G. D. V. Albada, “Efficient and reliable
execution of legacy code exposed as services,” in Computational
Science - ICCS 2007: 7th International Conference, May 2007, pp.
390-397.

[13] A. Grama, A. Gupta, G. Karipis, and V. Kumar, An
Introduction to Parallel Computing: Design and Analysis of
Algorithms. Pearson, 2009, pp. 139-142.

[14] S. Kleiman, D. Shah, and B. Smaalders, Programming
with threads. Prentice Hall, 1996.

[15] C. Breshears, The Art of Concurrency: A Thread
Monkey’s Guide to Writing Parallel Applications, M. Loukides,
Ed. O’Reilly Media Inc., 2009, pp. 1-20.

[16] T. J. LeBlanc and E. P. Markatos, “Shared memory vs.
message passing in shared-memory multiprocessors,” in Fourth
IEEE Symposium, December 1992, pp. 254-263.

[17] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and
B.-H. Lim, “Integrating message-passing and shared-memory:
Early experience,” in PPOPP ’93 Proceedings of the fourth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, July 1993, pp. 54-63.

[18] F. R. Johnson, R.Stoica, A. Allamakee, and T.C. Mowry,
“Decoupling contention management from scheduling,” in
ASPLOS XV Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and operating
systems, ACM, New york, March 2010, pp. 117–128.

[19] R. Johnson, I Pandis, and A Ailamaki, “Critical sections:
re-emerging scalability concerns for database storage engines,” in
DaMoN ’08 Proceedings of the 4th international workshop on Data
management on new hardware, June 2008, pp. 35-40.

[20] M. A. Suleman, O. Mutlu, and M.K. Qureshi,
“Accelerating critical section execution with asymmetric multi-
core architectures,” in ACM SIGARCH Computer, March 2009,
pp. 253-264.

[21] R. Mark, “High performance messaging,” NFJS
Magazine, Tech. Rep., 2011.

[22] D. Kimpe, D. Carns, P. H, Harms, K, Wozniak, J.M,
Lang, S, and R. B. Ross, “AESOP: expressing concurrency in
high-performance system software,” in Networking, Architecture
and Storage (NAS), June 2012, pp. 303-312.

[23] A. Gupta, A. Tucker, and S. Urushibara, “The impact of
operating system scheduling policies and synchronization methods
on the performance of parallel applications,” in SIGMETRICS 91
Proceedings of the 1991 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, May 1991, pp.
120-132.

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-395-7

BUSTECH 2015 : The Fifth International Conference on Business Intelligence and Technology

[24] N. Zeldovich, A. Yip, F. Dabek, R. T. Morris, D.
Mazières, and Frans Kaashoek, “Multiprocessor support for event-
driven programs,” in USENIX 2003 Annual Technical Conference,
June 2003, pp. 239-252.

[25] R. Johnson, M. Athanassoulis, R. Stoica École, and A.
Ailamaki , “A new look at the roles of spinning and blocking,” in
DaMoN ’09 Proceedings of the Fifth International Workshop on
Data Management on New Hardware, June 2009, pp. 21-26.

[26] L. Boguslavsky, K. Harzallah, A. Kreinen, K. Sevcik, and
A. Vainshtein, “Optimal strategies for spinning and blocking,”
Journal of Parallel and Distributed Computing Volume 21, Issue 2,
May 1994, pp. 246-254.

[27] D. Dig, J. Marrero, and M. D. Ernst, “How do programs
become more concurrent: a story of program transformations.” in
IWMSE 11Proceedings of the 4th International Workshop on
Multicore Software Engineering, May 2011, pp. 43-50.

[28] A. Turon, “Reagents: expressing and composing fine-
grained concurrency,” in PLDI ’12 Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language Design and
Implementation, June 2012, pp. 157-168.

[29] B. Saha, A. R .A. Tabatabai, R. L. Hudson, C. C. Minh,
and B.Hertzberg, “McRT-STM: a high performance software
transactional memory system for a multi-core runtime,” in PPoPP
’06 Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming. ACM press, New
York, March 2006, pp. 187–197.

[30] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson, “Hoard: a scalable memory allocator for multithreaded
applications,” in ASPLOS IX Proceedings of the ninth
international conference on Architectural support for programming
languages and operating systems, ACM press, New York, Nov
2000, pp. 117–128.

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-395-7

BUSTECH 2015 : The Fifth International Conference on Business Intelligence and Technology

