

Adaptive OLAP Caching
Towards a better quality of service in analytical systems

Pedro Marques
ALGORITI R&D Centre

University of Minho
PORTUGAL

pcmarkes@gmail.com

Orlando Belo
ALGORITI R&D Centre

University of Minho
PORTUGAL

obelo@di.uminho.pt

Abstract — Nowadays, the use of Multidimensional Data Systems
has become a part of everyday actions in medium and large
companies. These systems, which concern mainly in aiding their
users in the process of decision-making, have a large flexibility in
data exploration and high performance response levels to
queries. Despite all the existing techniques, it is sometimes very
hard to maintain such levels of performance that the user
demands. With the purpose of tackling eventual performance
losses, other techniques where developed trying to reduce data
servers load. One of such mechanisms is the creation of OLAP
caches maintaining previous queries and serving them upon
subsequent requests without having to ask to the server. Due to
OLAP systems organization, it is possible to identify the
characteristics of its users and its exploration patterns – what
queries will a user submit during a session, their frequency and
resources involved. However, it is possible to go one step further,
and to predict exactly what data will be requested by a specific
user and, especially, the sequence of those requests. This is called
the prediction phase and is followed by the pre-materialization of
views that correspond to the user’s requests in the future. These
views are then stored in the cache and served to the user in the
appropriate time. The technique we propose here consists in
maintaining a positive ratio between the time spent to predict and
materialize the most relevant views to users, and the time that
would be spent if no prediction had been done.

Keywords – on-line analytical processing; analytical servers;
caching; association rules mining; cache content prediction.

I. INTRODUCTION
Due to the amazing increase of companies’ data

repositories in the last decade, attentions are now turned to the
implementation of more powerful ways of analyzing data. As
a consequence, Decision Support Systems, and more
specifically, Online Analytical Processing (OLAP) [2] [18]
systems are being implemented in a large scale when
compared to few years ago scenarios. As we know, one of the
greater advantages of OLAP Systems is the fact that they can
cope with large volumes of data and execute ad-hoc queries
within various analysis perspectives giving to decision makers
an exceptional way to get more structured insights into
company’s data. OLAP systems were so well accepted by
decision makers that soon they started loading more and more
data into them and issuing more complex queries, which

quickly surfaced some critical performance issues. As fast as
an OLAP Server could be, there is always some space to apply
new optimization strategies, trying to improve OLAP servers’
performance and OLAP users’ satisfaction. Thus, the usage of
caching mechanisms in OLAP platforms is a natural (and
viable) technological choice when one is concerned to
improve the quality of service of an OLAP platform.

Despite being widely implemented and tested,
conventional caching mechanisms were not prepared to handle
OLAP data. One of the reasons why this type of information
was not ideal for caching was due to its dynamic nature (i.e.
versus the static nature of HTML information where caching
techniques have a particularly good fit). Other aspect to be
considered when deal with OLAP data is the dimension of the
data to be kept in cache, both in terms of volume of data as
well as in terms of data structure complexity. Comparing
again with HTML data, which represents a little effort in terms
of space needed to keep it in cache, OLAP data requires a
great amount of space simply due to the fact that any response
to a typical MDX (Multidimensional Expression) query
involves a lot of data, usually materialized in a
multidimensional data view (a data cube). Even with the
diversity of the data to be maintained, several techniques were
developed to apply caching mechanisms to OLAP data [10]
[11] [16], revealing benefits good enough to keep the focus on
improving caching techniques in order to integrate them
effectively on OLAP server systems.

The work developed was based on an analysis of today’s
caching mechanisms and their application in the OLAP field,
and based on selected information about user’s querying
patterns. In order to obtain these patterns, OLAP server logs
were fetched, analysed and mined in order to obtain a set of
association rules that represent the actions (and consequences)
of user’s queries (usage profiles), providing us the means to
predict future user’s querying tendencies. Such predictions
unlock the possibility of issuing a query even before the user,
put in cache the results that support responses to a specific
user query, providing it faster than if no cache was available in
the OLAP platform.

In the next sections, a more in-depth analysis to this
process will be conducted, explaining the various stages
reached along the evolution of the work, as well as discussing

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

some of most relevant considerations needed to understand the
complexity of predicting the multidimensional content of a
cache for a specific OLAP platform. This paper is organized
into more five sections, namely: Section II shows a detailed
overview about OLAP caching, its advantages and
disadvantages; Section III presents some related work and
discuss major characteristics of the problems we could face
when dealing with high specialized caches, as are OLAP
caches; Section IV, it’s where we present our approach for a
new model of OLAP caching; Section V reveals and discusses
the results of the performed tests to validate the OLAP
caching model proposed; and finally, section VI, presents
some final remarks and conclusions, as well as some future
research lines.

II. TO CACHE OR NOT TO CACHE
Whatever the specific area of implementation could be,

when implementing caching mechanisms one has to remember
that the space available for storing the cache is not unlimited.
As a direct consequence we need to choose (and evaluate)
what data should be kept (or not) in a cache and what data
should be removed giving space for new (and hopefully more
relevant) data to the users’ needs. Keeping this in mind,
researchers started to test quite well known algorithms –
frequently referred as cache management algorithms – that up
to that time had only been used in other types of environments
such as for caching HTML pages with great success. As
results became known, there was a clear notion that there
should be promoted some additional efforts to develop new
breads of algorithms that focused OLAP scenario in particular.
One of the most common ways of evaluating the value of any
cache algorithm is using a metric called Hit Ratio. This metric
is the ratio between the number of requests that were in cache
and the total number of requests that were made. However, Hit
Ratio is not a perfect metric. For instance, even with a higher
Hit Ratio, the number of bytes served directly by the cache
could be smaller than a cache with a lower Hit Ratio, which
lead to the creation of another metric: Byte Hit Ratio. The
latter metric has been vastly used to evaluate how a cache can
satisfy its clients’ requests.

As a user of any OLAP (or other) system launches his
queries, the cache management algorithm has to check if the
necessary information is stored in the cache or, if it is not, to
decide whether it should or shouldn’t be added to the cache. If
the request cannot be satisfied directly from the cache, there
are two possible outcomes:

1) the cache still has space to accommodate the new data,

and so it is added without further due, or
2) the cache hasn’t enough space to store the new data.

In the former case, the content is added, and after that time,

when it is requested, it will be served from cache instead of
being satisfied directly by the OLAP Server. If there is no
space available in the cache management system, the
algorithm can either discard this information or free some

space in cache in order to add this new data. This is the main
decision that cache algorithms have to make. As we know, this
decision will affect the way a cache behaves in the presence of
new information to be added. One of the most basic ways to
do this selection is to use a FIFO approach, which means that
the oldest record to have been added to cache will be removed
in order to create space for a new entry. If this is not enough,
the second (the third, and so on) oldest record will be removed
as necessary, record by record. The main problem with this
technique is the fact that it doesn’t take into account the nature
of the data, despite of its size or actuality, data has an intrinsic
value that cannot be measured as simplistically as these
approaches propose. Other (more sophisticated) decision
metrics were developed taking into account the timestamp of
last access to a specific piece of data [15], the frequency of
access to the data [6], or other more complex information such
as the ones used by the Greedy Dual algorithm [5], for
instance. All these metrics, in one way or another, take into
account the intrinsic value of data and the relevance each
piece of data has to the users and, therefore, they are much
more suited to do the (caching) job correctly than others that
simply look to the characteristics of the data neglecting its
nature and its relevance to users.

III. OLAP CACHING
One of the most common operations performed when

querying an OLAP Server are the well known drill-down and
roll-up operations. The first of these two operations consists of
lowering the grain at which the data is being analysed. For
instance, we can go down in a hierarchy, detailing
systematically, level by level, the grain of the data, from a
country-level view to a district-level one. The roll-up
operation is its direct counterpart, allowing viewing data at a
higher level following a determined hierarchy. In an OLAP
Server, the data is stored at the lowest level of granularity and
then aggregated to a level required by a specific
multidimensional request. Kalnis and Papadias [10] proposed
a solution where this characteristic is explored, mainly by
sharing the cache over several cache servers, specifically
OLAP Cache Servers (OCS). In this approach, each OCS has
the capability to apply transformations (aggregations and other
operations) to multidimensional structures and, thus, combine
them to satisfy, at least, part of a request that has been
launched by a user. This way, whenever a user issues a query,
the various OCS are asked if they have the needed information
and, even if they don’t, they are asked again if they can
compute it from the data they have at a lower grain than the
user requested. This means that an OCS can satisfy not only
requests that have been issued before (and cached) but also
other issues that involve computations over the data that exists
in the OCS.

Kalnis et al. [11] proposed another alternative where
individual caches of users are shared through a Peer-to-Peer
network created between users of a same OLAP System –
PeerOLAP. Essentially, this approach was based on the Piazza
System [8], and intended to allow a very high level of

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

autonomy in the cache network due to the dynamic nature of
Peer-to-Peer networks, where users can connect and
disconnect without significantly affecting the overall usability
and performance of the system.

As mentioned before, OLAP data is quite dynamic by
nature, which means that it is very difficult to predict when the
cached data will become out-dated. To deal with this problem,
an active caching technique was created [4]. It consists of
keeping in the cache server a Java applet that is invoked every
time a cache hit occurs. This applet has the role to check with
the OLAP Server if the cache information stills valid or if it
has changed since the last time it was requested by one or
more users. If data stills valid, it will be returned to the user
who requested it. If not, the full request will be redirected to
the OLAP Server.

One other question that was placed often by researchers, it
was focused on what would be the optimal level of granularity
to store data in a cache, in order to not only be able to
aggregate it as needed but also to be able to do that in a timely
fashion manner. Deshpande et al. [7] used a new indivisible
unit called chunk. This data unit, with a low granularity level
was mapped in the cache in order to be aggregated to satisfy
user’s requests. The mapping occurs in the server and denotes
the relationship between a chunk and the basic units stored in
the OLAP Server, allowing for the complementary fetching of
data from a central server. When a cache server receives a
request from a user, it calculates the parts of that request that it
can be satisfied accessing directly the cache, and the
information that it need to be requested to the OLAP Server (at
a low level of granularity). When all the required data is
located in the cache server, it combines it and sends the results
to the user, without him ever knowing if the information he
received came from the central server or the cache server.

As a last reference we selected the work presented by Sapia
[16], an approach particularly interesting to us. In that work,
the author proposed a predictive system for user behaviour in
multidimensional information system environments that
explore characteristic patterns users use to show when explore
multidimensional data structures. It is an OLAP caching
approach that complements other techniques, such as the ones
presented by Albrecht et al. [1] or Deshpande et al. [7].

IV. A NEW OLAP CACHING APPROACH
This work was based on the assumption that OLAP

System’s users have predictable patterns of data that they use
to consult on their regular OLAP sessions. The nature of most
OLAP users in a company – decision makers – use to induce
them to be focus on a relatively small subset of data stored in a
data warehouse. The day-to-day activity of a decision maker
may begin with an analysis of a pre-defined dashboard or an
interactive report, and based on the information he gathers
from the analysis of the data, will continue his exploration in a
lower level view of the same data – probably appealing to a
typical drill-down operation. This shows us that for any given
user his behaviour will be repeated during a certain period of
time, revealing then a regular usage pattern.

One possible way of extracting these patterns is by
analyzing de OLAP Server’s logs that contain information
about what multidimensional queries users had submitted and
when they happened. It is also possible to know, for a given
user, the sequence of queries he launched between his login
and his logout in a specific OLAP session. From the analysis
of this kind of information, giving a certain period of an
OLAP system exploration, another problem arose: how far
back in the logs should we go to make sure that the retrieved
rules are truly representative of the user’s exploration
patterns?

On one hand, if we analyse the OLAP exploration habits
(and tendencies) for a short period of time, we may get rules
that represent the most recent patterns and not what the user
usually does in the “long run”. However, on the other hand, if
we analyse a larger period, we may extract rules that represent
older OLAP exploration patterns that do not represent what
users are doing currently (users may change their exploration
habits due to a large variety of reasons, demanding that the
algorithm should be able to adapt to such changes).

Taking these constraints into consideration, we began our
approach by retrieving the OLAP Server’s log files, preparing
them to be analysed by a specific data mining algorithm with
the ability to generate a set of association rules that represent
the most relevant exploration user patterns – we designate a
set of usage patterns by an OLAP profile. We used the well-
known Apriori algorithm [3], which is one of the most used
algorithm for mining frequent itemsets, having prove its
effectiveness so many times analysing a set of transactions and
surfaces the relationships between them, given a minimum
value for support and confidence.

As it is well known, association rules are usually
represented in the format: A→B (sup=α; conf=β), where sup
and conf represent, respectively, the support and the
confidence values of a rule. From an association rule (and
from its support and confidence values) we can retrieve two
important things, namely the:

− support (sup), that represents the ratio between the

number of times that a sequence of queries A
followed by a sequence of queries B was found in the
dataset and the total number of queries in that dataset:

− confidence (conf), that represents the number of times
a sequence of queries A is followed by a sequence of
queries B in the dataset, divided by the number of
times a query A (independently of what query
followed it) was found in the same dataset:

If we take A→B (sup=0.3; conf=0.8), as an example, we
can say that for every time a user issues the query A he will, in

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

80% of the cases, issue the query B, right after that. On the
other hand, generally speaking, we can say that for the
analysed dataset, a sequence of queries A followed by a
sequence of queries B occurred in 30% of all cases. This
technique allows us to establish probabilities for the sequence
of queries that a user will issue between the beginning and the
end of an OLAP session. With this information some actions
may be taken to improve the OLAP Server’s response time to
queries. We could then simulate the user’s interaction and
place in cache the views he used mostly. The main problem
with this is the high value of rules that are going to be
generated. This could easily produce untreatable results.

Keeping this problem in mind, our work focused on
reducing the number of queries that should be taken into
account in the prediction phase, without affecting significantly
the results. To do this, we choose to map all the sequences of
queries predicted by the mining algorithm, representing them
in a Markov chain [9] as a way to provide a better visual
insight of the entire set of generated rules. Next, we defined
the minimum value for the confidence associated with the
rules that should be taken into account in the prediction phase
(minconf). Soon, we discovered that this action would not be
enough if we wanted to reduce effectively the number of
predicted queries. We needed to optimize a little bit more the
process. When removing the rules with a confidence value
smaller than minconf, we realized that some rules remained
without the possibility to be predicted as a sequence of any
other query. If we think of the sequence of queries as a graph,
and we start removing some of the nodes, there are some of
them that lose their entrance arches. Those “nodes” represent
the queries that were removed in this second optimization
step. This way we also risk an increased number of cache
misses, but provide us an alternative way of reducing the
number of views to be pre-materialized in the cache.

Figure 1. A query sequence prediction for the first dataset

V. VALIDATING THE PROPOSED TECHNIQUE
In order to test the technique proposed here, we decided to

promote two different test cases, considering the number of
query hits achieved before and after the proposed optimization
scenarios for a given set of artificial queries (generated by
artificial processing algorithms, not representing the actual
usage of an OLAP Server). In Figure 1, we can see the
sequence of queries (in the form of a Markov chain) that were
predicted by the mining algorithm that was used – S0 and S8

represent, respectively, the begin of the session provoked by
the user’s login and the end of that session. The vertices’
values represent the transition probabilities between two
different states (or queries in this case).

All the tests conducted over this dataset basically used
various values for minconf simplifying the rules accordingly.
The chosen values for minconf were, respectively, 0.3, 0.4 and
0.5 (Table I). One other simplification that was introduced,
and named as “main route”, simplistically put in the cache the
sequence of queries that an user most likely follow in a future
data exploration process. In Figure 1, easily we can identify
such candidate sequence of queries. It will be the sequence
represented by the path S0→S2→S3→S5→S6→S7→S8. It can
be easily found by following the higher transition probabilities
between the S0 and S8 nodes. The results of the tests, for the
different values of minconf and for the “main route”
simplification models, can be found in Figure 2.

TABLE I. TEST RESULTS FOR THE FIRST DATASET

Minconf 0.3 0.4 0.5 “main route”
Pre-materialized views (%) 100 86 28 71

Cache Hits (%) 100 89.8 38.3 79.78

As a comparison value, if we add 50% of all queries to the
cache, intuitively we think we would achieve almost 50%
cache hits for any given user (Figure 2). However, this value is
merely meant to provide us with a reference value, and should
not be taken into account in terms of absolute values.

Figure 2. Test results graph for the first dataset

Observing Figure 2, it will lead us to note two key values
of minconf – 0.3 and 0.5 –, which shows the most relevant
(best and worst) test results. As for the value 0.5, it means that
only 28% of all possible views were pre-materialized and,
even in that case, the cache hits came around 38.3%, which
represents a 10% increase in system performance when
compared to our reference values. On the other hand, the
usage of 0.3 for minconf resulted in no view being simplified
and, consequently, the values of cache hits were measured at
100%.

Later, other tests were conducted with a real set of data
retrieved after a simulation of an OLAP Server usage. This
second dataset contains a total of 59 queries being issued to
the server, and the values of minconf used to simplify the
generated rules were 0.02, 0.03, 0.4 and 0.6. The results of this

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

second experience can be found in Table 2 and Figure 3. The
results obtained in this second round of tests shows us that,
even though the differences between the different values of
minconf, they don’t yield great differences in the percentage of
cache hits – nor in the percentage of materialized views.

TABLE II. TEST RESULTS FOR THE SECOND DATASET

Minconf 0.02 0.3 0.4 0.6
Pre-materialized views (%) 54 52 50 46

Cache Hits (%) 89 88 87 86

The gains relative to the reference values were quite
relevant, staying approximately between 35% and 40% (for
values of minconf equal to 0.02 and 0.6, respectively).

Figure 3. Test results graph for the second dataset

VI. CONCLUSIONS AND FUTURE WORK
The main goal of this study was to investigate in what

conditions a predictive caching system could be used in a
typical OLAP environment. In order to reach such goal, we
studied several known cache techniques, e.g. [4] [7] [10] [11]
[12] [13] [14] [16] [17], trying to establish the basis to propose
a different form to know a priori the contents of an OLAP
cache in a near future. All those techniques were crucial to the
development of our work, for both the ideas of exploring the
log files present in the OLAP Server and the simplification of
the rules generated after the application of mining algorithms
to that information.

All the tests performed showed satisfactory improvements
in the ratio between materialized views and cache hits. In our
perspective, they also showed that this approach has the
necessary pre-requisites to be applied to a more real scenario
with advantages for the overall system’s global performance.
Even though some important questions remain, both for the
period of logs that should be analysed and for the values of
minconf to be used. This last, is an issue that should be
addressed on a case-by-case approach, and should be included
in a typical tuning-phase after finishing system
implementation.

Finally, we think that with larger datasets feeding the
mining algorithm, results should be even better. For that
reason we plan in a near future to extend the current study,

comparing it with other similar approaches and including
some work concerning the exploration of multidimensional
queries. We will give particular attention to the less busy
periods of an OLAP server, in order to pre-materialize some
specific multidimensional views that can be used latter when a
user logs in – the log in periods can, as well, be subject of
prediction.

REFERENCES
[1] Albrecht, J., Bauer, A., Deyerling, O., Günzel, H., Hümmer, W., Lehner,

W. and Schlesinger, L. (1999). Management of Multidimensional
Aggregates for Efficient Online Analytical Processing. In Proceedings of
the 1999 International Symposium on Database Engineering \&
Applications (IDEAS '99). IEEE Computer Society, Washington, DC,
USA, 156-,.

[2] Abelló, A. and Romero, O., On-Line Analytical Processing (OLAP). In
Encyclopedia of Database Systems (editors-in-chief: Tamer Ozsu &
Ling Liu). Springer 2009. Pages 1949-1954.

[3] Agrawal, R. and Srikant, R. (1994), Fast algorithms for mining
association rules in large databases. In Jorge B. Bocca, Matthias Jarke,
and Carlo Zaniolo, editors, Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago,
Chile, September 1994.

[4] Cao, P., Zhang, J. and Beach, K., Active Cache: Caching Dynamic
Contents on the Web. Distributed Systems Engineering, 6(1):43-50,
1999.

[5] Cherkasova, L. (1998). Improving WWW Proxies Performance with
Greedy-Dual-Size-Frequency Caching Policy, HP Laboratories
Technical Report HPL, 1998.

[6] Chrobak, M. and Noga, J. (1999). LRU is Better than FIFO.
Algorithmica, Springer New York 23: 180-185.

[7] Deshpande, P., Ramasamy, K., Shukla, A. and Naughton, J. (1998).
Caching multidimensional queries using chunks. ACM.SIGMOD Rec.
27, 2 (June 1998), 259-270..

[8] Gribble, S., Halevy, A., Ives, Z., Rodrig, M. and Suciu, D. (2001). What
can databases do for Peer-to-Peer. In Proc. of WebDB, 2001.

[9] Howard, R., Dynamic Programming and Markov Processes. MIT Press,
June, 1960.

[10] Kalnis, P. and Papadias, D. (2001). Proxy-server architectures for
OLAP. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data (SIGMOD '01), Timos Sellis (Ed.).
ACM, New York, NY, USA, 367-378.

[11] Kalnis, P., Ng, W., Ooi, B., Papadias, D. and Tan, K. (2002). An
adaptive peer-to-peer network for distributed caching of OLAP results.
In Proceedings of the 2002 ACM SIGMOD international conference on
Management of data (SIGMOD '02). ACM, New York, NY, USA, 25-
36.

[12] Lawrence, M., Dehne, F. and Rau-Chaplin, A. (2007). Implementing
OLAP Query Fragment Aggregation and Recombination for the OLAP
Enabled Grid, Parallel and Distributed Processing Symposium, 2007
(IPDPS 2007), IEEE International, 26-30 March 2007

[13] Lehner, W., Albrecht, J. and Hümer, W. (2000). Divide and Aggregate:
caching multidimensional objects. Proceedings of the Second Intl.
Workshop on Design and Management of Data Warehouses (DMDW
2000), Stockholm, Sweden.

[14] Loukopoulos, T., Kalnis, P., Ahmad, I. and Papadias, D. (2001). Active
Caching of On-Line-Analytical-Processing Queries in WWW Proxies,
In Proceedings of the International Conference on Parallel Processing
(ICPP '01). IEEE Computer Society, Washington, DC, USA, 419-.

[15] Mookerjee, V. and Tan, Y. (2002). Analysis of a least recently used
cache management policy for Web browsers. Operations Research, 50, 2
(March 2002), 345-357.

[16] Sapia, C., PROMISE: Predicting Query Behavior to Enable Predictive
Caching Strategies for OLAP Systems, In Proceedings of the Second
International Conference on Data warehousing and Knowledge

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

Discovery (DAWAK 2000), Greewich, UK, Septeber 2000, Springer
LNCS, 2000.

[17] Yao, Q. and An, A. (2003). Using user access patterns for semantic
query caching. Database and Expert Systems Applications, 14th
International Conference. Prague, Czech Republic.

[18] Zhenyuan, W. and Haiyan, H. (2010). OLAP Technology and its
Business Application, Intelligent Systems, WRI Global Congress on, pp.
92-95, 2010 Second WRI Global Congress on Intelligent Systems.

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

