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Abstract — Nowadays, the use of Multidimensional Data Systems 
has become a part of everyday actions in medium and large 
companies. These systems, which concern mainly in aiding their 
users in the process of decision-making, have a large flexibility in 
data exploration and high performance response levels to 
queries. Despite all the existing techniques, it is sometimes very 
hard to maintain such levels of performance that the user 
demands. With the purpose of tackling eventual performance 
losses, other techniques where developed trying to reduce data 
servers load. One of such mechanisms is the creation of OLAP 
caches maintaining previous queries and serving them upon 
subsequent requests without having to ask to the server. Due to 
OLAP systems organization, it is possible to identify the 
characteristics of its users and its exploration patterns – what 
queries will a user submit during a session, their frequency and 
resources involved. However, it is possible to go one step further, 
and to predict exactly what data will be requested by a specific 
user and, especially, the sequence of those requests. This is called 
the prediction phase and is followed by the pre-materialization of 
views that correspond to the user’s requests in the future. These 
views are then stored in the cache and served to the user in the 
appropriate time. The technique we propose here consists in 
maintaining a positive ratio between the time spent to predict and 
materialize the most relevant views to users, and the time that 
would be spent if no prediction had been done. 

Keywords – on-line analytical processing; analytical servers; 
caching; association rules mining; cache content prediction. 

I.  INTRODUCTION 
Due to the amazing increase of companies’ data 

repositories in the last decade, attentions are now turned to the 
implementation of more powerful ways of analyzing data. As 
a consequence, Decision Support Systems, and more 
specifically, Online Analytical Processing (OLAP) [2] [18] 
systems are being implemented in a large scale when 
compared to few years ago scenarios. As we know, one of the 
greater advantages of OLAP Systems is the fact that they can 
cope with large volumes of data and execute ad-hoc queries 
within various analysis perspectives giving to decision makers 
an exceptional way to get more structured insights into 
company’s data. OLAP systems were so well accepted by 
decision makers that soon they started loading more and more 
data into them and issuing more complex queries, which 

quickly surfaced some critical performance issues. As fast as 
an OLAP Server could be, there is always some space to apply 
new optimization strategies, trying to improve OLAP servers’ 
performance and OLAP users’ satisfaction. Thus, the usage of 
caching mechanisms in OLAP platforms is a natural (and 
viable) technological choice when one is concerned to 
improve the quality of service of an OLAP platform.  

Despite being widely implemented and tested, 
conventional caching mechanisms were not prepared to handle 
OLAP data. One of the reasons why this type of information 
was not ideal for caching was due to its dynamic nature (i.e. 
versus the static nature of HTML information where caching 
techniques have a particularly good fit). Other aspect to be 
considered when deal with OLAP data is the dimension of the 
data to be kept in cache, both in terms of volume of data as 
well as in terms of data structure complexity. Comparing 
again with HTML data, which represents a little effort in terms 
of space needed to keep it in cache, OLAP data requires a 
great amount of space simply due to the fact that any response 
to a typical MDX (Multidimensional Expression) query 
involves a lot of data, usually materialized in a 
multidimensional data view (a data cube). Even with the 
diversity of the data to be maintained, several techniques were 
developed to apply caching mechanisms to OLAP data [10] 
[11] [16], revealing benefits good enough to keep the focus on 
improving caching techniques in order to integrate them 
effectively on OLAP server systems.  

The work developed was based on an analysis of today’s 
caching mechanisms and their application in the OLAP field, 
and based on selected information about user’s querying 
patterns. In order to obtain these patterns, OLAP server logs 
were fetched, analysed and mined in order to obtain a set of 
association rules that represent the actions (and consequences) 
of user’s queries (usage profiles), providing us the means to 
predict future user’s querying tendencies. Such predictions 
unlock the possibility of issuing a query even before the user, 
put in cache the results that support responses to a specific 
user query, providing it faster than if no cache was available in 
the OLAP platform. 

In the next sections, a more in-depth analysis to this 
process will be conducted, explaining the various stages 
reached along the evolution of the work, as well as discussing 
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some of most relevant considerations needed to understand the 
complexity of predicting the multidimensional content of a 
cache for a specific OLAP platform. This paper is organized 
into more five sections, namely: Section II shows a detailed 
overview about OLAP caching, its advantages and 
disadvantages; Section III presents some related work and 
discuss major characteristics of the problems we could face 
when dealing with high specialized caches, as are OLAP 
caches; Section IV, it’s where we present our approach for a 
new model of OLAP caching; Section V reveals and discusses 
the results of the performed tests to validate the OLAP 
caching model proposed; and finally, section VI, presents 
some final remarks and conclusions, as well as some future 
research lines. 

 

II. TO CACHE OR NOT TO CACHE 
Whatever the specific area of implementation could be, 

when implementing caching mechanisms one has to remember 
that the space available for storing the cache is not unlimited. 
As a direct consequence we need to choose (and evaluate) 
what data should be kept (or not) in a cache and what data 
should be removed giving space for new (and hopefully more 
relevant) data to the users’ needs. Keeping this in mind, 
researchers started to test quite well known algorithms – 
frequently referred as cache management algorithms – that up 
to that time had only been used in other types of environments 
such as for caching HTML pages with great success. As 
results became known, there was a clear notion that there 
should be promoted some additional efforts to develop new 
breads of algorithms that focused OLAP scenario in particular. 
One of the most common ways of evaluating the value of any 
cache algorithm is using a metric called Hit Ratio. This metric 
is the ratio between the number of requests that were in cache 
and the total number of requests that were made. However, Hit 
Ratio is not a perfect metric. For instance, even with a higher 
Hit Ratio, the number of bytes served directly by the cache 
could be smaller than a cache with a lower Hit Ratio, which 
lead to the creation of another metric: Byte Hit Ratio. The 
latter metric has been vastly used to evaluate how a cache can 
satisfy its clients’ requests. 

As a user of any OLAP (or other) system launches his 
queries, the cache management algorithm has to check if the 
necessary information is stored in the cache or, if it is not, to 
decide whether it should or shouldn’t be added to the cache. If 
the request cannot be satisfied directly from the cache, there 
are two possible outcomes: 

 
1) the cache still has space to accommodate the new data, 

and so it is added without further due, or  
2) the cache hasn’t enough space to store the new data.  

 
In the former case, the content is added, and after that time, 

when it is requested, it will be served from cache instead of 
being satisfied directly by the OLAP Server. If there is no 
space available in the cache management system, the 
algorithm can either discard this information or free some 

space in cache in order to add this new data. This is the main 
decision that cache algorithms have to make. As we know, this 
decision will affect the way a cache behaves in the presence of 
new information to be added. One of the most basic ways to 
do this selection is to use a FIFO approach, which means that 
the oldest record to have been added to cache will be removed 
in order to create space for a new entry. If this is not enough, 
the second (the third, and so on) oldest record will be removed 
as necessary, record by record. The main problem with this 
technique is the fact that it doesn’t take into account the nature 
of the data, despite of its size or actuality, data has an intrinsic 
value that cannot be measured as simplistically as these 
approaches propose. Other (more sophisticated) decision 
metrics were developed taking into account the timestamp of 
last access to a specific piece of data [15], the frequency of 
access to the data [6], or other more complex information such 
as the ones used by the Greedy Dual algorithm [5], for 
instance. All these metrics, in one way or another, take into 
account the intrinsic value of data and the relevance each 
piece of data has to the users and, therefore, they are much 
more suited to do the (caching) job correctly than others that 
simply look to the characteristics of the data neglecting its 
nature and its relevance to users. 

 

III. OLAP CACHING 
One of the most common operations performed when 

querying an OLAP Server are the well known drill-down and 
roll-up operations. The first of these two operations consists of 
lowering the grain at which the data is being analysed. For 
instance, we can go down in a hierarchy, detailing 
systematically, level by level, the grain of the data, from a 
country-level view to a district-level one. The roll-up 
operation is its direct counterpart, allowing viewing data at a 
higher level following a determined hierarchy. In an OLAP 
Server, the data is stored at the lowest level of granularity and 
then aggregated to a level required by a specific 
multidimensional request. Kalnis and Papadias [10] proposed 
a solution where this characteristic is explored, mainly by 
sharing the cache over several cache servers, specifically 
OLAP Cache Servers (OCS). In this approach, each OCS has 
the capability to apply transformations (aggregations and other 
operations) to multidimensional structures and, thus, combine 
them to satisfy, at least, part of a request that has been 
launched by a user. This way, whenever a user issues a query, 
the various OCS are asked if they have the needed information 
and, even if they don’t, they are asked again if they can 
compute it from the data they have at a lower grain than the 
user requested. This means that an OCS can satisfy not only 
requests that have been issued before (and cached) but also 
other issues that involve computations over the data that exists 
in the OCS. 

Kalnis et al. [11] proposed another alternative where 
individual caches of users are shared through a Peer-to-Peer 
network created between users of a same OLAP System – 
PeerOLAP. Essentially, this approach was based on the Piazza 
System [8], and intended to allow a very high level of 

43Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology



autonomy in the cache network due to the dynamic nature of 
Peer-to-Peer networks, where users can connect and 
disconnect without significantly affecting the overall usability 
and performance of the system. 

As mentioned before, OLAP data is quite dynamic by 
nature, which means that it is very difficult to predict when the 
cached data will become out-dated. To deal with this problem, 
an active caching technique was created [4]. It consists of 
keeping in the cache server a Java applet that is invoked every 
time a cache hit occurs. This applet has the role to check with 
the OLAP Server if the cache information stills valid or if it 
has changed since the last time it was requested by one or 
more users. If data stills valid, it will be returned to the user 
who requested it. If not, the full request will be redirected to 
the OLAP Server.  

One other question that was placed often by researchers, it 
was focused on what would be the optimal level of granularity 
to store data in a cache, in order to not only be able to 
aggregate it as needed but also to be able to do that in a timely 
fashion manner. Deshpande et al. [7] used a new indivisible 
unit called chunk. This data unit, with a low granularity level 
was mapped in the cache in order to be aggregated to satisfy 
user’s requests. The mapping occurs in the server and denotes 
the relationship between a chunk and the basic units stored in 
the OLAP Server, allowing for the complementary fetching of 
data from a central server. When a cache server receives a 
request from a user, it calculates the parts of that request that it 
can be satisfied accessing directly the cache, and the 
information that it need to be requested to the OLAP Server (at 
a low level of granularity). When all the required data is 
located in the cache server, it combines it and sends the results 
to the user, without him ever knowing if the information he 
received came from the central server or the cache server.  

As a last reference we selected the work presented by Sapia 
[16], an approach particularly interesting to us. In that work, 
the author proposed a predictive system for user behaviour in 
multidimensional information system environments that 
explore characteristic patterns users use to show when explore 
multidimensional data structures. It is an OLAP caching 
approach that complements other techniques, such as the ones 
presented by Albrecht et al. [1] or Deshpande et al. [7]. 

 

IV. A NEW OLAP CACHING APPROACH 
This work was based on the assumption that OLAP 

System’s users have predictable patterns of data that they use 
to consult on their regular OLAP sessions. The nature of most 
OLAP users in a company – decision makers – use to induce 
them to be focus on a relatively small subset of data stored in a 
data warehouse. The day-to-day activity of a decision maker 
may begin with an analysis of a pre-defined dashboard or an 
interactive report, and based on the information he gathers 
from the analysis of the data, will continue his exploration in a 
lower level view of the same data – probably appealing to a 
typical drill-down operation. This shows us that for any given 
user his behaviour will be repeated during a certain period of 
time, revealing then a regular usage pattern.  

One possible way of extracting these patterns is by 
analyzing de OLAP Server’s logs that contain information 
about what multidimensional queries users had submitted and 
when they happened. It is also possible to know, for a given 
user, the sequence of queries he launched between his login 
and his logout in a specific OLAP session. From the analysis 
of this kind of information, giving a certain period of an 
OLAP system exploration, another problem arose: how far 
back in the logs should we go to make sure that the retrieved 
rules are truly representative of the user’s exploration 
patterns?  

On one hand, if we analyse the OLAP exploration habits 
(and tendencies) for a short period of time, we may get rules 
that represent the most recent patterns and not what the user 
usually does in the “long run”. However, on the other hand, if 
we analyse a larger period, we may extract rules that represent 
older OLAP exploration patterns that do not represent what 
users are doing currently (users may change their exploration 
habits due to a large variety of reasons, demanding that the 
algorithm should be able to adapt to such changes).  

Taking these constraints into consideration, we began our 
approach by retrieving the OLAP Server’s log files, preparing 
them to be analysed by a specific data mining algorithm with 
the ability to generate a set of association rules that represent 
the most relevant exploration user patterns – we designate a 
set of usage patterns by an OLAP profile. We used the well-
known Apriori algorithm [3], which is one of the most used 
algorithm for mining frequent itemsets, having prove its 
effectiveness so many times analysing a set of transactions and 
surfaces the relationships between them, given a minimum 
value for support and confidence. 

As it is well known, association rules are usually 
represented in the format: A→B (sup=α; conf=β), where sup 
and conf represent, respectively, the support and the 
confidence values of a rule. From an association rule (and 
from its support and confidence values) we can retrieve two 
important things, namely the: 

 
− support (sup), that represents the ratio between the 

number of times that a sequence of queries A 
followed by a sequence of queries B was found in the 
dataset and the total number of queries in that dataset: 
 

 
 

− confidence (conf), that represents the number of times 
a sequence of queries A is followed by a sequence of 
queries B in the dataset, divided by the number of 
times a query A (independently of what query 
followed it) was found in the same dataset: 
 

 
 

If we take A→B (sup=0.3; conf=0.8), as an example, we 
can say that for every time a user issues the query A he will, in 
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80% of the cases, issue the query B, right after that. On the 
other hand, generally speaking, we can say that for the 
analysed dataset, a sequence of queries A followed by a 
sequence of queries B occurred in 30% of all cases. This 
technique allows us to establish probabilities for the sequence 
of queries that a user will issue between the beginning and the 
end of an OLAP session. With this information some actions 
may be taken to improve the OLAP Server’s response time to 
queries. We could then simulate the user’s interaction and 
place in cache the views he used mostly. The main problem 
with this is the high value of rules that are going to be 
generated. This could easily produce untreatable results.  

Keeping this problem in mind, our work focused on 
reducing the number of queries that should be taken into 
account in the prediction phase, without affecting significantly 
the results. To do this, we choose to map all the sequences of 
queries predicted by the mining algorithm, representing them 
in a Markov chain [9] as a way to provide a better visual 
insight of the entire set of generated rules. Next, we defined 
the minimum value for the confidence associated with the 
rules that should be taken into account in the prediction phase 
(minconf). Soon, we discovered that this action would not be 
enough if we wanted to reduce effectively the number of 
predicted queries. We needed to optimize a little bit more the 
process. When removing the rules with a confidence value 
smaller than minconf, we realized that some rules remained 
without the possibility to be predicted as a sequence of any 
other query. If we think of the sequence of queries as a graph, 
and we start removing some of the nodes, there are some of 
them that lose their entrance arches. Those “nodes” represent 
the queries that were removed in this second optimization 
step. This way we also risk an increased number of cache 
misses, but provide us an alternative way of reducing the 
number of views to be pre-materialized in the cache. 
 

 
Figure 1.  A query sequence prediction for the first dataset 

V. VALIDATING THE PROPOSED TECHNIQUE 
In order to test the technique proposed here, we decided to 

promote two different test cases, considering the number of 
query hits achieved before and after the proposed optimization 
scenarios for a given set of artificial queries (generated by 
artificial processing algorithms, not representing the actual 
usage of an OLAP Server). In Figure 1, we can see the 
sequence of queries (in the form of a Markov chain) that were 
predicted by the mining algorithm that was used – S0 and S8 

represent, respectively, the begin of the session provoked by 
the user’s login and the end of that session. The vertices’ 
values represent the transition probabilities between two 
different states (or queries in this case). 

All the tests conducted over this dataset basically used 
various values for minconf simplifying the rules accordingly. 
The chosen values for minconf were, respectively, 0.3, 0.4 and 
0.5 (Table I). One other simplification that was introduced, 
and named as “main route”, simplistically put in the cache the 
sequence of queries that an user most likely follow in a future 
data exploration process. In Figure 1, easily we can identify 
such candidate sequence of queries. It will be the sequence 
represented by the path S0→S2→S3→S5→S6→S7→S8. It can 
be easily found by following the higher transition probabilities 
between the S0 and S8 nodes. The results of the tests, for the 
different values of minconf and for the “main route” 
simplification models, can be found in Figure 2. 

TABLE I.  TEST RESULTS FOR THE FIRST DATASET 

Minconf 0.3 0.4 0.5 “main route” 
Pre-materialized views (%) 100 86 28 71 

Cache Hits (%) 100 89.8 38.3 79.78 
 

As a comparison value, if we add 50% of all queries to the 
cache, intuitively we think we would achieve almost 50% 
cache hits for any given user (Figure 2). However, this value is 
merely meant to provide us with a reference value, and should 
not be taken into account in terms of absolute values. 

 
Figure 2.  Test results graph for the first dataset 

Observing Figure 2, it will lead us to note two key values 
of minconf – 0.3 and 0.5 –, which shows the most relevant 
(best and worst) test results. As for the value 0.5, it means that 
only 28% of all possible views were pre-materialized and, 
even in that case, the cache hits came around 38.3%, which 
represents a 10% increase in system performance when 
compared to our reference values. On the other hand, the 
usage of 0.3 for minconf resulted in no view being simplified 
and, consequently, the values of cache hits were measured at 
100%. 

Later, other tests were conducted with a real set of data 
retrieved after a simulation of an OLAP Server usage. This 
second dataset contains a total of 59 queries being issued to 
the server, and the values of minconf used to simplify the 
generated rules were 0.02, 0.03, 0.4 and 0.6. The results of this 
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second experience can be found in Table 2 and Figure 3. The 
results obtained in this second round of tests shows us that, 
even though the differences between the different values of 
minconf, they don’t yield great differences in the percentage of 
cache hits – nor in the percentage of materialized views. 

TABLE II.  TEST RESULTS FOR THE SECOND DATASET 

Minconf 0.02 0.3 0.4 0.6 
Pre-materialized views (%) 54 52 50 46 

Cache Hits (%) 89 88 87 86 
 

The gains relative to the reference values were quite 
relevant, staying approximately between 35% and 40% (for 
values of minconf equal to 0.02 and 0.6, respectively). 

 

 
Figure 3.  Test results graph for the second dataset 

VI. CONCLUSIONS AND FUTURE WORK 
The main goal of this study was to investigate in what 

conditions a predictive caching system could be used in a 
typical OLAP environment. In order to reach such goal, we 
studied several known cache techniques, e.g. [4] [7] [10] [11] 
[12] [13] [14] [16] [17], trying to establish the basis to propose 
a different form to know a priori the contents of an OLAP 
cache in a near future. All those techniques were crucial to the 
development of our work, for both the ideas of exploring the 
log files present in the OLAP Server and the simplification of 
the rules generated after the application of mining algorithms 
to that information.  

All the tests performed showed satisfactory improvements 
in the ratio between materialized views and cache hits. In our 
perspective, they also showed that this approach has the 
necessary pre-requisites to be applied to a more real scenario 
with advantages for the overall system’s global performance. 
Even though some important questions remain, both for the 
period of logs that should be analysed and for the values of 
minconf to be used. This last, is an issue that should be 
addressed on a case-by-case approach, and should be included 
in a typical tuning-phase after finishing system 
implementation.  

Finally, we think that with larger datasets feeding the 
mining algorithm, results should be even better. For that 
reason we plan in a near future to extend the current study, 

comparing it with other similar approaches and including 
some work concerning the exploration of multidimensional 
queries. We will give particular attention to the less busy 
periods of an OLAP server, in order to pre-materialize some 
specific multidimensional views that can be used latter when a 
user logs in – the log in periods can, as well, be subject of 
prediction. 
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