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Abstract - In this paper, we suggest a two-phase declarative 

process mining approach discovering explicit, cross-

perspective semantic definitions. Cross-perspective semantic 

definitions are interesting and important for the analysis of 

business processes, because they reveal dependencies that are 

not obvious on the first look. They allow for a comprehensive 

examination of the recorded process execution information and 

enable the discovery of coherency between different process-

involved entities and perspectives. Using the described cross-

perspective semantic definitions, we additionally introduce an 

approach for simplifying less-structured process models. 

Keywords - Process mining; semantic definitions; business rules; 

ontology; semantic process modelling. 

I.  INTRODUCTION 

Process modelling is an expensive and cumbersome task. 
Using process mining techniques, it is possible to discover 
process models automatically [10]. Moreover, event logs can 
be checked to assess conformance and compliance with 
respect to already defined processes [10]. Process mining has 
been applied in various domains ranging from healthcare and 
e-business to high-tech systems and auditing [5, 6]. 
However, many process mining techniques produce 
“spaghetti-like” models that tend to be large and complex, 
especially in flexible environments where process executions 
involve multiple alternatives [1, 2]. This “overload” of 
information is caused by the fact that traditional mining 
techniques construct imperative models explicitly encoding 
all possible behaviours [1, 10]. This sort of complexity arises 
when a huge number of execution paths exists (path 
complexity) [23]. When process models are becoming too 
complex, people cannot interpret them anymore and 
therefore cannot improve them. In order to face this problem, 
we leave the imperative world and focus on the generation of 
declarative process models. Declarative process modelling 
techniques reduce path complexity such that complex 
applications can be described by comprehendible process 
models. 

In contrast to imperative modelling, declarative models 
concentrate on describing what has to be done and the exact 
step-by-step execution order is not directly prescribed. There 
are several process mining approaches like [1, 19, 20] that 
are discovering declarative process models. Here, the 
meaning of model elements is defined by explicit semantic 
definitions. Furthermore, several approaches [2, 3, 4, 12] 
filter the information contained in a log and to simplify less-
structured imperative process models by discovering 

common execution patterns. However, the approaches 
named above have a common drawback: they are mainly 
examining the behavioural perspective, i.e., the control-flow. 
These methods are discovering semantic definitions 
considering the execution order of process steps without 
facing possible coherency with other perspectives. We think 
that especially this hidden coherency between perspectives 
should be outlined by discovery algorithms. That is why we 
suggest a mining approach, based upon user-defined cross-
perspective semantic definitions. That means these semantic 
definitions spread over different entities and perspectives, 
e.g., a process execution order (behavioural perspective) 
could depend on the performing agents’ position 
(organisational perspective). The semantic definitions are 
constituted through the analysis of the different perspectives 
recommended by the perspective-oriented process modelling 
(POPM) approach [15]. The user-defined assembly of 
semantic definitions allows analysts to shape the discovery 
process to extract the semantic definitions that are most 
important and interesting for them [1].  

Cross-perspective semantics is especially interesting and 
important for the analysis of business processes, because it 
reveals dependencies that are not obvious on the first look. It 
allows for a comprehensive examination of the recorded 
process execution information and enables the discovery of 
coherency between different process-involved entities and 
perspectives. Beyond, our approach discovers semantic 
definitions that can be based upon properties of an ontology, 
containing further information about process-involved 
entities or participants. That means that the semantic 
definitions to be searched can partly consist of properties that 
have to be extracted from an underlying ontology. This 
functionality is similar to [13, 14], however we apply this 
possibility in the context of process discovery instead of 
conformance checking. Using the described cross-
perspective semantic definitions, we additionally introduce 
an approach for simplifying less-structured process models.  

This paper is organized as follows: Section II introduces 
the fundamental assembly and the two phases of the 
approach. In Sections III and IV, these two phases are 
described in detail. In Section V, related work is discussed. 
The paper is finally concluded in Section VI. 

 

II. DISCOVERING CROSS-PERSPECTIVE SEMANTIC 

DEFINITIONS FROM PROCESS EXECUTION LOGS 

Information systems typically log various kinds of 

information about process execution. The starting point for 
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process mining is an event log. An event log consists of a 

set of traces whereat each trace is a sequence of events 

corresponding to a particular case, i.e., one process instance 

[7]. Each events record refers to a single process step and 

typically has a timestamp. These facts also form the 

preliminaries for our approach. We assume an existing event 

log recording different perspectives of process execution. 

Table I shows a fragment of such a process execution log. 

While the PID-column assigns each event to unique process 

identifier, the case-column assigns each event to a single 

process case, i.e., a single process instance. Furthermore, the 

action type of each event is recorded. The following 

columns are an example for further information that should 

be logged during process execution in order to be able to 

discover cross-perspective business rules. We recommend to 

record data based upon the different aspects of the 

perspective-oriented process modelling (POPM) [15]: 

Functional perspective: the functional perspective identifies 

a process step and defines its purpose. Also the composition 

of a process is determined by this perspective. Hence, the 

log should contain a common process identifier the 

corresponding event can be linked to. 

Data perspective: the data (flow) perspective defines data 

used in a process and the flow of data between process 

steps. Therefore, the log should record documents or 

generally information that was used by the current process 

step as well as the data that was produced. 

Operational perspective: the operational perspective 

specifies which operation (service) is invoked in order to 

execute a process step. It relates processes to services 

stemming from (external) service libraries. Here, the log 

should contain tools, applications or services that were used 

during performing the currently executed process step. 

Organisational perspective: the organisational perspective 

defines agents (for instance users, roles) who are eligible 

and/or responsible to perform a process step. Therefore, the 

log contains information about the process executor. The 

personal information is enriched by group and role 

memberships. 

Behavioural perspective: the behavioural perspective is used 

to define causal dependencies between process steps (e.g. 

step B may only be executed after step A). Often these 

dependencies are called control flow. The information in the 

log concerning this perspective is formed by the recorded 

timestamp of each event. 

TABLE I. A FRAGMENT OF A PROCESS EXECUTION LOG. 

Event PID Case Action Agents Data Tools Time 

1 A 1 Start Head Doc 1 Word … 

2 A 1 Finish Head Doc 1 Word  

3 D 2 Start Agent 3 Doc 3 Excel  

4 D 2 Finish Agent 3 Doc 3 Excel  

5 B 1 Start Agent 2 Doc 2 Word  

6 C 2 Start Agent 3 Doc 2 Excel  

7 B 1 Finish Agent 2 Doc 2 Word  

8 C 2 Finish Agent 3 Doc 2 Excel  

9 C 1 Start Trainee Doc 3 Word  

10 A 2 Start Head Doc 1 Word  

11 C 1 Finish Trainee Doc 3 Word  

12 D 1 Start Trainee Doc 4 Word  

13 D 1 Finish Trainee Doc 4 Word  

…        
 

The existence of an event log of such a shape allows for the 

comprehensive examination of various perspectives within 

one approach. Therefore, we propose a two phase approach 

to analyse a process execution log. 

Phase-1 (Pre-processing the log to instance graphs; Section 

IV). Here, the event log is generally analysed and 

transformed into various graph data structures that allow for 

the flexible search of user-defined semantic definitions.  

Phase-2 (Discovery of cross-perspective semantic 

definitions; Section V). This phase discovers cross-

perspective semantic definitions concerning only one 

process as well as relations between two processes. 

Semantic definitions are used to encapsulate processes. 

 

III. PRE-PROCESSING THE LOG TO INSTANCE GRAPHS 

In this section, we focus on the construction of so-called 
instance graphs. An instance graph describes the execution 
order of process steps of a process (case), i.e. one single 
execution path of a process. For our particular cross-
perspective purpose, we feature the graphs of [24, 25] with 
context data of the organisational, data and the operational 
perspective. Instance graphs also show parallelism if parallel 
(independent) branches have been executed. An instance 
graph consists of a set of nodes   and a set of edges  . 
Every node     has the following fields: process name, 
performing agent, used document and used tool support. 
Every edge     has two fields describing how two 
processes are connected: execution type (parallel or 
sequence) and distance (direct or transitive). Every instance 
graph is a complete graph. First, we separate the recorded 
events according to their corresponding case/instance id.  

Therefore, we assemble a list for each case represented in 
the log and assign the events according to their case ids. 
With the help of these lists, we can now classify the relation 
between two (sub-)processes within one process case. The 
classification is based upon the event types of two 
succeeding events. Here, we make the same assumptions as 
[24, 25]. As already mentioned, we distinguish between 
parallel execution and direct sequential execution. Consider 
two processes A and B. We deduce that two processes are 
executed in parallel if process A is started before process B is 
started and completed before B is completed but after the 
start of B. This would result in the event sequence: Start A, 
Start B, Finish A, Finish B (Fig.1 ). Furthermore, the two 
processes are also executed in parallel if process A is started 
before process B is started and completed after process B is 
completed. The resulting event sequence would look like 
this: Start A, Start B, Finish B, Finish A (Fig.1 ). In 
addition to parallel execution, we mark direct sequential 
execution. Two processes A and B are executed in a direct 
sequence if process B is started directly after process A has 
been completed (we say “B is started after A finished”). The 
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resulting event sequence therefore is: Start A, Finish A, Start 
B, Finish B (Fig. 1 ). 

 

 
 

Figure 1. Classification of behavioural relations of processes. 
 

On the basis of the classification above, an instance graph 

of an event list is created as follows. We generate a graph by 

running through the case-specific event list. For every newly 

occurring process A within the list, we create a new node   

within a graph and assign the corresponding process context 

to the fields of the node, i.e., recorded agent, documents as 

well as tools. For every direct sequential-relation of two 

processes A and B, we add an edge of execution type 

“sequence” and distance “direct” between the node 

representations of A and B within the graph (formal:   
 ). For every parallel execution between two processes A 

and B, we add an edge of execution type “parallel” and 

distance “direct” between the node representations of A and 

B within the graph (   ). Finally, the existing graph is 

extended by edges that have been generated by the transitive 

closure of the graph. If the graph already contains two edges 

    and    , we add an edge of execution type 

“sequence” and distance “transitive” between the node 

representations of the processes A and C (   ). Note that 

in general, it is not possible to infer     from     and 

   . Fig. 2 shows three different instance graphs of a 

process based upon the log fragment of Table 1 (for space 

reasons, the table just shows the activities of two instances). 

Considering graph 1, case 1 had the execution trace A, B, C, 

D, containing only direct sequential-relations and no 

parallelism. Exemplarily, graph 1 additionally contains the 

information that the agent “Head of Department” executed 

process A by using Document 1 supported by MS Word. The 

two other graphs can be interpreted in the same way. 
 

 
 

Figure 2. Instance graphs based on three different process cases. 
 

IV. DISCOVERY OF CROSS-PERSPECTIVE SEMANTICS 

A. Classification of Semantics 

Meta-modelling frameworks like the Open-Meta-
Modelling Environment [16] offer the possibility to feature 
and adapt process modelling languages with a variety of 
user-defined (domain-specific) modelling elements. This 
requires a clear specification of the meaning of modelling 

constructs in order to avoid misunderstanding between 
modeller and programmer. This can be achieved by explicit 
semantic definitions of model elements. Semantic definitions 
are already used to validate executed processes in the context 
of conformance checking [10]. Hence, logs can be validated 
with the help of logical reasoners. In this paper, we scan 
event logs in order to discover semantic definitions. First, we 
introduce the assembly and representation of semantic 
definitions. Here, we use the Semantic Web Rule Language 
(SWRL) [21] to define semantics of modelling elements. 
Every semantic definition, e.g., SWRL rule, has a left and a 
right side. The left side contains the conditions that have to 
be satisfied so as to infer the consequences on the right side. 
Furthermore, the left side contains an indicator for the 
corresponding modelling construct whose semantics is 
defined. Conditions and consequences consist of atoms and 
assigned variables. The formalisation of such rules looks as 
follows: 
 

                                                      
 

The running example for this section consists of a domain-
specific modelling element called TraineeConnector. This 
semantics expresses that any two processes P1 and P2 
connected by this semantics have a strict execution order in 
case that a trainee employee performs the processes. Here, 
the cross-perspective nature becomes obvious: the 
behavioural perspective depends on the organisational 
perspective. The representation of this semantics as an 
SWRL definition looks as follows: 

 

                (  )        (      )     (      )   
        (      )            (      )            (  )  

                     (       ) 
 

Note, that the algorithm also is able to discover established 
(single perspective) declarative semantic definitions. 
Exemplarily, the semantic definition of a “standard” 
sequential execution order in any case (a name for such 
semantics could be StrictOrderConnector) would look like 
this: 
 

                    (  )        (      )     (      ) 
                     (       ) 

 

The assembly of the core algorithm demands for the 
definition of a few terms describing the type of semantic 
definitions.  
Attribute: Attributes describe modelling elements that 

represent semantics concerning a single process. An 

attribute does not express a relation to another process. An 

example would be the fact that a specific process has always 

to be executed by the head of department. 

Connector: Connectors describe modelling elements that 

represent relations, e.g., connectors, between two processes. 

An example for a connector is the TraineeConnector from 

above. 

Group: Group semantic defintions typically assign 

functional entities (e.g., atomic processes) to other 

functional entities (e.g., complex processes or pools). 
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There may also exist other semantic definitions, however, in 
this paper we focus on discovery of semantic definitions 
defined above with respect to comprehension reasons. 
  

B. Discovery of Semantic Definitions 

The validation of given semantic definitions represents 
the core functionality of the approach. The general approach 
is as follows: 
1. Search for explicit semantic definitions (attributes as 

well as connector semantics) using the instance graphs. 

2. Generation of the semantic graph, that contains 

attributes of single processes as well as connectors 

between processes. 

3. Encapsulation of processes and generation of process 

hierarchies examining group semantic definitions. 
The main principle of the validation procedure is 

described by means of connector semantics. Therefore, every 
instance graph has to be analysed. There can be a relation 
between every combination of two processes (x, y) for every 
semantic definition. The core algorithm is build-up as 
follows: At first, we assume that a relation exists between the 
currently observed processes x and y. Now, the left side of 
the semantic definition is examined. Therefore, the processes 
and the corresponding process context information have to 
satisfy the conditions. If the information within the instance 
graphs is not sufficient, additional data is extracted from an 
ontology. If all conditions are satisfied, the consequences are 
examined. We make use of the principal proof by 
contradiction. All elements of the right side of the definitions 
are negated. If the negation of the consequence could be 
found within an instance graph, it means the algorithm 
disproved the current semantics for the processes x and y. If 
we could not find any counter-example within the instance 
graphs, the semantics is valid for the processes x and y. Note, 
that our assumption only holds, if the log is scanned 
completely every time. The extracted semantics is only valid 
for the currently analysed knowledge base. The processes x 
and y are connected with the corresponding model element, 
whose semantics is defined by the rule. The fact that we use 
a proof by contradiction is based upon the closed-world 
assumption. If we cannot find a counter-example within any 
instance graph (these in combination with an underlying 
ontology reflects our knowledge base), the semantics is 
declared as valid for the currently considered processes. The 
formalisation of the described proof  is as follows: 

 

                                                : 
 

           
                  
* 
                            

       * 
                                       
                                
       + 
+ 
       
              

                                                        
 

The assembly of a validation algorithm for attribute-semantic 
definitions is similar to the one above. However, the 
algorithm takes only one process x and in case of a valid 
semantics, an attribute is assigned to x instead of a connector. 
Example: Consider the three instance graphs of Fig. 2 as the 
knowledge base for this example. We now apply the 
algorithm to discover the TraineeConnector between the 
processes C and D. At first, graph 1 (Fig. 2 ) is examined. 
In this case all conditions are satisfied as the processes C and 
D have assigned agents and the performing agents are 
obviously members of a class “Trainee”. Therefore, the 
algorithm demands for the examination of the consequences. 
This is, in the case of the TraineeConnector, the fact that 
process D has to be started after the completion of process C. 
As the algorithm follows the principle proof of contradiction, 
we have to examine if the graph contains the contrary. That 
is obviously not the case as D is performed after C and 
therefore the proof variable stays true. In the next step, graph 
2 (Fig. 2 ) is examined. Here, the conditions are not 
satisfied, as the performing agent “Agent 3” is not member 
of a class “Trainee”. Hence, the consequence must not be 
examined and the proof variable stays true. Note, that in this 
case C was performed after D (wrong order). However, this 
is not relevant as the performing agent is not a trainee. In the 
last instance graph (Fig. 2 ) the situation is identical to 
graph 1. This is why the proof variable stayed true during the 
whole examination and the algorithm discovered the 
TraineeConnector between the processes C and D. 
 

C. Generation of the Semantic Graph 

During the validation of semantics, we assemble a new 
graph (called semantic graph) containing all the extracted 
attributes and relations between, processes. The graph 
consists of a set of nodes   and a set of edges  . The nodes 
represent the processes, whereas the edges represent relations 
between these processes. Every node     has the 
following fields: process name, performing agents, used 
documents, used tools and furthermore a list containing the 
discovered attributes for this specific process. As described 
before, connector semantic definitions represent relations 
between two processes. Therefore, connector semantic 
definitions are depicted as edges     within the semantic 
graph. An edge e has two fields describing the connector 
between two processes: connector-type (i.e., 
TraineeConnector) and distance (direct, transitive). The 
proof of an attribute semantics adds an entry to the attributes-
list of the node representation of the corresponding process. 
Furthermore, the proof of a connector semantics concerning 
the processes x and y adds an edge between the node 
representations of these two processes with the 
corresponding connector type. The semantic graph of Fig. 3 
highlights three exemplary visualised semantic definitions 
extracted on the basis of the three instance graphs of Fig. 2. 
The algorithm discovered that process C and D have a strict 
execution order only in case that a trainee employee 
performs these processes. Note, that we assume a closed-
world and cannot found a counter-example in any instance 
graph. That is why the semantic graph shows the 
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TraineeConnector (visualised as a dashed arrow) between C 
and D. Moreover, the graph shows various other semantic 
definitions, discovered by analysing the instance graphs of 
Fig. 2. Consider the processes A and B. Here, the algorithm 
discovered a strict execution order in any case (i.e., the 
StrictOrderConnector visualised by a continuous arrow), as 
B has always been executed after A. Furthermore, the 
algorithm discovered an attribute of process A revealing that 
A has always been executed by the head of department (that 
is why A is visualised with black filling).  
 

 
 

Figure 3. Semantic graph containing cross-perspective semantics. 

Finally, the resulting graph contains all processes, the 
process context information and all attributes and connectors 
between processes that could have been extracted from a set 
of instance graphs.  
 

D. Encapsulation of Processes 

We propose to simplify and structure process models by 
examining group semantic definitions that additionally allow 
for encapsulating processes based on other perspectives. The 
approach allows for assigning processes to sets, i.e., groups, 
whose members offer common behaviour or characteristics 
with respect to a specific perspective. These groups of 
processes can be highlighted by assigning modelling 
elements to each predefined group semantics. 

 

1) Encapsulation based on the behavioural perspective 

In the first part of this section, we focus on encapsulation 

of processes on the basis of the behavioural perspective. 

Note that the execution order of processes could be based on 

various other perspectives. The execution order is for 

example mostly determined by the data flow. The 

encapsulation of processes based on the behavioural 

perspective has the aim to simplify process models by 

assigning atomic processes to complex processes as sub-

processes. While an atomic process is associated with an 

executable activity, a complex process contains sub-

processes [18]. This allows for the hierarchical composition 

of processes. Therefore, a complex process serves as a 

“capsule” for its sub-processes. The algorithm to 

encapsulate processes with respect to the behavioural 

perspective is based upon the following two rules: 
 

         (       )                       (      ) 
                     (      ) 

 

         (       )                       (      ) 
                     (      ) 

 

The rules say: two processes P1 and P2 are in the same 

group (capsule) if every process P that is started 

(completed) after (before) P1, is also started (completed) 

after (before) P2. That means, two processes are in the same 

capsule, if they always have the same predecessors as well 

as the same successors with respect to all instance graphs. In 

order to discover this semantics, we need two rules as the 

control variable process P cannot be a predecessor and a 

successor at the same time. Therefore, we first have to 

check if P1 and P2 have the same predecessors and 

subsequently if they have the same successors. A formal 

definition of the encapsulation based on the behavioural 

perspective is as follows: 

 

                       (     ) 
                                      
* 
                 
                         
      * 
                                                   
                            *     +   
                                                  

                            * 
                                                               
                                                           
                            + 
  

                              

                            * 
                                                               
                                                           
                            + 
      + 

 
                    
                                    
+ 

 

It is obvious that the assembly of the algorithm is similar to 

the algorithm to discover connector semantics. However, 

here we have to examine two rules at the same time and a 

control variable P influences the examination.  

Example: Consider again the three instance graphs of Fig. 

2. We focus on the process combination A, B. In the first 

part of the formalism the focus is on common predecessors. 

Obviously, no instance graph contains predecessors for A 

and B, so the proof variable stays true. The second part of 

the algorithm examines the successors. Every process P that 

is started after the completion of A, has also to be started 

after the completion of B. Given that    *   + we have to 

examine which       are successors of A and check if   is 

also a successor of B. Focusing on the three instance graphs 

of Fig. 2 it is obvious that process A has the successors C 

and D in every case. Moreover, C and D are also successors 

of process B in every instance. Hence, the algorithm could 

not find a counter-example within the knowledge base and 

the proof variable stayed true during the examination. 

Finally, the algorithm assigned A and B to a set Group x. By 

applying this procedure recursively to the resulting sets, 

process hierarchies are discovered. In Fig. 4, we visualise 
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the group membership property by a box surrounding the 

contained processes.  

 

 
 

Figure 4. Exemplary visualisation of group semantics. 
 

2) Encapsulation based on other perspectives 

Besides, our semantic definitions allow for the 

encapsulation on the basis of other perspectives. In this 

paper, we exemplarily focus the encapsulation with respect 

to the organisational perspective. However, encapsulation 

based on any other perspective is possible. Exemplarily, we 

encapsulate processes based on the organizational 

perspective. If the agents’ organization is not recorded in the 

log explicitly, we can extract it from ontologies by querying 

with the corresponding agent id. In our example, we 

visualise the group membership property again by a box 

element surrounding the contained processes. Note, that the 

resulting visualisation is related to pools in BPMN [17]. The 

group semantics to search for looks as follows: 
 

         (       )          (       )   
        (       )              (       )   
          (       )         (       ) 

 

Here, we do not have to examine a common behaviour 

with respect to other processes and therefore there is no 

need for a control variable. In the case of the organisational 

perspective, we propose a solution to the challenge of cross-

organisational mining. Consider a cross-organisational 

process, e.g., supply chains of manufacturing processes. 

Each involved organization records its activities to its 

specific event log. We propose to merge the different logs to 

one integrated log based on the recorded timestamps. The 

prerequisite in order to mine for instance graphs is that the 

involved organizations have a common instance ID. Note 

that especially in the case of a supply chain, the instance id 

could be based on a common product id. In the context of 

cross-organisational mining it could be interesting how the 

different parties interact with each other. Fig. 5 shows how 

cross-organisational interaction as for a product P1 could be 

highlighted based on merging different logs and grouping 

different processes with respect to the performing agents’ 

organization. 
 

 
 

Figure 5. Merging of logs and encapsulation based on organizations. 
 

V. RELATED WORK 

Starting point for process mining is a process execution 
log. The basis for analysis is pre-processing the available 

log. In this paper, the pre-processing is carried out by 
converting the log information to so-called instance graphs. 
These graphs are similar to the graphs of [11, 24, 25], 
however we feature them with further context data of process 
execution. There are already several algorithms and even 
complete tools, like the ProM Framework [8], that aim at 
discovering and generating process models automatically.  

During the last decade, several algorithms have been 
developed, focusing different perspectives of process 
execution data. Van der Aalst et al. give a detailed 
introduction to the topic process mining and a recapitulation 
of research achievements in [5, 6, 10]. Many of these 
traditional process mining algorithms are imperative 
approaches. These methods construct imperative models 
explicitly showing all possible behaviours. Other ways to 
mine for process models are declarative approaches. Instead 
of explicitly specifying all the allowed sequences of events, 
declarative process models specify the possible ordering of 
events implicitly by constraints. Alongside with declarative 
approaches that are used for conformance checking of 
already existing models [10, 22], there are several declarative 
discovery algorithms like [1, 19, 20]. The major difference to 
these methods, that are mainly examining the behavioural 
perspective, is that our approach is based upon semantic 
definitions considering multiple perspectives of process data 
and includes the possibility to query ontologies. This 
enhances the declarative discovery process by functionality 
provided by semantic process mining [13, 14] and allows for 
revealing dependencies that are not obvious on the first look. 
In literature, several approaches [2, 3, 4, 12] are described to 
filter the information contained in a log and to simplify less-
structured process models. However, these methods are 
limited to encapsulate processes based on common 
behaviour with respect to the control-flow. We propose to 
simplify and structure process models by examining cross-
perspective semantic definitions. 

 

VI. CONCLUSION AND OUTLOOK 

In this paper, we suggested a declarative mining 

approach, based upon explicit, cross-perspective semantic 

definitions. Semantic definitions are constituted through the 

analysis of the different perspectives recommended by the 

perspective-oriented process modelling (POPM) approach 

and spread over different process-involved entities and 

perspectives. Cross-perspective semantic definitions are 

important for the analysis of business processes. 

Additionally, we proposed an approach to simplify and 

structure process models by examining cross-perspective 

semantics that allows for encapsulating processes based on 

various perspectives. By grouping processes with respect to 

the organisational perspective, we proposed a contribution 

to the challenge of cross-organisational mining. The IEEE 

Task Force on Process Mining stated the improvement of 

usability and understandability for non-experts as a 

challenge for future mining approaches [8, 9]. We strive for 

improving these issues with respect to the application 

environment as well as the presentation of results. The latter 
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is amended by the use of domain specific modelling 

elements, whereas the prospective integration in the Open-

Meta-Modelling Environment [16] will allow for the simple 

definition of modelling elements with underlying semantics. 

The user should have the possibility to specify the semantics 

to search for and therefore to extend or reduce the scope of 

functions flexibly. A kind of instruction manual for process 

managers could look as follows: at first, analysts define the 

semantic definitions in SWRL notation they are most 

interested in. Next, a process modeller assigns user-defined 

model elements to these semantic definitions. The resulting 

model elements represent the domain specific process 

language that is used in the current case. After that, a log is 

selected as an input for the algorithm. Subsequently, the 

semantic process mining algorithm discovers the given 

semantic definitions from the language-catalogue. By 

traversing the resulting graph, it is possible to transform the 

information into a process model. Considering the assigned 

model elements, the process model based on the previously 

defined process meta-model, i.e., the language catalogue, is 

visualised. The discovered model can be discussed, possibly 

remodelled and finally be executed by a workflow engine.  

We strive for an extensive application of our approach, 

including a detailed evaluation. Our future research activity 

in the field of process mining will face the problem that 

process events are typically not recorded in a unified 

manner. Therefore, we are developing an approach to align 

process logs recorded with different granularities. 
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