
Discovering Cross-Perspective Semantic Definitions from Process Execution Logs

Stefan Schönig, Christoph Günther, Michael Zeising, and Stefan Jablonski

University of Bayreuth

Chair of Applied Computer Science IV

Bayreuth, Germany

{stefan.schoenig, christoph.guenther, michael.zeising, stefan.jablonski}@uni-bayreuth.de

Abstract - In this paper, we suggest a two-phase declarative

process mining approach discovering explicit, cross-

perspective semantic definitions. Cross-perspective semantic

definitions are interesting and important for the analysis of

business processes, because they reveal dependencies that are

not obvious on the first look. They allow for a comprehensive

examination of the recorded process execution information and

enable the discovery of coherency between different process-

involved entities and perspectives. Using the described cross-

perspective semantic definitions, we additionally introduce an

approach for simplifying less-structured process models.

Keywords - Process mining; semantic definitions; business rules;

ontology; semantic process modelling.

I. INTRODUCTION

Process modelling is an expensive and cumbersome task.
Using process mining techniques, it is possible to discover
process models automatically [10]. Moreover, event logs can
be checked to assess conformance and compliance with
respect to already defined processes [10]. Process mining has
been applied in various domains ranging from healthcare and
e-business to high-tech systems and auditing [5, 6].
However, many process mining techniques produce
“spaghetti-like” models that tend to be large and complex,
especially in flexible environments where process executions
involve multiple alternatives [1, 2]. This “overload” of
information is caused by the fact that traditional mining
techniques construct imperative models explicitly encoding
all possible behaviours [1, 10]. This sort of complexity arises
when a huge number of execution paths exists (path
complexity) [23]. When process models are becoming too
complex, people cannot interpret them anymore and
therefore cannot improve them. In order to face this problem,
we leave the imperative world and focus on the generation of
declarative process models. Declarative process modelling
techniques reduce path complexity such that complex
applications can be described by comprehendible process
models.

In contrast to imperative modelling, declarative models
concentrate on describing what has to be done and the exact
step-by-step execution order is not directly prescribed. There
are several process mining approaches like [1, 19, 20] that
are discovering declarative process models. Here, the
meaning of model elements is defined by explicit semantic
definitions. Furthermore, several approaches [2, 3, 4, 12]
filter the information contained in a log and to simplify less-
structured imperative process models by discovering

common execution patterns. However, the approaches
named above have a common drawback: they are mainly
examining the behavioural perspective, i.e., the control-flow.
These methods are discovering semantic definitions
considering the execution order of process steps without
facing possible coherency with other perspectives. We think
that especially this hidden coherency between perspectives
should be outlined by discovery algorithms. That is why we
suggest a mining approach, based upon user-defined cross-
perspective semantic definitions. That means these semantic
definitions spread over different entities and perspectives,
e.g., a process execution order (behavioural perspective)
could depend on the performing agents’ position
(organisational perspective). The semantic definitions are
constituted through the analysis of the different perspectives
recommended by the perspective-oriented process modelling
(POPM) approach [15]. The user-defined assembly of
semantic definitions allows analysts to shape the discovery
process to extract the semantic definitions that are most
important and interesting for them [1].

Cross-perspective semantics is especially interesting and
important for the analysis of business processes, because it
reveals dependencies that are not obvious on the first look. It
allows for a comprehensive examination of the recorded
process execution information and enables the discovery of
coherency between different process-involved entities and
perspectives. Beyond, our approach discovers semantic
definitions that can be based upon properties of an ontology,
containing further information about process-involved
entities or participants. That means that the semantic
definitions to be searched can partly consist of properties that
have to be extracted from an underlying ontology. This
functionality is similar to [13, 14], however we apply this
possibility in the context of process discovery instead of
conformance checking. Using the described cross-
perspective semantic definitions, we additionally introduce
an approach for simplifying less-structured process models.

This paper is organized as follows: Section II introduces
the fundamental assembly and the two phases of the
approach. In Sections III and IV, these two phases are
described in detail. In Section V, related work is discussed.
The paper is finally concluded in Section VI.

II. DISCOVERING CROSS-PERSPECTIVE SEMANTIC

DEFINITIONS FROM PROCESS EXECUTION LOGS

Information systems typically log various kinds of

information about process execution. The starting point for

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

process mining is an event log. An event log consists of a

set of traces whereat each trace is a sequence of events

corresponding to a particular case, i.e., one process instance

[7]. Each events record refers to a single process step and

typically has a timestamp. These facts also form the

preliminaries for our approach. We assume an existing event

log recording different perspectives of process execution.

Table I shows a fragment of such a process execution log.

While the PID-column assigns each event to unique process

identifier, the case-column assigns each event to a single

process case, i.e., a single process instance. Furthermore, the

action type of each event is recorded. The following

columns are an example for further information that should

be logged during process execution in order to be able to

discover cross-perspective business rules. We recommend to

record data based upon the different aspects of the

perspective-oriented process modelling (POPM) [15]:

Functional perspective: the functional perspective identifies

a process step and defines its purpose. Also the composition

of a process is determined by this perspective. Hence, the

log should contain a common process identifier the

corresponding event can be linked to.

Data perspective: the data (flow) perspective defines data

used in a process and the flow of data between process

steps. Therefore, the log should record documents or

generally information that was used by the current process

step as well as the data that was produced.

Operational perspective: the operational perspective

specifies which operation (service) is invoked in order to

execute a process step. It relates processes to services

stemming from (external) service libraries. Here, the log

should contain tools, applications or services that were used

during performing the currently executed process step.

Organisational perspective: the organisational perspective

defines agents (for instance users, roles) who are eligible

and/or responsible to perform a process step. Therefore, the

log contains information about the process executor. The

personal information is enriched by group and role

memberships.

Behavioural perspective: the behavioural perspective is used

to define causal dependencies between process steps (e.g.

step B may only be executed after step A). Often these

dependencies are called control flow. The information in the

log concerning this perspective is formed by the recorded

timestamp of each event.

TABLE I. A FRAGMENT OF A PROCESS EXECUTION LOG.

Event PID Case Action Agents Data Tools Time

1 A 1 Start Head Doc 1 Word …

2 A 1 Finish Head Doc 1 Word

3 D 2 Start Agent 3 Doc 3 Excel

4 D 2 Finish Agent 3 Doc 3 Excel

5 B 1 Start Agent 2 Doc 2 Word

6 C 2 Start Agent 3 Doc 2 Excel

7 B 1 Finish Agent 2 Doc 2 Word

8 C 2 Finish Agent 3 Doc 2 Excel

9 C 1 Start Trainee Doc 3 Word

10 A 2 Start Head Doc 1 Word

11 C 1 Finish Trainee Doc 3 Word

12 D 1 Start Trainee Doc 4 Word

13 D 1 Finish Trainee Doc 4 Word

…

The existence of an event log of such a shape allows for the

comprehensive examination of various perspectives within

one approach. Therefore, we propose a two phase approach

to analyse a process execution log.

Phase-1 (Pre-processing the log to instance graphs; Section

IV). Here, the event log is generally analysed and

transformed into various graph data structures that allow for

the flexible search of user-defined semantic definitions.

Phase-2 (Discovery of cross-perspective semantic

definitions; Section V). This phase discovers cross-

perspective semantic definitions concerning only one

process as well as relations between two processes.

Semantic definitions are used to encapsulate processes.

III. PRE-PROCESSING THE LOG TO INSTANCE GRAPHS

In this section, we focus on the construction of so-called
instance graphs. An instance graph describes the execution
order of process steps of a process (case), i.e. one single
execution path of a process. For our particular cross-
perspective purpose, we feature the graphs of [24, 25] with
context data of the organisational, data and the operational
perspective. Instance graphs also show parallelism if parallel
(independent) branches have been executed. An instance
graph consists of a set of nodes and a set of edges .
Every node has the following fields: process name,
performing agent, used document and used tool support.
Every edge has two fields describing how two
processes are connected: execution type (parallel or
sequence) and distance (direct or transitive). Every instance
graph is a complete graph. First, we separate the recorded
events according to their corresponding case/instance id.

Therefore, we assemble a list for each case represented in
the log and assign the events according to their case ids.
With the help of these lists, we can now classify the relation
between two (sub-)processes within one process case. The
classification is based upon the event types of two
succeeding events. Here, we make the same assumptions as
[24, 25]. As already mentioned, we distinguish between
parallel execution and direct sequential execution. Consider
two processes A and B. We deduce that two processes are
executed in parallel if process A is started before process B is
started and completed before B is completed but after the
start of B. This would result in the event sequence: Start A,
Start B, Finish A, Finish B (Fig.1). Furthermore, the two
processes are also executed in parallel if process A is started
before process B is started and completed after process B is
completed. The resulting event sequence would look like
this: Start A, Start B, Finish B, Finish A (Fig.1). In
addition to parallel execution, we mark direct sequential
execution. Two processes A and B are executed in a direct
sequence if process B is started directly after process A has
been completed (we say “B is started after A finished”). The

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

resulting event sequence therefore is: Start A, Finish A, Start
B, Finish B (Fig. 1).

Figure 1. Classification of behavioural relations of processes.

On the basis of the classification above, an instance graph

of an event list is created as follows. We generate a graph by

running through the case-specific event list. For every newly

occurring process A within the list, we create a new node

within a graph and assign the corresponding process context

to the fields of the node, i.e., recorded agent, documents as

well as tools. For every direct sequential-relation of two

processes A and B, we add an edge of execution type

“sequence” and distance “direct” between the node

representations of A and B within the graph (formal:
). For every parallel execution between two processes A

and B, we add an edge of execution type “parallel” and

distance “direct” between the node representations of A and

B within the graph (). Finally, the existing graph is

extended by edges that have been generated by the transitive

closure of the graph. If the graph already contains two edges

 and , we add an edge of execution type

“sequence” and distance “transitive” between the node

representations of the processes A and C (). Note that

in general, it is not possible to infer from and

 . Fig. 2 shows three different instance graphs of a

process based upon the log fragment of Table 1 (for space

reasons, the table just shows the activities of two instances).

Considering graph 1, case 1 had the execution trace A, B, C,

D, containing only direct sequential-relations and no

parallelism. Exemplarily, graph 1 additionally contains the

information that the agent “Head of Department” executed

process A by using Document 1 supported by MS Word. The

two other graphs can be interpreted in the same way.

Figure 2. Instance graphs based on three different process cases.

IV. DISCOVERY OF CROSS-PERSPECTIVE SEMANTICS

A. Classification of Semantics

Meta-modelling frameworks like the Open-Meta-
Modelling Environment [16] offer the possibility to feature
and adapt process modelling languages with a variety of
user-defined (domain-specific) modelling elements. This
requires a clear specification of the meaning of modelling

constructs in order to avoid misunderstanding between
modeller and programmer. This can be achieved by explicit
semantic definitions of model elements. Semantic definitions
are already used to validate executed processes in the context
of conformance checking [10]. Hence, logs can be validated
with the help of logical reasoners. In this paper, we scan
event logs in order to discover semantic definitions. First, we
introduce the assembly and representation of semantic
definitions. Here, we use the Semantic Web Rule Language
(SWRL) [21] to define semantics of modelling elements.
Every semantic definition, e.g., SWRL rule, has a left and a
right side. The left side contains the conditions that have to
be satisfied so as to infer the consequences on the right side.
Furthermore, the left side contains an indicator for the
corresponding modelling construct whose semantics is
defined. Conditions and consequences consist of atoms and
assigned variables. The formalisation of such rules looks as
follows:

The running example for this section consists of a domain-
specific modelling element called TraineeConnector. This
semantics expresses that any two processes P1 and P2
connected by this semantics have a strict execution order in
case that a trainee employee performs the processes. Here,
the cross-perspective nature becomes obvious: the
behavioural perspective depends on the organisational
perspective. The representation of this semantics as an
SWRL definition looks as follows:

 () () ()
 () () ()

 ()

Note, that the algorithm also is able to discover established
(single perspective) declarative semantic definitions.
Exemplarily, the semantic definition of a “standard”
sequential execution order in any case (a name for such
semantics could be StrictOrderConnector) would look like
this:

 () () ()
 ()

The assembly of the core algorithm demands for the
definition of a few terms describing the type of semantic
definitions.
Attribute: Attributes describe modelling elements that

represent semantics concerning a single process. An

attribute does not express a relation to another process. An

example would be the fact that a specific process has always

to be executed by the head of department.

Connector: Connectors describe modelling elements that

represent relations, e.g., connectors, between two processes.

An example for a connector is the TraineeConnector from

above.

Group: Group semantic defintions typically assign

functional entities (e.g., atomic processes) to other

functional entities (e.g., complex processes or pools).

A

B

A

B

A

B

1 2 3

Trainee

Doc 3

Word

Trainee

Doc 4

Word

Agent 3

Doc 2

Excel

Agent 3

Doc 3

Excel

Trainee

Doc 2

Excel

Trainee

Doc 3

Excel

Head

Doc 1

Word

Agent 2

Doc 2

Word

A B

C D

Head

Doc 1

Word

Agent 3

Doc 2

Word

A B

C D

Head

Doc 1

Word

Agent 3

Doc 2

Word

A B

C D

1 2 3

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

There may also exist other semantic definitions, however, in
this paper we focus on discovery of semantic definitions
defined above with respect to comprehension reasons.

B. Discovery of Semantic Definitions

The validation of given semantic definitions represents
the core functionality of the approach. The general approach
is as follows:
1. Search for explicit semantic definitions (attributes as

well as connector semantics) using the instance graphs.

2. Generation of the semantic graph, that contains

attributes of single processes as well as connectors

between processes.

3. Encapsulation of processes and generation of process

hierarchies examining group semantic definitions.
The main principle of the validation procedure is

described by means of connector semantics. Therefore, every
instance graph has to be analysed. There can be a relation
between every combination of two processes (x, y) for every
semantic definition. The core algorithm is build-up as
follows: At first, we assume that a relation exists between the
currently observed processes x and y. Now, the left side of
the semantic definition is examined. Therefore, the processes
and the corresponding process context information have to
satisfy the conditions. If the information within the instance
graphs is not sufficient, additional data is extracted from an
ontology. If all conditions are satisfied, the consequences are
examined. We make use of the principal proof by
contradiction. All elements of the right side of the definitions
are negated. If the negation of the consequence could be
found within an instance graph, it means the algorithm
disproved the current semantics for the processes x and y. If
we could not find any counter-example within the instance
graphs, the semantics is valid for the processes x and y. Note,
that our assumption only holds, if the log is scanned
completely every time. The extracted semantics is only valid
for the currently analysed knowledge base. The processes x
and y are connected with the corresponding model element,
whose semantics is defined by the rule. The fact that we use
a proof by contradiction is based upon the closed-world
assumption. If we cannot find a counter-example within any
instance graph (these in combination with an underlying
ontology reflects our knowledge base), the semantics is
declared as valid for the currently considered processes. The
formalisation of the described proof is as follows:

 :

*

 *

 +
+

The assembly of a validation algorithm for attribute-semantic
definitions is similar to the one above. However, the
algorithm takes only one process x and in case of a valid
semantics, an attribute is assigned to x instead of a connector.
Example: Consider the three instance graphs of Fig. 2 as the
knowledge base for this example. We now apply the
algorithm to discover the TraineeConnector between the
processes C and D. At first, graph 1 (Fig. 2) is examined.
In this case all conditions are satisfied as the processes C and
D have assigned agents and the performing agents are
obviously members of a class “Trainee”. Therefore, the
algorithm demands for the examination of the consequences.
This is, in the case of the TraineeConnector, the fact that
process D has to be started after the completion of process C.
As the algorithm follows the principle proof of contradiction,
we have to examine if the graph contains the contrary. That
is obviously not the case as D is performed after C and
therefore the proof variable stays true. In the next step, graph
2 (Fig. 2) is examined. Here, the conditions are not
satisfied, as the performing agent “Agent 3” is not member
of a class “Trainee”. Hence, the consequence must not be
examined and the proof variable stays true. Note, that in this
case C was performed after D (wrong order). However, this
is not relevant as the performing agent is not a trainee. In the
last instance graph (Fig. 2) the situation is identical to
graph 1. This is why the proof variable stayed true during the
whole examination and the algorithm discovered the
TraineeConnector between the processes C and D.

C. Generation of the Semantic Graph

During the validation of semantics, we assemble a new
graph (called semantic graph) containing all the extracted
attributes and relations between, processes. The graph
consists of a set of nodes and a set of edges . The nodes
represent the processes, whereas the edges represent relations
between these processes. Every node has the
following fields: process name, performing agents, used
documents, used tools and furthermore a list containing the
discovered attributes for this specific process. As described
before, connector semantic definitions represent relations
between two processes. Therefore, connector semantic
definitions are depicted as edges within the semantic
graph. An edge e has two fields describing the connector
between two processes: connector-type (i.e.,
TraineeConnector) and distance (direct, transitive). The
proof of an attribute semantics adds an entry to the attributes-
list of the node representation of the corresponding process.
Furthermore, the proof of a connector semantics concerning
the processes x and y adds an edge between the node
representations of these two processes with the
corresponding connector type. The semantic graph of Fig. 3
highlights three exemplary visualised semantic definitions
extracted on the basis of the three instance graphs of Fig. 2.
The algorithm discovered that process C and D have a strict
execution order only in case that a trainee employee
performs these processes. Note, that we assume a closed-
world and cannot found a counter-example in any instance
graph. That is why the semantic graph shows the

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

TraineeConnector (visualised as a dashed arrow) between C
and D. Moreover, the graph shows various other semantic
definitions, discovered by analysing the instance graphs of
Fig. 2. Consider the processes A and B. Here, the algorithm
discovered a strict execution order in any case (i.e., the
StrictOrderConnector visualised by a continuous arrow), as
B has always been executed after A. Furthermore, the
algorithm discovered an attribute of process A revealing that
A has always been executed by the head of department (that
is why A is visualised with black filling).

Figure 3. Semantic graph containing cross-perspective semantics.

Finally, the resulting graph contains all processes, the
process context information and all attributes and connectors
between processes that could have been extracted from a set
of instance graphs.

D. Encapsulation of Processes

We propose to simplify and structure process models by
examining group semantic definitions that additionally allow
for encapsulating processes based on other perspectives. The
approach allows for assigning processes to sets, i.e., groups,
whose members offer common behaviour or characteristics
with respect to a specific perspective. These groups of
processes can be highlighted by assigning modelling
elements to each predefined group semantics.

1) Encapsulation based on the behavioural perspective

In the first part of this section, we focus on encapsulation

of processes on the basis of the behavioural perspective.

Note that the execution order of processes could be based on

various other perspectives. The execution order is for

example mostly determined by the data flow. The

encapsulation of processes based on the behavioural

perspective has the aim to simplify process models by

assigning atomic processes to complex processes as sub-

processes. While an atomic process is associated with an

executable activity, a complex process contains sub-

processes [18]. This allows for the hierarchical composition

of processes. Therefore, a complex process serves as a

“capsule” for its sub-processes. The algorithm to

encapsulate processes with respect to the behavioural

perspective is based upon the following two rules:

 () ()
 ()

 () ()
 ()

The rules say: two processes P1 and P2 are in the same

group (capsule) if every process P that is started

(completed) after (before) P1, is also started (completed)

after (before) P2. That means, two processes are in the same

capsule, if they always have the same predecessors as well

as the same successors with respect to all instance graphs. In

order to discover this semantics, we need two rules as the

control variable process P cannot be a predecessor and a

successor at the same time. Therefore, we first have to

check if P1 and P2 have the same predecessors and

subsequently if they have the same successors. A formal

definition of the encapsulation based on the behavioural

perspective is as follows:

 ()

*

 *

 * +

 *

 +

 *

 +
 +

+

It is obvious that the assembly of the algorithm is similar to

the algorithm to discover connector semantics. However,

here we have to examine two rules at the same time and a

control variable P influences the examination.

Example: Consider again the three instance graphs of Fig.

2. We focus on the process combination A, B. In the first

part of the formalism the focus is on common predecessors.

Obviously, no instance graph contains predecessors for A

and B, so the proof variable stays true. The second part of

the algorithm examines the successors. Every process P that

is started after the completion of A, has also to be started

after the completion of B. Given that * + we have to

examine which are successors of A and check if is

also a successor of B. Focusing on the three instance graphs

of Fig. 2 it is obvious that process A has the successors C

and D in every case. Moreover, C and D are also successors

of process B in every instance. Hence, the algorithm could

not find a counter-example within the knowledge base and

the proof variable stayed true during the examination.

Finally, the algorithm assigned A and B to a set Group x. By

applying this procedure recursively to the resulting sets,

process hierarchies are discovered. In Fig. 4, we visualise

Trainee,

Agent 3

Doc 2, 3

Excel

Trainee,

Agent 3

Doc 3, 4

Excel

C D

Head

Doc 1

Word

Agent 2, 3

Doc 2

Word
A B

TraineeConn.

Semantic Graph

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

the group membership property by a box surrounding the

contained processes.

Figure 4. Exemplary visualisation of group semantics.

2) Encapsulation based on other perspectives

Besides, our semantic definitions allow for the

encapsulation on the basis of other perspectives. In this

paper, we exemplarily focus the encapsulation with respect

to the organisational perspective. However, encapsulation

based on any other perspective is possible. Exemplarily, we

encapsulate processes based on the organizational

perspective. If the agents’ organization is not recorded in the

log explicitly, we can extract it from ontologies by querying

with the corresponding agent id. In our example, we

visualise the group membership property again by a box

element surrounding the contained processes. Note, that the

resulting visualisation is related to pools in BPMN [17]. The

group semantics to search for looks as follows:

 () ()
 () ()
 () ()

Here, we do not have to examine a common behaviour

with respect to other processes and therefore there is no

need for a control variable. In the case of the organisational

perspective, we propose a solution to the challenge of cross-

organisational mining. Consider a cross-organisational

process, e.g., supply chains of manufacturing processes.

Each involved organization records its activities to its

specific event log. We propose to merge the different logs to

one integrated log based on the recorded timestamps. The

prerequisite in order to mine for instance graphs is that the

involved organizations have a common instance ID. Note

that especially in the case of a supply chain, the instance id

could be based on a common product id. In the context of

cross-organisational mining it could be interesting how the

different parties interact with each other. Fig. 5 shows how

cross-organisational interaction as for a product P1 could be

highlighted based on merging different logs and grouping

different processes with respect to the performing agents’

organization.

Figure 5. Merging of logs and encapsulation based on organizations.

V. RELATED WORK

Starting point for process mining is a process execution
log. The basis for analysis is pre-processing the available

log. In this paper, the pre-processing is carried out by
converting the log information to so-called instance graphs.
These graphs are similar to the graphs of [11, 24, 25],
however we feature them with further context data of process
execution. There are already several algorithms and even
complete tools, like the ProM Framework [8], that aim at
discovering and generating process models automatically.

During the last decade, several algorithms have been
developed, focusing different perspectives of process
execution data. Van der Aalst et al. give a detailed
introduction to the topic process mining and a recapitulation
of research achievements in [5, 6, 10]. Many of these
traditional process mining algorithms are imperative
approaches. These methods construct imperative models
explicitly showing all possible behaviours. Other ways to
mine for process models are declarative approaches. Instead
of explicitly specifying all the allowed sequences of events,
declarative process models specify the possible ordering of
events implicitly by constraints. Alongside with declarative
approaches that are used for conformance checking of
already existing models [10, 22], there are several declarative
discovery algorithms like [1, 19, 20]. The major difference to
these methods, that are mainly examining the behavioural
perspective, is that our approach is based upon semantic
definitions considering multiple perspectives of process data
and includes the possibility to query ontologies. This
enhances the declarative discovery process by functionality
provided by semantic process mining [13, 14] and allows for
revealing dependencies that are not obvious on the first look.
In literature, several approaches [2, 3, 4, 12] are described to
filter the information contained in a log and to simplify less-
structured process models. However, these methods are
limited to encapsulate processes based on common
behaviour with respect to the control-flow. We propose to
simplify and structure process models by examining cross-
perspective semantic definitions.

VI. CONCLUSION AND OUTLOOK

In this paper, we suggested a declarative mining

approach, based upon explicit, cross-perspective semantic

definitions. Semantic definitions are constituted through the

analysis of the different perspectives recommended by the

perspective-oriented process modelling (POPM) approach

and spread over different process-involved entities and

perspectives. Cross-perspective semantic definitions are

important for the analysis of business processes.

Additionally, we proposed an approach to simplify and

structure process models by examining cross-perspective

semantics that allows for encapsulating processes based on

various perspectives. By grouping processes with respect to

the organisational perspective, we proposed a contribution

to the challenge of cross-organisational mining. The IEEE

Task Force on Process Mining stated the improvement of

usability and understandability for non-experts as a

challenge for future mining approaches [8, 9]. We strive for

improving these issues with respect to the application

environment as well as the presentation of results. The latter

A B C D

P
o

o
l
1

P
o

o
l
2

A B

C D

Log 1

Log 2

E F
1 A P1 … Time t1

2 B P1 … Time t2

3 C P1 … Time t3

4 D P1 … Time t4

5 E P1 … Time t5

6 F P1 … Time t6

Joint

Log

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

is amended by the use of domain specific modelling

elements, whereas the prospective integration in the Open-

Meta-Modelling Environment [16] will allow for the simple

definition of modelling elements with underlying semantics.

The user should have the possibility to specify the semantics

to search for and therefore to extend or reduce the scope of

functions flexibly. A kind of instruction manual for process

managers could look as follows: at first, analysts define the

semantic definitions in SWRL notation they are most

interested in. Next, a process modeller assigns user-defined

model elements to these semantic definitions. The resulting

model elements represent the domain specific process

language that is used in the current case. After that, a log is

selected as an input for the algorithm. Subsequently, the

semantic process mining algorithm discovers the given

semantic definitions from the language-catalogue. By

traversing the resulting graph, it is possible to transform the

information into a process model. Considering the assigned

model elements, the process model based on the previously

defined process meta-model, i.e., the language catalogue, is

visualised. The discovered model can be discussed, possibly

remodelled and finally be executed by a workflow engine.

We strive for an extensive application of our approach,

including a detailed evaluation. Our future research activity

in the field of process mining will face the problem that

process events are typically not recorded in a unified

manner. Therefore, we are developing an approach to align

process logs recorded with different granularities.

REFERENCES

[1] Maggi, F.M., Mooij, A.J., and van der Aalst, W.M.P.: “User-
Guided Discovery of Declarative Process Models”. In:
Proceedings of IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), April 2011, Paris,
France, pp. 192–199.

[2] Li, J., Bose, R.P.J.C. and van der Aalst, W.M.P.: “Mining
Context-Dependent and Interactive Business Process Maps
using Execution Patterns”. In: Business Process Management
Workshops, Lecture Notes in Business Information
Processing, Vol. 66, 2011, pp.109-121.

[3] Günther, C. and van der Aalst, W.M.P.: “Fuzzy Mining –
Adaptive Process Simplification Based on Multi-Perspective
Metrics”. In: Business Process Management, LNCS, vol.
4714, 2007, pp. 328-343.

[4] Bose, R.P.J.C. and van der Aalst, W.M.P.: “Abstractions in
Process Mining: A Taxonomy of Patterns”. In: Business
Process Management, LNCS, vol. 5701, 2009, pp. 159-175.

[5] Van der Aalst, W., Reijers,H., Weijters, A., Van Dongen, B.,
De Medeiros, A., Songa, M., and Verbeek, H.: “Business
process mining: An industrial application”. In: Information
Systems, vol. 32 (5), 2007, pp. 713-732.

[6] Van der Aalst, W., Weijters, T., and Maruster, L.: “Workflow
mining: Discovering process models from event logs”. In:
IEEE Transactions on Knowledge and Data Engineering,
vol.16 (9), 2004, pp. 1128-1142.

[7] Van der Aalst, W.M.P., Pesic, M., and Song, M.: “Beyond
Process Mining: From the Past to Present and Future”. In:
Advanced Information Systems Engineering, LNCS, vol.
6051, 2010, pp. 38-52.

[8] Van der Aalst, W.: “Challenges in Business Process Mining”.
In: Applied Stochastic Models in Business and Industry, 2010

[9] Van der Aalst, W.M.P., Dustdar, S.: “Process Mining Put into
Context”. In: IEEE Internet Computing, vol. 16, no. 1 (2012)
82-86.

[10] Van der Aalst, W.M.P.: “Process Mining: Discovery,
Conformance, and Enhancement of Business Processes”,
Springer-Verlag, 2011, Berlin-Heidelberg, ISBN 978-3-642-
19344-6.

[11] Van Dongen, B.F. and van der Aalst, W.M.P.: “Multi-phase
Process Mining: Building Instance Graphs”. In: Conceptual
Modeling (ER), LNCS, vol. 3288, 2004, pp. 362-376.

[12] Bose, R.P.J.C, Verbeek, E.H.M.W., and van der Aalst,
W.M.P.: “Discovering Hierarchical Process Models Using
ProM”. In: Proceedings of the CAiSE Forum, 2011, London,
UK, CEUR Workshop Proceedings, vol. 734, pp. 33-40.

[13] De Medeiros, A.K.A, Pedrinaci, C, van der Aalst, W.M.P.,
Domingue, J., Song, M., Rozinat, A., Norton, B., and Cabral,
L.: “An Outlook on Semantic Business Process Mining and
Monitoring”.In: On the Move to Meaningful Internet Systems
(OTM Workshops), LNCS, vol. 4806, 2007, pp. 1244-1255.

[14] De Medeiros, A.K.A., van der Aalst, W.M.P., and Pedrinaci,
C.: “Semantic process mining tools: core building blocks”.
16th European Conference on Information Systems, June
2008, Galway, Ireland.

[15] Jablonski, S. and Goetz, M.: “Perspective Oriented Business
Process Visualization”. In: Business Process Management
Workshops, LNCS, vol. 4928, 2008, pp. 144-155.

[16] Volz, B., Zeising, M., and Jablonski, S.: “The Open Meta
Modeling Environment”. In: Workshop on Flexible Modeling
Tools (FlexiTools), May 2011, Waikiki, Honolulu, USA.

[17] Object Management Group (OMG): “Business Process
Modeling Notation Version 2.0 – OMG Standard”, last
access: march 2012.

[18] Weber, B., Sadiq, S., and Reichert, M.: “Beyond rigidity –
dynamic process lifecycle support”. In: Computer Science -
Research and Development, vol. 23, no. 2, 2009, pp. 47-65

[19] Chesani, F., Lamma, E., Mello, P., Montalo, M., Riguzzi, F.,
and Storari, S.: “Exploiting Inductive Logic Programming
Techniques for Declarative Process Mining”. In: Transactions
on Petri Nets and Other Models of Concurrency II, LNCS,
vol. 5460, 2009, pp. 278-295.

[20] Bellodi, E., Riguzzi, F., and Lamma, E.: “Probabilistic
Declarative Process Mining”. In: Knowledge Science,
Engineering and Management, LNCS, vol. 6291, 2010, pp.
292-303.

[21] Horrocks, J., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., and Dean, M.: “SWRL: A Semantic Web Rule
Language Combining OWL and RuleML”. W3C Member
Submission, last access: March 2012.

[22] Van der Aalst, W. M. P., de Beer, H. T., and van Dongen,
B.F.: “Process Mining and Verification of Properties: An
Approach Based on Temporal Logic”. In: On the Move to
Meaningful Internet Systems (OTM Workshops), LNCS, vol.
3760, 2005, pp. 130-147.

[23] Igler, M., Jablonski, S., Günther, C.: “Semantic Process
Modeling and Planning”. In: SEMAPRO 2010, The 4th
International Conference on Advances in Semantic
Processing, pp. 199-204, October 2010, Florence, Italy.

[24] Pinter, S., Golani, M.: “Discovering workflow models from
activities’ lifespans”. In: Computers in Industry, vol. 53 (3),
2004, pp. 283-296

[25] Hwang, S., Yang, W.: “On the discovery of process models
from their instances”. In: Decision Support Systems, vol. 34
(1), 2002, pp. 41-57.

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-223-3

BUSTECH 2012 : The Second International Conference on Business Intelligence and Technology

