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Abstract—This study delves into a comparative analysis of
episodic memory, examining both human cognition and Artificial
Intelligence (AI) agents. Through an in-depth exploration, the
research focuses on the nuanced aspects of episodic memory
encoding, retrieval, and associative capabilities in humans and AI
systems. The investigation incorporates Electroencephalography
(EEG) as a fundamental tool to comprehend and compare the
underlying neural mechanisms associated with episodic memory
in humans while drawing parallels to memory processes in
AI agents. The findings illuminate similarities and disparities,
shedding light on the cognitive frameworks and technological
advancements shaping episodic memory across biological and
artificial entities. This exploration provides valuable insights into
the convergence and divergence of memory mechanisms, po-
tentially influencing future AI developments and understanding
human cognition.

Index Terms—EEG-Electroencephalography, Episodic Mem-
ory, Human Cognition, Artificial Intelligence (AI) Agents, Com-
parative Analysis, Memory Retrieval, Context.

I. INTRODUCTION

Episodic memory stands as a pivotal facet of human cog-
nition, representing the ability to recall specific past events,
experiences, and their contextual details within a personal
timeline. It encompasses the richness of autobiographical
memory, allowing individuals to mentally travel back in time
and relive moments while integrating sensory perceptions,
emotions, and spatial-temporal context. This unique cognitive
ability enables humans to navigate daily life, learn from past
experiences, and project themselves into the future, forming
the cornerstone of our identity and decision-making processes.

Concomitant with advancements in AI, the emergence of
AI agents equipped with memory systems presents a paradigm
shift in technological capabilities. These agents, ranging from
sophisticated chatbots to complex neural networks, are de-
signed to mimic cognitive processes, including memory encod-
ing, retrieval, and learning. AI memory frameworks, though
algorithmically driven and fundamentally distinct from human
cognition, are pivotal in enabling these agents to retain and
utilize information, make decisions, and perform tasks across
various domains.

This paper aims to undertake a comparative analysis of
episodic memory, focusing on the influence of contextual fac-

tors on memory encoding, retrieval, and associative processes
in both humans and AI agents. It delineates the impact of
context on memory mechanisms, leveraging EEG as a tool to
probe neural correlates associated with episodic memory in
humans and explore parallels or distinctions in AI memory
frameworks. The paper is structured to first delve into the
nuances of episodic memory in humans, subsequently tran-
sitioning to the emerging landscape of AI memory systems.
Through a comparative lens, it examines context-mediated
memory effects and EEG correlations, ultimately aiming to
elucidate the convergence and divergence between human
cognition and AI memory mechanisms.

II. EPISODIC MEMORY IN HUMANS

A. Memory Encoding and Context Effects

Memory encoding in humans involves the initial processing
of sensory information into a form that can be stored and later
retrieved. This process occurs through various stages, includ-
ing attention, perception, and consolidation, where information
is integrated into existing memory networks.

Contextual cues, encompassing environmental, emotional,
and situational factors, play a pivotal role in memory forma-
tion. The encoding specificity principle posits that retrieval
of information is most effective when the context at encoding
matches the context at retrieval. This principle underscores the
significance of contextual congruence in memory formation
and recall.

Several studies employing EEG have revealed insights into
context effects on human episodic memory. For instance,
research [3], showcased increased neural synchrony in specific
brain regions during memory encoding when contextual cues
were present, emphasizing the influence of context on neural
patterns associated with memory formation.

B. Memory Retrieval and Contextual Influences

Memory retrieval involves accessing stored information
from memory networks. Context plays a pivotal role in trigger-
ing recall by acting as retrieval cues [1], [2], facilitating the
retrieval of associated memories when the context at recall
aligns with the context at encoding.
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Studies investigating context-dependent memory retrieval in
humans have consistently demonstrated the impact of context
on recall. EEG studies revealed distinct neural signatures dur-
ing context-induced memory retrieval, highlighting the role of
neural oscillations and synchronization in retrieving context-
linked memories.

C. Associative Memory and Contextual Linkages

Associative memory involves forming connections between
different pieces of information. Contextual information acts
as a binding factor, strengthening associations between items
encoded within a similar context.

EEG studies exploring neural correlates of associative mem-
ory in context-rich environments have unveiled patterns of
neural activation in specific brain regions, elucidating the
neural mechanisms underlying the influence of context on
associative memory processes. For instance, research has re-
vealed increased coherence between brain regions associated
with contextual processing and memory association tasks.

III. EPISODIC MEMORY IN AI AGENTS

A. Memory Encoding Mechanisms

Memory Encoding mechanisms in AI agents primarily rely
on structured databases and algorithms. Databases store infor-
mation in a structured format, enabling efficient retrieval and
manipulation. Algorithms manage the Encoding, organization,
and retrieval of data, utilizing various techniques such as in-
dexing, hashing, and neural network architectures for memory
representation.

Integrating contextual information into AI memory frame-
works poses significant challenges. AI agents traditionally
process information based on predefined patterns and lack
the inherent contextual understanding characteristic of human
cognition. Challenges include contextual ambiguity, dynamic
context changes, and the computational complexity of incor-
porating multifaceted contextual cues. However, integrating
contextual information offers potential benefits, enhancing the
adaptability, relevance, and decision-making capabilities of AI
systems.

B. Memory Retrieval and Contextual Integration

The AI agents retrieve information from stored data using
algorithms tailored for efficient search and retrieval. Context
plays a crucial role in retrieval algorithms, aiding in narrowing
down search results or providing relevant cues for retrieving
associated information. Contextual integration involves algo-
rithms that utilize contextual cues to refine retrieval processes,
akin to humans using context as retrieval cues.

Ongoing research and developments aim to imbue AI mem-
ory systems with contextual awareness. For instance, advance-
ments in Natural Language Processing (NLP) incorporate
contextual embeddings or attention mechanisms, allowing AI
models to consider contextual information in text-based tasks.
Additionally, research in machine vision explores contextual
understanding in image recognition tasks by leveraging spatial

and semantic context to improve object recognition and scene
understanding in AI systems.

For our experimentation, we use a TransformerXL back-
bone by [6] and modify its sequential memory buffer with
Automatic Chunking [7] to enable the transformer to apply
attention to only relevant parts of memory depending on the
current context that might not always be sequential. The model
architecture is described in Section VI.

IV. EEG DATA COLLECTION AND ANALYSIS

EEG data was collected using an Emotiv FLEX EEG cap,
which features 32 channels for recording neural activity during
encoding and retrieval phases in human participants. This cap
was equipped with monopolar gel-based electrodes strategi-
cally positioned across the scalp to capture electrical signals
emanating from various regions of the brain. The electrode
positions were determined according to the 10-20 international
system for EEG electrode placement (Figure 1), ensuring
standardized and precise positioning for data acquisition.

Fig. 1: EEG Electrode Placement.

A. Captured EEG Data

The EEG data was captured using the CyKit software [11]
during the encoding and retrieval phases of the experiment. To
provide a comprehensive understanding of the analyzed brain
activity, this section details crucial information regarding the
data acquisition process. The recording duration for encoding
phase was 60-70 seconds while for decoding phase the subjects
were not bound for time intervals, allowing for analysis of
the temporal dynamics of brain activity. Additionally, a high-
pass filter with a cutoff frequency of around 0.16 Hz and
notch filters at 50 Hz and 60 Hz to remove power line noise
interference was applied to the data using CyKIT, focusing
on the specific frequency band of interest. Moreover, the data
is downsampled to 128 Hz before transmission. Finally, the
analysis incorporates data from a single trial from the encoding
and retrieval phases, enhancing the generalizability of the
findings.
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B. Topographical Brain Mapping

The topographical brain activity maps were generated for
EEG data obtained from the participants using resources from
[10] as a baseline. This code repository offered tools and util-
ities specifically designed for EEG data processing in Python,
facilitating the creation of detailed and informative brain
activity maps. The generated maps serve as valuable tools
for analyzing and interpreting the complex patterns of brain
activity observed during the experiment, enabling us to gain
deeper insights into memory-related cognitive processes. The
graphs were generated such that the top data points correspond
with the front of the scalp. Please refer to Appendix A and
B for the EEG maps plotted during all our experimentation.
The graph was rendered to provide a top-down perspective
of the head, where the upper regions of the graph represent
the front of the head, the left sections correspond to the
left-hand side, and the right sections depict the right-hand
side. This approach ensured that the spatial orientation of the
depicted neural activity aligned appropriately with anatomical
references, facilitating a clear and intuitive interpretation of
the topographical brain mapping results.

C. Encoding Phase Analysis

During the encoding phase, EEG data analysis involved
assessing neural correlates linked to the processing of contex-
tual cues (such as wall colours) and memory encoding. The
topographical brain maps derived from this phase showcased
neural activation patterns specific to encoding information
within distinct contextual contexts.

D. Retrieval Phase Analysis

Similarly, during the retrieval phase, EEG data analysis fo-
cused on discerning neural signatures associated with memory
retrieval and decision-making while navigating the game. The
topographical brain maps generated during retrieval indicated
neural activity patterns corresponding to successful memory
recall and decision-making processes influenced by contextual
cues.

E. Integration of Topographical Maps

The topographical brain maps were generated using the
Akima interpolation method, which was chosen due to its
effectiveness in facilitating a smoother visualization of spatial
distribution. No parameter tuning was performed as default
settings were deemed sufficient for the analysis. The time
window used for calculating brain activity represented in
each topographical map corresponds to the encoding or re-
trieval phase of the memory task. Specifically, the observation
interval spans from the onset of the memory task to the
offset of the task period. The topographical brain maps pro-
vided visual representations of the neural activation patterns
across different scalp regions. Areas exhibiting heightened
or suppressed electrical activity were depicted, aiding in the
identification of brain regions implicated in context-mediated
memory encoding and retrieval [4] [5]. Variations in neural
activity across scalp regions were indicative of the brain’s

response to contextual cues during memory-related tasks. The
transformation from 2D matrices of channels by samples to
2D spatial maps involved several key steps in topographical
brain mapping. Initially, each channel within the EEG data
corresponded to a specific electrode position on the scalp,
known from a standardized electrode montage such as the
10-20 system. Subsequently, contour plotting techniques were
applied to visualize the spatial distribution of this interpolated
activity, creating a 2D map where different colors or shading
indicated varying levels of neural activity across scalp regions.
This process enabled us to gain insights into the spatial dynam-
ics of brain function during cognitive tasks or experimental
conditions.

F. Integration with Behavioral Performance

These EEG-derived topographical brain maps were corre-
lated with participants’ behavioral performance during the
game-based task. The association between neural activation
patterns depicted in the maps and the accuracy/speed of
memory-related decisions offered insights into the neural
mechanisms underlying context-induced effects on episodic
memory.

V. EXPERIMENTS: CONTEXT EFFECTS ON EPISODIC
MEMORY IN HUMANS AND AI AGENTS

A. Experimental Design 1

a) Objective: The objective of this experiment was to
investigate and compare the impact of contextual cues on
episodic memory encoding and retrieval in both human par-
ticipants and an AI agent model. The study aimed to explore
EEG correlations to identify neural signatures associated with
context-mediated memory processes in humans and simulate
analogous processes within an AI system.

Fig. 2: Experiment 1 Game environment.
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b) Methodology: Four individuals (aged 20-30) without
any neurological disorders participated in this experiment.
We utilized a neural network-based AI model that simulates
memory processes akin to episodic memory for comparison
with human subjects.

c) Task design: Participants engaged in a game involving
20 rooms, each containing numbers (1-20) and distinct wall
colours (see Figure 2). In each room, there was a red and
a green door. Participants had to select one door, aiming to
choose the correct door to progress to the next room. Correct
door selection allowed advancement to the next room, while
an incorrect choice led to a shift back to the previous room.

d) Encoding Phase: Participants were explicitly in-
structed to remember the correct door in each room during
the game as part of the encoding phase. They were told the
correct door and played through the environment a few times
till they felt they had memorized all the doors. The EEG plots
of participant A and B were collected to see which regions of
the brain would should high activation during encoding (see
Figure 9).

e) Retrieval Phase: During the retrieval phase, partici-
pants replayed the game without explicit instructions, relying
on their memory for choosing the correct door in each room.
The EEG plots of participant A and B were also collected to
see which regions of the brain would should high activation
during decoding (see Figure 10).

f) Contextual Manipulation: The distinct wall colours in
each room served as contextual cues.

B. Experimental Design 2
a) Objective: The objective of the second experiment

was to explore the influence of diverse contextual cues on
context-dependent memory retrieval and episodic memory as-
sociation. Participants engaged in a game-based task involving
various contextual environments to examine the influence of
these contexts on memory recall and associative processes.

Fig. 3: Game Environment for Experiment 1 containing objects.

b) Methodology: The experiment involved two individu-
als familiar with the game environment from a prior session.

c) Task Design with Diverse Contextual cues: Partici-
pants navigated through 30 rooms similar to Experiment 1,
each designed with specific contextual cues:

• 10 rooms with numbers (1-10).
• 10 rooms with distinct wall colours.
• 10 rooms with attached scenery (no wall colours).

Each room contained 20 random objects and two doors (red
and green), requiring participants to choose one to progress
(see Figure 3).

d) Encoding Phase: During the encoding phase, partic-
ipants played the game twice while being exposed to varied
contextual environments, once with rooms in normal series and
once with all rooms shuffled. The objective was to encourage
the association of contextual cues with the correct door choice
in each room. The EEG plots of both subjects were plotted
during encoding (see Figure 11).

e) Retrieval Phase: In the retrieval phase, participants
were presented with rooms lacking contextual cues (no wall
colours, numbers, or scenery). Participants were tasked with
recalling the context associated with each room and selecting
the correct door choice based solely on their episodic memory.
Recall was tested and EEG data measured right after encoding
(see Figure 12), 6 hours after encoding (see Figure 13) and
24 hours after encoding (see Figure 14).

VI. MODEL ARCHITECTURE

A. TransformerXL

Fig. 4: TransformerXL Architecture [6].

We use a modified decoder-only TransformerXL architec-
ture for testing the performance of AI agents with episodic
memory. Ego-centric visual observations are used which are
encoded into an embedded representation using a 3-layer
Convolutional encoder. The encoded observation is saved in
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the memory buffer and used as the query in the Transformer
decoder where attention is performed inside the encoder be-
tween the memory buffer and the query. A categorical action
probability is calculated for each action by applying a linear
layer to the output of the decoder. The model weights are
trained using Proximal Policy Optimization 2 (PPO2) based
on [12] and mini-batch training and the model learns to
predict a suitable action given the current observation and the
past context. Adam optimizer from [12] is used to decay the
learning rate and other PPO2 parameters. Multiple instances
of the environments are used to create larger batched data for
training.

The memory buffer used in TransformerXL is a simple
sequential buffer that stores the encoded observations every
timestep. Using all the memories in the buffer during attention
in the layer is computationally intensive and scales with
the buffer length. All past observations might also not be
appropriate in the current context. To combat this, we use
Automatic Chunking before the memory buffer is passed to
the decoder. This is similar to how human episodic memory
is chunked based on certain groups of events that are correlated
as discussed previously.

B. Automatic Chunking Mechanism

Automatic Chunking works on the memory buffer and di-
vides the buffer into chunks of constant size. A summary value
is calculated for each chunk using mean pooling. Top-level
attention is performed between the summary values and the
current observation, and the Top-k chunks are chosen with the
highest correlation values. These chunks are then concatenated
and used as the summarised memory buffer which is used
by the decoder. The summarised memory buffer includes
memories that are most relevant in the current context thus
leading to better action calculation by the transformer decoder.
With Automatic chunking, the TransformerXL memory buffer
is modified to act like an Episodic memory buffer due to the
fact that it includes egocentric sequences of past events and
can recall the most appropriate sequences from it. We can thus
compare the TransformerXL model with Automatic chunking
with the episodic memory of human subjects.

C. Tasks

Fig. 5: Game Environment for Experiment 1.

The game environments used in our experimentation are
created using Unity MLAgents [10]. Our reinforcement learn-
ing models are trained using the Gym API [11] for MLAgents

while the games can be directly played by the human subjects.
The AI models were trained until they achieved the maximum
reward in the task.

We created two variations of the Experiment 1 game envi-
ronment used for human testing and AI testing as described
later. The observation space of the agent includes the agent’s
visual observations of size 40x40x3, the agent’s position and
the current room number of the agent. The rewards were set
such that the agent got a positive reward proportional to the
room number in each room. If it made a mistake in a room,
a negative reward proportional to the room number was given
and the agent was teleported back two rooms.

The two variations of the task were:

• The Unshuffled variant: Here, the rooms were in numeri-
cal order from 1 to 20 and the correct door colours were
fixed (see Figure 5). This variant tested the agent’s and
player’s ability to remember long sequences of informa-
tion.

• The Shuffled variant: Here, the order of rooms was
shuffled during training and testing for every episode. The
correct doors for each individual room were fixed. Thus,
here, the agent and player needed to learn the correlation
between the context i.e., the number of the room and wall
colour and the correct door and recall this information
during testing non-sequentially.

We trained TransformerXL with and without Automatic
Chunking using the same parameters on both variants of the
task. The memory length was set to the length of each episode
at 500 while the Automatic Chunking parameters used were
10 chunks of size 30. We used default PPO2 parameters
except for a changed initial learning rate of 5 e-5. The
parameters for Automatic Chunking were decided based on
the experimentation by [7] where it was found that chunking
the memory and only using around 60% of the memory in
the transformer gave the best results in most tasks. Keeping
a small chunk size helps in this task as well as the model
can access smaller sequences in further apart sections of the
memory which is required in this task due to the amount of
time spent in a single room is short compared to the total
episode length.

The trained models were tested on the same environments
for 50 episodes to test whether the model had learnt the proper
sequences or mapping in the tasks.

D. Training Results

a) Unshuffled Variant: In Figure 6, we plot the average
rewards over the multiple instances of the environments versus
the episode number for both models. Both models achieve the
maximum reward of 100 in the environment in 400 episodes.

b) Shuffled Variant: In Figure 7, we plot the average
rewards over the multiple instances of the environments versus
the episode number for both models. Both models achieve the
maximum reward of 100 in the environment in around 800
episodes.
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Fig. 6: Average Training Rewards v/s Episode Number for Unshuffled
Task.

Fig. 7: Average Training Rewards v/s Episode Number for Shuffled
Task.

E. Testing Results

Both models successfully reached the final room and com-
pleted the task in the Unshuffled variant with a success rate of
98%Ṫhis proved that the model had learnt the long sequence
well and achieved a higher success rate than the human
subjects. Both models successfully completed the shuffled
variant as well with a success rate of 100%Ṫhis proved that
the models learned the correlation between the context and the

TABLE I: TESTING RESULTS OF MODEL.

Task Model Success
rate

Failure
rate

Unshuffled
Portal Task

TransformerXL 49/50
(98%)

1/50
(2%)

TransformerXL
with Automatic
Chunking

49/50
(98%)

1/50
(2%)

Shuffled
Portal Task

TransformerXL 50/50
(100%)

0/50
(0%)

TransformerXL
with Automatic
Chunking

50/50
(100%)

0/50
(0%)

goal correctly. The models also proved their generalizability by
learning the random environment with shuffling which proved
difficult for the human subjects.

VII. RESULTS

A. Experiment 1: Context Effects on Game Performance

The findings from the first experiment revealed variations
in in-game performance and completion among participants:

a) Subject A Performance: They successfully completed
the game with 8 mistakes. They demonstrated efficient mem-
ory recall and decision-making, navigating through the rooms
and completing the task.

b) Subject B Performance: They experienced
difficulty progressing through the game, halting at the
17th room.They made 12 mistakes, indicating challenges
in memory recall or decision-making during the task.

These outcomes suggest individual differences in memory
retrieval and game performance, highlighting varying abilities
to recall contextual cues and make accurate decisions during
the game.

B. Experiment 2: Contextual Recall and Episodic Memory
Association

In the second experiment, participants’ performance in
recalling context and associating it with the correct door choice
was analyzed:

a) Subject C Contextual Recall: They recalled only
6 correct contexts associated with the rooms.They made 3
mistakes, indicating limitations in episodic memory recall and
association with contextual cues.

b) Subject D Contextual Recall: They successfully
recalled 15 correct contexts associated with the rooms.
They made 3 mistakes during the recall phase, showcasing
robust episodic memory association with contextual cues.

These results indicate significant differences in participants’
abilities to recall and associate contextual cues with correct
door choices, highlighting varying levels of episodic memory
recall between individuals.

C. Overall Insights

The results from both experiments underscore the impact
of contextual cues on memory recall and decision-making
during the game-based tasks. Individual variations in memory
retrieval abilities and the influence of contextual cues on
episodic memory association were evident, showcasing the
significance of vivid contextual cues in enhancing memory
recall and performance.

VIII. CONCLUSION

A. Human Memory Limitations and AI Advantages

The limitations of human memory capacity, as observed
in the experiments, underscore the potential advantages of
AI systems in memory-related tasks. While humans exhibited
varying degrees of memory recall and performance limitations,
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Fig. 8: Subject performance in Experiment 2.

AI models showcased consistent memory retrieval capabilities.
This suggests that AI systems, being devoid of cognitive con-
straints, possess the ability to store and retrieve vast amounts
of information more reliably than human memory.

B. Neural Activation Patterns During Encoding and Retrieval

The observed neural activation patterns during the encoding
and retrieval phases provide insights into the underlying neu-
ral mechanisms associated with episodic memory processes.
Activation in the prefrontal lobe during encoding aligns with
previous research highlighting its role in memory encoding
and organization of information. Contrastingly, the predom-
inant activation in the right hemisphere, particularly in the
temporal and prefrontal lobes, during retrieval resonates with
studies emphasizing the involvement of these brain regions in
memory retrieval and associative processes.

C. Time-Dependent Memory Fading and Contextual Complex-
ity

The experiments revealed nuances regarding the influence of
time and contextual complexity on memory retention. Human
memory demonstrated susceptibility to memory fading over
time, impacting the accuracy and completeness of memory
recall. Moreover, the complexity of contextual cues played a
pivotal role in memory association and retrieval. Clear and
distinct contextual cues facilitated better memory recall and
association, while vague or complex contexts led to limitations
in memory retrieval and decision-making, underscoring the im-
portance of context clarity in enhancing memory performance.

D. Implications and Future Directions

Understanding the interplay between human memory limi-
tations, neural activation patterns, temporal effects on memory,
and contextual complexity holds implications for both cogni-
tive research and AI development. Further investigations could

delve into strategies to optimize human memory recall, lever-
aging insights from AI memory frameworks to enhance human
cognitive processes. Additionally, refining AI memory systems
to mimic or adapt to human-like memory constraints in
varied contexts could revolutionize AI applications in memory-
intensive tasks. Adding abilities such as Future imagination
and forgetting could are a step towards emulating human-like
cognition in robots and we are exploring these in our future
work.

AI surpasses human memory in several aspects, primarily
in Encoding capacity, retrieval speed, and consistency. Un-
like human memory prone to forgetting and capacity limita-
tions, AI systems retain vast amounts of information without
degradation or inaccuracies. They retrieve data rapidly and
consistently, handling multiple tasks simultaneously, a feat
challenging for human memory. AI’s adaptability, immunity to
cognitive biases, and continual learning surpass human mem-
ory’s limitations, making it resilient, precise, and constantly
improving. Its applications across diverse domains further
underscore its potential to revolutionize memory-intensive
tasks, offering unparalleled advantages over human memory
capabilities.

Since our current experimentation was a preliminary study,
we plan to increase the number of subjects in future trials.
By expanding our sample size, we aim to enhance the robust-
ness and generalizability of our findings by sampling larger
variations in brain activity patterns and responses.
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APPENDIX

A. Experiment 1 EEG Plots

(a) Subject A.

(b) Subject B.

Fig. 9: Experiment 1: Topographical Map During Encoding for
Subjects A and B.

(a) Subject A.

(b) Subject B.

Fig. 10: Experiment 1: Topographical Map During Retrieval for
Subjects A and B.
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B. Experiment 2 EEG Plots

(a) Subject C.

(b) Subject D.

Fig. 11: Experiment 2: Topographical Map During Encoding for
Subjects C and D.

(a) Subject C.

(b) Subject D.

Fig. 12: Experiment 2: Topographical Map During Retrieval for
Subjects C and D (after encoding).
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(a) Subject C.

(b) Subject D.

Fig. 13: Experiment 2: Topographical Map During Retrieval for
Subjects C and D (after 6 hours).

(a) Subject C.

(b) Subject D.

Fig. 14: Experiment 2: Topographical Map During Retrieval for
Subjects C and D (after 24 hours).
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