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Abstract—We postulate that the consensus architecture inher-
ent in the Common Model of Cognition (CMC) not only captures
decades of progress in cognitive science and modeling human
and human-like intelligence, but that the CMC also connects
and strengthens the idea that brain growth is directly correlated
to connectome development. In this paper, we show how these
relationships are driven by the development of the communica-
tion links, the synapses, between the axon and the dendrite, hence
providing interneuronal communication, in essence, we show how
these are driven by the connectome development. We provide a
mathematical means for defining brain growth of the grey matter
layers, lobes and the white matter pathways.

Keywords—connectomes; fetal brain development; artificial
intelligence.

I. INTRODUCTION

We postulate that, because it is commonly accepted that
common sense in humans and animals requires priori and pos-
terior knowledge [1], if one were to synthesize a mechanism
to store priori and posterior knowledge, one would need to
mathematically emulate steps in neuroscience that map the
development of the fetal brain from conception to two years
of age. This mapping will include, but is not limited to i)
emulating how the directionality of brain signals in the white
matter of the brain form a plurality of synaptic pathways [2],
that enable a flow of information between distant gray matter
regions [3], ii) presenting a modular network topology in the
brain from the first days of life [4] [5], and iii) adhering to
the recent mapping of the human connectome [6] [7].

Herein, we postulate the ability of tracking infantile brain
development over time. Using data collected from the baby
connectome project [8], we will derive the growth rates and
accelerations of the brain regions of grey matter and the
pathways of the white matter. The resulting growth rates and
accelerations along with their time of occurrence provide us
with a sequence of events in the infantile brain development.
The resulting sequences are then utilized as a script for the
brain model development, defining which Regions of Interest
(ROI), layers and pathways are deployed, when and where.
Accordingly, we present the first step towards building a
developing model reflecting the infant human brain develop-
ment. This model provides the physical structure of the brain’s
development, laying out which structures are available to learn
functionality over time. Thus, the functionality can only be

learned if the physical structure exists and the actual neurons
are trained with posterior experience leading to knowledge.
Because we are limited by the data available, the specific
experiences over time from conception to two years of age are
not available. Hence, our model is limited to physical growth
until experiential data is tracked for subjects.

The rest of this paper is structured as follows. In section II,
we discuss brain development. In section III, we explain our
dynamic modeling of brain growth. In section IV, we discretize
growth into solvable problems. In section V, we present our
conclusion and future work.

II. BRAIN DEVELOPMENT

Recent research in brain development centers on how a first
set of neurons that become grey matter grow radially outward
before a second set of neurons that will form white matter
pathways, grow tangentially underneath the first set of neurons
and consequently pushes it outward [9] [10] [11] [12]. In the
first six months of fetal growth the brain is driven by genetic
influences [11] including developments in the womb that are
more priori than posteriori. Zollei et al. [13] found myelin
accumulation was critical in the development in the fetus brain,
that included 14 white matter pathways, increased fractional
anisotropy (FA), and decreased mean diffusivity (MD). After
the first six months, the brain continues to develop its white
matter pathways up the 42 known bundles [14] in the adult.

A. Recent Brain Atlas Research

In order to appreciate our contribution to optimizing brain
atlas research we review the state-of-the-art in this field. In
building a more efficient and accurate pediatric brain atlas we
model the lobe and pathway development from instantiation
through 2 years of age by leveraging 4D surfaces introduced by
Li et al. [15] where separate surfaces were created for various
intervals of time from birth to 24 months of age. Our model
is unique from Li et al.’s 4D surfaces because we include
pathways and their connections in our model. We note that
Maffei et al. [14] developed a pathway atlas they integrated
it into their TRACULA; however, our model is unique from
Maffei et al.’s work as we are particularly interested in the
neurological growth from conception to two years of age.
Our age range inherent in the mapping of our model also
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differentiates us from work performed by Maier et al. [16]
who refined pathway definitions from several researchers to
produce ground truth for the fiber bundles. To effectively
model the brain’s growth, as alluded to above, we have
differentiated space and time in order to observe the rate and
acceleration of growth. Here, our model focused on keeping
track of how the fetal brain grows. Fetal neuronal growth is
complex and in order to effectively track said growth, the
resulting system needs to track how the fetal brain produces
250,000 nerve cells every minute from conception to birth [11]
that form pathways and six distinct compartments that become
lobes. Our system tracks the brain lobes as they move through
the brain. More so it will also track the new lobes appearance
and their subsequent motion to their destination and track the
pathways appearance and growth as they connect the lobes.

B. Recent Common Model of Cognition Research

The Common Model of Cognition (CMC) not only captures
decades of progress in cognitive science and modeling human
and human-like intelligence as proposed by Stocco et al. , [17],
but, as described in their paper, the CMC also connects and
strengthens the idea that brain growth is directly correlated
to connectome development. This view that the fetal brain’s
network develops in conjunction with the connectomes is well-
supported by large-scale analysis of the human functional
connectome. This paper adds to this concept because we
show that it is commonly accepted that common sense in
humans and animals requires priori and posterior knowledge
which means that if one were to synthesize a mechanism
to store priori and posterior knowledge, one would need to
mathematically emulate steps in neuroscience that map the
development of the fetal brain from conception to two years
of age.

The CMC proposed by Laird et al., [18] is comprised of
a set of principles that summarize the similarities of multiple
cognitive architectures that were developed over the course of
five decades in the fields of cognitive psychology, artificial
intelligence, and robotics [17]. The CMC has been used to
design cognitive agents because agents exhibiting human-
like intelligence share five functional components: a feature-
based declarative long-term memory, a buffer-based working
memory, a system for the pattern-directed invocation of actions
represented in procedural memory, and dedicated perception
and action systems. Importantly, the CMC has been used as a
basis in computational neuroscience in robotics’ AI system
and artificial neural networks including but not limited to
DeepMind’s AlphaGo [17], look-ahead search, working mem-
ory and procedural memory, in addition to dedicated systems
for perception and action [19] and the Differentiable Neural
Computer [20]. Therefore, the cross-correlation between the
CMC connecting robotics and the fetal brain deems it as a
critical resource in validating connectomic perturbations and
fetal brain growth,

III. DYNAMIC MODELING OF BRAIN GROWTH

As mentioned above, we model the brain’s growth by dif-
ferentiating by space and time. Here, the space differentiation
shall consider three differing structures, called ’spaces’ of the
brain, i) the grey matter, ii) the white matter and the iii)
intersecting matter. In each space separate entities will be
called out. For the grey matter space the entity distinction shall
be the name of the brain lobe or layer. For the white matter
space the entity distinction shall be the white matter pathway.
For the intersecting matter the entity distinction shall be the
combined pathway-lobe pair. Additionally, the intersecting
matter represents the neuronal pathways terminating into grey
matter lobes, a definite intermingling of volumes that shall
be better defined by future research. We provide a location
and volume description for each lobe in the grey space, each
pathway in the white space, and each pathway-lobe pair in
the intersecting matter, for each time instance, if the entity
exist at that time. Additionally the pathway entities include
the set of streamline definitions that comprise that particular
pathway. The streamline definition includes the coordinates
of each axonal segment found by MRI. With the longitudinal
data of position and volume over time, Curve fittings shall
provide the functions for individual entity volume growth and
positional movement. These functions shall be integrated into
a differential equation representing the position movement and
a differential equation representing the volume growth for
each of the lobes, pathways, and pathway-lobe pair. Further
refinement of these spaces may be possible in the future.

IV. DISCRETIZING GROWTH INTO SOLVABLE PROBLEMS

Our goal is to mathematically model the growth of the
brain. There are quite a few facets to consider. The brain
starts by building the layers of the grey matter and then builds
the white matter connections underneath them. The layers
of the grey matter development is different from the white
matter development. Separate models will be developed and
then combined. Both developments contribute to the brain
volume growth. The grey matter development might take into
consideration several factors including the neuronal growth,
the movement towards the skull, the changes in density of
the separate layer and the insertion of white matter pathway
connections. The white matter development starts after the
grey matter development. The white matter development is
different from the grey matter development due the oligo-
dendrocytes, glial cells, that excrete the myelin around the
axons, producing the white. For each layer and for each
pathway, a model will be developed as data becomes available
from the connectome project. Several measures are currently
used to describe the brain such as Fractional Anisotropy
(FA), Mean Diffusivity (MD) [13], Cortical Thickness, surface
area, gyrification, and position [15]. Therefore, longitudinal
parameter and data values representing brain structure with
collected data over time, are candidates for the same analysis
we propose.

For instance, given the volume measurements collected over
time, we can plot the volume over time and curve fit to
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produce a function for volume over time. The challenge is
locating the method for curve fitting is finding the method
that minimizes error. With the function VolumeOverTime, we
then take the first and second derivatives to give the growth
rate and acceleration. This same approach can be applied to
any brain measurements that have been collected. Myelination
over time should be included for the white matter model. The
sum of these functions provide the brain development model.
There will be intersecting variables in these functions that will
need to be resolved. Volume is dependent on density, which
is dependent on the growth rate of the skull and its volume.
First we have the total brain volume over time as the sum of
the volumes of the grey matter layers volume and the sum of
the white matter pathway volumes.

TV (t) =
∑

(GLVt,i, i = 1..14 +
∑

(WPVt,j , j1.. = 42)
(1)

where GLV is the grey matter layer volume for each of the
fourteen grey matter layers and WPV is the white matter
volume for each of the 42 white matter pathways. We take
the derivative of both sides.

TV ′(t) =
∑

(GLV ′
t,i, i = 1..14 +

∑
(WPV ′

t,j , j = 1..42)
(2)

where we now have GLV’ as the growth rate of grey matter
layers over time and WPV’ as growth rate of the white matter
pathways over time. These growth rates give the rates at which
these distinguishable brain regions shall grow in our synthesis
of the infantile brain development. We now take the second
derivative.

TV ′′(t) =
∑

(GLV ′′
t,i, i = 1..14 +

∑
(WPV ′′

t,j , j = 1..42)
(3)

where we now have GLV” as the acceleration of grey matter
layer growth over time and WPV” as acceleration of the white
matter pathway growth over time. These accelerations give
the time at which these distinguishable brain regions grow in
our synthesis of the infantile brain development. From [10]
[11] we know that these individual regions of interest develop
in an almost prescribed order with certain functions taking
precedence, such as vision and auditory. What we have defined
here is a means to quantify the mathematical order of growth
by using the accelerations and growth rates.

A region of interest or pathway starts growth with an
acceleration of growth, from no existence to growth. When the
growth is completed the acceleration and the growth rate falls
back to zero. Therefore, we can determine the ordering over
time of the infantile brain development. We show an example
of the difference in growth between two regions of interest in
Figure 1. In order to test our hypothesis, we generated random
sample data to reflect differing rates of growth; the red region
shows the volume difference of the two regions over time. If
the curve fitting provides a mathematically twice differentiable
function then a differential equation can be developed for the
growth of a specific region over time. This will lead to the
investigation of any patterns of development.

Fig. 1. The difference between two brain regions volume over time.

We show the growth rate and acceleration in Figure 2.
The growth rate and acceleration must be positive going
from no volume to the identified region. Our example used
spline curve fitting which probably produced a piece-wise
function that would not be friendly to differentiation for pattern
investigation. This process could be expanded from conception
to two years of age to death, possibly identifying the negative
growth in dementia.

Fig. 2. The growth rate and acceleration between two brain regions over time.

V. CONCLUSION AND FUTURE WORK

We have described how the brain growth model is inherently
linked to connectome growth. It is generally accepted that
Rapid cortical Gyrification Index (GI) and Local Gyrification
Index (LGI) growth in the early postnatal period is related to
1) an increase of dendritic arborization [21] [10] and 2) growth
of the terminal axon arborization, synaptogenesis [21]. We
can logically determine that because all of the aforementioned
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occurs inside of the fetal brain’s connectome development, that
these connectomes are therefore a major factor in determining
fetal brain development per se. We therefore deduce that it will
be interesting to investigate how the cortical LGI relates to the
underlying WM connectivity. Lastly, while relationships have
been established between several factors, it is our hypothesis
that neuronal proliferation, and the glial proliferation providing
the myelination for the axons, to protect their signals, are a
contributing force in brain growth. The connectome model
will contribute a means to efficiently define and predict brain
growth not seen before. Furthermore, a second subset of our
hypothesis is the aforementioned moves existing structures
away from their origin to their predestined position in the
brain.

REFERENCES

[1] I. Kant, “The possibility of experience,” Journey into Philosophy: An
Introduction with Classic and Contemporary Readings, p. 42, 2016.

[2] F. Babiloni et al., “Estimation of the cortical functional connectivity
with the multimodal integration of high-resolution eeg and fmri data by
directed transfer function,” Neuroimage, vol. 24, no. 1, pp. 118–131,
2005.

[3] P. Bartolomeo, “The quest for the critical lesion site in cognitive deficits:
problems and perspectives,” Cortex, vol. 47, no. 8, pp. 1010–1012, 2011.

[4] P. Hagmann et al., “Mapping human whole-brain structural networks
with diffusion mri,” PloS one, vol. 2, no. 7, p. e597, 2007.

[5] O. Sporns, Networks of the Brain. MIT press, 2010.
[6] Fischi-Gomez et al., “Brain network characterization of high-risk

preterm-born school-age children,” NeuroImage: Clinical, vol. 11,
pp. 195–209, 2016.

[7] A. Sokolov Arseny et al., “Brain network analyses in clinical neuro-
science,” Swiss Archives of Neurology, Psychiatry and Psychotherapy,
vol. 170, no. 6, 2019.

[8] B. R. Howell et al., “The unc/umn baby connectome project (bcp): An
overview of the study design and protocol development,” NeuroImage,
vol. 185, pp. 891–905, 2019.
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