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Abstract—Stimulus decoding of functional Magnetic Reso-
nance Imaging (fMRI) data with machine learning models has
provided new insights about neural representational spaces and
task-related dynamics. However, the scarcity of labelled (task-
related) fMRI data is a persistent obstacle, resulting in model-
underfitting and poor generalization. In this work, we mitigated
data poverty by extending a recent pattern-encoding strategy
from the visual memory domain to our own domain of auditory
pitch tasks, which to our knowledge had not been done. Specif-
ically, extracting preliminary information about participants’
neural activation dynamics from the wunlabelled fMRI data
resulted in improved downstream classifier performance when
decoding heard and imagined pitch. Our results demonstrate the
benefits of leveraging unlabelled fMRI data against data poverty
for decoding pitch based tasks, and yields novel significant
evidence for both separate and overlapping pathways of heard
and imagined pitch processing, deepening our understanding of
auditory cognitive neuroscience.

Keywords—neuroimaging; neuroscience; auditory cognition;
deep learning.

I. INTRODUCTION
A. Motivation

Brain decoding is the problem of classifying the stimulus that
evoked given brain activity. Music’s well-defined structure and
the wealth of previous results about the neural representation
of that structure are thus an appealing foundation upon which
to approach this problem. Our primary goal was to train a
machine learning classification model to predict the pitch-
class of a note (the relative position of the note within the
key) given an input of brain activity evoked by that note. We
hypothesized that such a classifier would achieve significant
results for three tasks: trained and tested on neural activity when
the note is actually heard (hereafter referred to as the “heard
task”™), the same when the note is only imagined (“imagined
task™), and most importantly, trained on neural activity when
the notes are heard but evaluated on data when the notes are
imagined (‘“cross-decoding task™) to test for overlap between
heard and imagined pathways. To our knowledge, the cross-
decoding task had not been done before. Toward these ends,
we obtained functional Magnetic Resonance Imaging (fMRI)
data from musically trained participants while they both heard
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and imagined particular pitches. We further detail our scanning
protocol in the Methods and Materials section.

Training machine learning models on such voxel data is
challenging, though, primarily due to the scarcity of relevant
and labelled data to be used for training, and our experiments
were no exception. However, Firat et al. [5[]’s work on visual
memory brain decoding addressed this challenge of fMRI data
poverty in a novel and effective way. More specifically, Firat et
al. hypothesized that unlabelled fMRI data, which are normally
deemed irrelevant and discarded, contain information about
overall patterns of brain activity and can therefore be exploited
in brain decoding classification tasks. Their architecture began
with a sparse autoencoder [10] to perform unsupervised learning
of neural activation patterns latent in unlabelled fMRI data.
These patterns then served as filters in a temporal Convolutional
Neural Network [[12]] to encode the labelled fMRI data into
a non-linear, more expressive feature space. We refer to the
inputs of this pipeline as “unencoded datasets” and the outputs
as “encoded datasets” throughout this work. Thus, the encoded
dataset is the result of filtering the task-dependent fMRI data
by the patterns latent in task-independent data. Firat et al. then
demonstrated improved performance of Multi-Voxel Pattern
Analysis (MVPA) classifiers trained and tested on encoded
datasets compared to unencoded datasets.

B. Our Approach

In Section 2 of this paper, we expand on the architecture of
Firat et al. by adapting their autoencoder-tCNN pipeline from
the visual domain to our novel auditory domain task of decoding
imagined pitch. Section 3 presents our results, in which our
encoded datasets are essential for successful decoding of the
imagined task, as well as first-of-their-kind significant results
on the cross-decoding task. Section 4 discusses these results in
the greater context of our goals and motivations. In particular,
that this work demonstrates for the first time, to the best of
our knowledge, that temporal filtering of fMRI data for an
auditory task not only improves the performance of MVPA
classifiers, but can also reveal fundamental, learnable attributes
of auditory imagery that would go undetected by machine
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Hemodynamic Response Function (HRF) plotted as a 6-TR timeseries.

learning models trained on unencoded datasets. Section 5 details
our methods and materials: participant selection, fMRI scanning
protocol, hardware for training models, and statistical methods
for evaluating our final classifiers. Section 6 concludes this
paper and explores future work.

II. ARCHITECTURE DESIGN
A. Neural Activation Pattern Training Data

Each fMRI scan yielded a timeseries of 3-dimensional voxel
data, where the value of each voxel represented the intensity
of neural activity at that geographic location in the brain. We
used the Python Multi-Variate Pattern Analysis (PyMVPA)
[8] library to store and transform fMRI data throughout the
experiment. When we imported a participant’s fMRI data,
PyMVPA flattened the 3D voxel data into a single spatial
dimension by concatenating along two axes (during which
all voxels are preserved), restricted to one of twenty selected
Regions Of Interest (ROIs) at a time, and provided a mapping
back to 3D space for that ROI. Thus, we began with a matrix
VT of V-many voxels, which depended on each ROI, by T'
timesteps, which was 1864 for all participants and ROIs.

The Hemodynamic Response Function (HRF) in Figure
depicts the rise and fall of the intensity value of a voxel in
response to a stimulus across 12 seconds. The time between
images in our fMRI scans (TR) was 2 seconds, therefore the
HRF would be observed across 6 timesteps in a given voxel. We
thus expected any other latent activation patterns to occur across
6 timesteps as well. We therefore compiled our training data by
sampling 1x6 windows of data from the matrix V'7T'. Collecting
every possible such window would provide the largest set of
training data, but we believed the extreme overlap in that case
could cause unpredictable bias during training. Spacing the
samples out by exactly 6 timesteps would remove overlap,
but could induce a different bias with every sample beginning
and ending where another sample begins and ends, possibly
limiting the kinds of patterns we expose to the model during
training. Sampling with a stride greater than 6, however, might
unnecessarily reduce the total size of our training set. Therefore
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our method considered each possible 6-TR window, then added
it to the training data with probability 1/6. This allowed us to
sample windows of training data that can begin at any timestep
across the entire scan, while balancing our desire to both reduce
overlap and minimize reduction of the training set. We further
discarded any sample overlapping with labelled timesteps to
avoid any possibility of downstream circularity. In summary,
we collected 6-TR windows of unlabelled fMRI data, for each
participant, for each ROI, to learn neural activation patterns
latent in that participant in that ROL.

B. Learning the Patterns

We implemented a sparse autoencoder model to perform
unsupervised learning of the latent temporal neural activation
patterns among each region’s voxels without the need for hand-
crafted features. The sparse autoencoder was implemented
with the Keras [3|] library in Python. The model input was
encoded by a dense layer with sparsity enforced by an
“activity regularizer” parameter p = .001, hereafter referred
to as the “sparsity constraint,” and then rectified linear unit
(ReLU) activation functions were applied to obtain the encoded
version of the input. We refer to the preceding steps as the
“encoding layer” throughout this paper. Each encoding layer
had fourteen neurons in its dense layer, obtained via grid
search on {8, 10,12, 14,16, 18}. Each neuron’s set of trained
weights would then serve as a filter for obtaining the encoded
dataset. The decoding layer was also dense, with six neurons
(recall that this layer attempts to reproduce the six-dimensional
input) and ReLU activations. The model was optimized via
backpropagation to minimize the mean squared error between
the output of the decoding layer and the input using the
“adamax” optimizer [/11]].

C. Filtering with Temporal Convolution

For each combination of participant and ROI, we extracted
the set of learned neural activation patterns from the correspond-
ing trained encoding layer and used them as filters in a tCNN to
obtain the corresponding encoded dataset. Our tCNN pipeline
is depicted in Figure [2] More specifically, we performed a 1D
full convolution on the VT matrix along its time axis with
each of the fourteen trained neurons as the temporal filter. This
resulted in fourteen response matrices for each combination of
participant and ROI. Note that a full convolution means each
response matrix had the same dimensions as VT

We expected the voxels to exhibit locally correlated acti-
vations [[13]], so we employed max pooling to extract spatial
information from the filtered data in our response matrices.
Recall, though, that VT is the result of flattening the 3D voxel
space to 1D, and therefore voxels next to each other in VT are
not necessarily next to each other geographically in the brain.
Firat et al. 5] did not detail their solution to this problem of
3D max-pooling with 1D data, so we devised our own method.
Recall that PyYMVPA provided a mapping back to the 3D voxel
space of unencoded voxel values for each ROI, so we directly
we backfilled the original 3D space with the values of each
response matrix.
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Fig. 2. Our tCNN pipeline from voxel space to the encoded dataset. The filters are the neurons extracted from each trained autoencoder and represent neural

activation patterns.

For 3-dimensional spatial max-pooling, we proposed a
pooling cube of tunable dimensions [c1,c2,c3] moving exhaus-
tively throughout each 3D space with no overlap, storing the
maximum value within the cube at each step in a list. The
jagged 3D voxel structure of each ROI was padded on all sides
with zeroes due to the way PyMVPA maps back from 1D to
3D, so these zeroes needed to be accounted for. We certainly
did not want to record a zero as a max-pooled value when
the pooling cube is full of these padding zeroes, and more
subtly we did not want to record voxel values on the jagged
fringes as max-pooled values when they were being compared
almost entirely to padding zeroes. Our solution was a tunable
parameter 2o which we called “zero threshold”. The maximum
value within the cube was only recorded as a max-pooled value
when the proportion of non-zero values within the pooling cube
exceeded zp. Our [2, 2, 2] pooling cube and zero threshold of
0.6 were obtained via grid search.

We performed our method of 3D max-pooling on each
timestep for each of the response matrices, applied hyper-
bolic tangent to each list of max-pooled values, and finally
concatenated the lists for each timestep. The result of the
concatenation was the encoded dataset for that participant and
ROI. A repository of our code is available upon request.

D. Pitch Decoding Classifiers

For each participant and ROI, we partitioned the labelled
fMRI data by whether the corresponding pitch was heard or
imagined. The heard samples were split further in half, with
each half serving in turn as training data and testing data for an
MVPA classifier. We stored the trained classifiers’ predictions
on the respective test sets with their corresponding pitch-class
labels. Our analysis of classifier performance on the heard
task was performed on the union of the two halves of test set
predictions for each participant and ROI. The imagined task
was evaluated similarly. For the cross-decoding task, we trained
the classifier on all heard data, then predicted the labels of all
imagined data. We calculated group level significance for each
task and ROI using a t-test between per-participant prediction
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mean accuracies and null decoding model mean accuracies,
detailed further in the Methods and Materials section.

ITI. RESULTS
A. Temporal Filter Results

Figure [3] shows twenty learned temporal filters (i.e, trained
neurons) uniformly at random across the encoding layers of all
participants and ROIs. Six weights connect each such neuron
to the input layer, one for each timestep in the input, so we
plotted the raw values of each sampled neuron’s weights as
a timeseries. This allows us to visually evaluate the learned
filters as a pattern of neural activity. Observe that several of
these patterns are good approximations of the HRF, which we
expected most of the autoencoders to learn. Note further that
none of the patterns are dominated by a single weight, which
is to say that the models were not biased toward any particular
timestep in the input data. This was the intent of our careful
creation of each autoencoder’s training data.

B. Brain Decoding Results

Table[l| contains the results of our pitch decoding experiments.
We evaluated the group-level statistical significance of the
multivariate classifiers’ ability to outperform chance in each of
our regions of interest. The region of interest is given in the first
column. The second column indicates the task, as explained
above. The next two columns give the accuracy and False
Discovery Rate (FDR)-corrected p-values when the classifiers
were trained and evaluated with their respective encoded dataset,
and the last two columns give the same information on the
unencoded dataset. Observe one of our critical results, that
thirteen of the fifteen successful regions required the encoded
dataset to obtain statistical significance. Eleven of the fifteen
significant results were for the imagined task, and indeed all
of these regions required the encoded dataset for significance.

IV. DISCUSSION
A. Architecture Discussion

Our first goal was to learn auditory neural activation patterns
latent in 6-TR windows of unlabelled fMRI data with sparse
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Fig. 3. Learned temporal filters, sampled uniformly at random across all sparse autoencoders. Each consists of six weight values, one for each timestep. The

HRF appears to have been learned by several of the selected neurons.

TABLE 1
WITHIN-SUBJECT CLASSIFIER RESULTS. FDR-CORRECTED P-VALUES FOR ALL ROIS WITH SIGNIFICANT RESULTS. THE ENCODED DATASETS ENABLED THE
CLASSIFIERS TO OBTAIN SIGNIFICANT RESULTS IN THIRTEEN OF THE FIFTEEN SIGNIFICANT REGIONS.

Encoded Dataset Unencoded Dataset
WPC Accuracy FDR-corrected pvals WPC Accuracy FDR-corrected pvals
Region of Interest Task Mean (Min, Max) (threshold = 0.05) Mean (Min, Max) (threshold = 0.05)
baseline = 0.1429 (20 ROIs) baseline = 0.1429 (20 ROIs)
Left Heschl’s Gyrus H 0.1642 (0.1250, 0.1964) 0.0039 0.1523 (0.0833, 0.2262) 0.5808
Right Superior Temporal Sulcus H 0.1394 (0.0833, 0.2143) 0.8554 0.1754 (0.1190, 0.2560) 0.0071
Left Inferior Frontal Gyrus (Orbitalis) 1 0.1625 (0.0893, 0.2381) 0.0368 0.1485 (0.0952, 0.2024) 0.6475
Left Precentral Gyrus 1 0.1607 (0.1190, 0.2262) 0.0368 0.1530 (0.0952, 0.2202) 0.5228
Left Superior Temporal Gyrus 1 0.1684 (0.1190, 0.2202) 0.0087 0.1586 (0.1131, 0.2143) 0.2326
Left Supramarginal Gyrus 1 0.1642 (0.0952, 0.2440) 0.0355 0.1502 (0.0893, 0.2083) 0.6291
Left Insula 1 0.1649 (0.1310, 0.2440) 0.0163 0.1478 (0.0833, 0.2024) 0.6475
Right Superior Temporal Sulcus 1 0.1604 (0.1131, 0.2083) 0.0180 0.1499 (0.0893, 0.2083) 0.6291
Right Inferior Frontal Gyrus (Triangularis) 1 0.1688 (0.0952, 0.2500) 0.0368 0.1642 (0.1131, 0.2202) 0.0996
Right Precentral Gyrus 1 0.1719 (0.1071, 0.2321) 0.0103 0.1569 (0.0952, 0.2560) 0.5228
Right Superior Temporal Gyrus 1 0.1726 (0.1190, 0.2560) 0.0124 0.1453 (0.1012, 0.1845) 0.8149
Right Supramarginal Gyrus 1 0.1656 (0.1250, 0.2440) 0.0251 0.1586 (0.0774, 0.2440) 0.5228
Right Insula 1 0.1649 (0.1190, 0.2381) 0.0124 0.1506 (0.0893, 0.2024) 0.6291
Right Superior Temporal Gyrus X 0.1628 (0.1310, 0.1964) 0.0157 0.1492 (0.1071, 0.2083) 0.6445
Right Rostral-Middle Frontal Gyrus X 0.1509 (0.1250, 0.1905) 0.3619 0.1642 (0.1131, 0.2143) 0.0202
autoencoders. We took care to avoid subtle biases when we  first goal.

collected our training data for the autoencoders by minimizing
the overlap of the samples while allowing for the possibility of
a sample to begin at any timestep in the scan. We plotted the
weights of twenty uniformly randomly sampled encoder-layer
neurons as timeseries to visualize the neural activation patterns
that those neurons represented. These visualizations reassured
our efforts in two ways. First, several of them are good
approximations of the HRF, which we expected to be learned
by one of the neurons in most of the autoencoders. Second,
none of the patterns are dominated by a single timestep, and the
peaks of activity are fairly well distributed across the timesteps,
which was the intent of our training data collection method.
These considerations, along with the success of our brain
decoding classifiers, provide evidence that each neuron learned
a latent auditory neural activation pattern, accomplishing our
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Our second goal was to generate a collection of encoded
datasets by transforming the unencoded voxel data V'T" in terms
of the neural activation patterns learned by each autoencoder’s
encoding layer. Thus, the final step of our architecture was a
modified tCNN. We used each of the learned activation patterns
as temporal filters by convolving them with their respective VT’
along the time axis and applying our own method of 3D max
pooling. Concatenating the pooled matrices for each participant
and ROI yielded our encoded datasets, thus achieving our
second goal. Note that the final dimension after concatenating
was dependent on the size of the 3D pooling cube and the
number of filters. In our experiments the encoded datasets’
dimensions ended up being roughly equal to the dimension of
their respective unencoded dataset. However, one could increase
the size of the pooling cube or learn fewer temporal filters if
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the dimensionality were a burden on computing. That would,
of course, be a tradeoff with performance, but it is nevertheless
valuable to have a mechanism for dimension reduction available
in this pipeline.

B. Brain Decoding Discussion

Our third goal was to train a machine learning classifier to
predict the pitch-class labels of heard and imagined pitches,
trained and tested on fMRI data of twenty selected regions of
interest. We hypothesized that such classifiers would outperform
chance with statistical significance, and that the classifiers
would achieve higher accuracy when trained on encoded
datasets versus the unencoded datasets. We used the PyYMVPA
library to train multi-class Support Vector Machines (SVMs)
with linear kernels on each of the encoded datasets and each
of the unencoded datasets. Each classifier’s accuracy was
calculated on a held out test set, and the accuracies were
averaged across participants for each ROI. Finally we calculated
the group-level significance of the accuracies and controlled
the FDR by correcting our p-values for multiple comparisons.
Further details are in the Methods and Materials section.

As shown in Table [Il the statistical significance of outper-
forming chance relied almost entirely on the encoded datasets.
For the imagined task the classifiers did not obtain significant
results in any ROIs using unencoded data. Indeed, training on
the encoded datasets did not merely nudge almost-significant p-
values past the threshold, but quite the opposite. Our encoded
datasets enabled the classifiers to reduce their p-values by
more than an order of magnitude in most regions in Table
and rwo orders in some, indicating that the encoded dataset
reveals fundamental, learnable attributes of auditory imagery
that would otherwise remain undetected by machine learning
models trained on unencoded data. Thus, we achieved our
third goal and obtained statistically significant evidence of our
hypothesis in the case of the imagined task. Moreover, the
significant results on the cross-decoding task provide a critical
novel result- statistically significant evidence of geographical
overlap between heard and imagined sound.

Eleven of the fifteen significant results were achieved on
the imagined pitch decoding task. This is explained by the
greater cognitive involvement in imagining versus hearing
sound. That is, imagining sound is a more involved activity
than listening, evoking stronger, wider signals that are easier
for the autoencoder to detect and learn.

The heard and cross-decoding tasks both achieved two
significant results, one each on the encoded and unencoded
datasets. In both cases of significant unencoded datasets, the p-
value for the respective encoded dataset was at least an order of
magnitude worse. For the heard task, the two regions are near
each other- Heschl’s Gyrus and the Superior Temporal Sulcus
are both auditory cortex areas in the superior temporal lobe.
Therefore, while the inconsistency of the encoded dataset on the
heard task requires further study, the results on the heard task
are geographically consistent. On the other hand, the significant
regions on the cross-decoding task are in separate lobes and non-
adjacent. The Right Rostral-Middle Frontal Gyrus is interesting
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because significant results were achieved on the cross-decoding
task with the unencoded dataset with a p-value at least an
order of magnitude better than any other region for that task
and dataset. Further, for the heard and imagined tasks, the
encoded dataset improved the p-values in this region. Thus, the
significant result in the Right Rostral-Middle Frontal Gyrus is
curious, piquing further study.

V. METHODS AND MATERIALS
A. Farticipant Selection

Participants possessed at least 8 years of formal music
training or professional performance experience in Western
tonal music, and they completed the Bucknell Auditory
Imagery Scale (BAIS) [[7] and the Bregman Musical Ability
Rating Survey [9]. Twenty-three such participants passed
the screening process and provided their written informed
consent in accordance with the Institutional Review Board at
Dartmouth College. Each subject was compensated $20 US
upon completion of the scan.

All scanning used a 3.0 T Siemens MAGNETOM Prisma
MRI scanner with a 32-channel head coil and Lumina button
box with four colored push buttons. Each scan performed a T2*
weighted single shot echoplanar (EPI) scanning sequence with
a repetition time (TR) of 2 sec and 240mm field of view with
3mm voxels, yielding 80 voxel by 80 voxel images with 35 axial
slices for a total of 224,000 voxels per volume. We used the
fMRIPrep software [4] to perform motion correction, field un-
warping, normalization, and bias field correction preprocessing,
as well as brain extraction and ROI parcellation, on the raw
T2* BOLD data.

B. fMRI Protocol

Each participant’s fMRI scan consisted of 8 runs of 21
musical trials. Each scan was randomly assigned either the
key of E Major or F Major, which was not known by the
participant. We designed each run to collect data for either
the heard task or the imagined task, alternating from run to
run. Each trial began with an arpeggio in the assigned key for
the participant to internally establish a tonal context, followed
by a cue-sequence of ascending notes in their assigned major
scale. After a randomized time interval, the participant either
heard the next ascending note in the scale, or was instructed
to imagine the next ascending note, depending on the run. The
following four seconds (2 TRs) of scanning collected from all
trials constituted the labelled data for the heard and imagined
tasks. Next, a probe tone was played, and the participant rated
the probe tone’s goodness of fit in the tonal context from 1
to 4. We excluded the data of any participant with at least
20% of their ratings missing, or whose ratings did not reflect
internalization of the tonal hierarchy. Thus, we excluded the
data of six of the twenty-three participants.

Previous literature on imagined and heard tonal pitch-classes
directed us to twenty regions of interest in the frontal, temporal,
and parietal lobes according to the Desikan-Killiany (D-K) atlas
in Freesurfer [6]. The D-K ROIs are large cortical regions,
reducing the burden of correcting for multiple comparisons
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compared to a larger quantity of smaller regions. Further, the
D-K ROIs are consistent with the scales of relevant previous
literature. The full table of the ROI atlas indices, cortical labels,
and corresponding Brodmann areas is available on request.

C. Autoencoder Training

The autoencoders were trained on Intel Xeon E5 processors,
either 2.3, 2.6, or 3.2 GHz for 30 epochs on Dartmouth’s
Discovery High Performance Cluster with an average training
time of approximately 3 hours. 10% of the training data were
held out as a validation set during training to prevent overfitting
via early stopping. For each combination of participant and
ROI, we trained ten autoencoders and kept the model with the
lowest validation accuracy after 30 epochs. This was to avoid
the rare but observed case where an autoencoder failed to find
any minima during training.

D. MVPA Classifiers

For each ROI, we partitioned the labelled fMRI data of each
participant into two halves according to whether the pitches
were heard or imagined. We then split the heard data in half,
with each half serving in turn as training data and testing data
for a multi-class SVM with linear kernels. We implemented
the SVMs with the 1ibSVM support vector machine library
[2]. We then pooled the classifier’s predictions on each of
the two rounds of test data into a single set, along with their
corresponding pitch-class labels. Our analysis of the heard task
was performed on this collection of predictions and labels for
each participant and region of interest. The imagined task was
evaluated similarly. For the cross-decoding task, the classifier
used all heard data for training, then predicted the labels of
all imagined data. We calculated group level significance for
each task using a t-test between per-participant prediction mean
accuracies and null decoding model mean accuracies. We used
Monte Carlo simulation to calculate the null models, repeating
each classifier’s training and testing 10,000 times with randomly
permuted target labels and storing the mean overall accuracy.
We corrected the group-level p-values for multiple comparisons
using the method in Benjamini and Hochberg [1]], which strictly
controls the FDR of a family of hypothesis tests.

VI. CONCLUSION AND FUTURE WORK

In this work, we adapted the architecture and pipeline of
Firat et al. [5]] from the visual domain to the auditory domain.
Latent neural activation patterns were learned from unlabelled
fMRI data, which are normally discarded, in order to generate
our encoded datasets, which improved the performance of
downstream MVPA classifiers. On the task of decoding the
pitch class of imagined sound from fMRI data, the encoded
datasets enabled the classifiers to outperform chance with group-
level statistical significance in eleven ROIs. This demonstrated
for the first time, to the best of our knowledge, that exploiting
unlabelled fMRI data to perform temporal filtering for an
auditory task not only improves the performance of MVPA
classifiers, but can also reveal fundamental, learnable attributes
of auditory imagery that would go undetected by machine
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learning models trained on unencoded datasets. Further, the
group-level classifier performance on the cross-decoding task in
two ROIs provided our novel statistically significant evidence
of geographical overlap between heard and imagined sound.

There are several immediate directions for future work.
First is toward an end-to-end architecture for this task, rather
than a disconnected training session to obtain the encoded
datasets. Second is toward decoding/cross-decoding the other
information in our fMRI protocol, such as the timbre (clarinet
or trumpet) of the heard or imagined sound. Third is toward
the generalization of our pipeline to other fMRI datasets with
auditory tasks. Fourth is a deeper dive on the ROIs with
significant cross-decoding results, as these results did not quite
match our expectations.
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