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Abstract—In the ongoing research effort of synthesizing sen-
tience into artificial intelligence, we propose a modular network
that emulates neurological synaptic evolution in the neonate
brain. Our hypothesis is that if one were to successfully develop
a synthesized emulation of human’s six-month hippocampus as
it initializes adult-like glucose usage and synaptic density which
is generally accepted in the domain of neuroscience as being the
foundation of human sentience, then so can human sentience be
injected into the synthesized replication of said six-month hip-
pocampus. Accordingly, we present a theoretical proposition that
facilitates a significant step towards overcoming the commonsense
challenge that state-of-the-art artificial intelligence systems are
still grappling with today; where even the most powerful artificial
intelligence systems are void of the common sense of a three
year old: That lemons are sour, that things fall towards the
ground and that they, as children, can pretend to be somebody
else. Herein, we present a methodology to efficiently promulgate
the research goal of integrating sentience and common sense
reasoning into artificial intelligence, taking a neurological rather
than a psychological approach.
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I. INTRODUCTION

In 1766, Immanuel Kant theorized that human knowledge
is a combination of priori knowledge where knowledge is
acquired independently of any particular experience, and
posteriori knowledge, which is derived from experience that
we reason from our senses being affected by our surrounds
[1]. Nowadays, it is accepted that to achieve common sense
processing, an entirely new method will need to be invented [2]
[3] and, that this new method will require priori and posteriori
knowledge [4]- [5]. The design of a posteriori knowledge
component shall seamlessly communicate with the artificial
intelligence system. In 2020, Shanahan et al. [6] examined
the common sense of animals and concluded that there must
exist, in each animal, some innate knowledge that allows them
to learn without words.

We postulate that, because common sense in humans and
animals require priori and posteriori knowledge, so should
we design sentient machines. Our premise is that, to emulate
human and animal common sense, one needs to mathemati-
cally emulate developments in neuroscience which will include
discovering that the directionality of brain waves in the cortical
regions of the brain form different frequency bands [7], that
functions emerge from the flow of information linking distant

(a) (b)

Fig. 1. Connectivity Matrice: Mapping connectome evolution in 78
cortical regions, excluding subcortical and cerebellar regions, in the
brains of a) two-week, and (b) one-year old infant humans [13].
The white squares represent connectivity between the lobes of the
horizontal and vertical axis.

cortical regions [8] that a modular network topology is present
in the brain from the first days of life. [9] [10] and that the
complexity of our multi-connected connectome network [11]
has been decoded [12].

A. Neuronal Pathway

We focus on the neuronal network between regions of the
brain, as defined by Automated Anatomical Labeling (AAL)
for length and local efficiency [13] where Yap et al. used
a connectivity matrix to group neuronal regions into three
distinct communities, as shown in Fig. 1. When comparing
the synaptic evolution on the matrices from a cohort of two
week old and one year old children, one observes a complex
neuronal mesh comprised of multiple additions and pruning
of the network. Fig. 2 illustrates how integrating the Kamada-
Kawai layout with the Pajek software package [14] shows
three distinct neuronal communities [13].

Recently, Fornito et al. showed that connectomes have an
inheritable complex topology that suggests a genome-wide
association that can be either excitatory or inhibitive [16].
Rosenburg et al. showed that at ~6 months, the hippocampus
has adult like glucose use and synaptic density [17] and
Szalkai et al. built four consensus brain graphs from a cohort
of 106 individual brain graphs and set directions by popular
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Fig. 2. Spring Embedding Visualization: Where the sizes of the
vertices are weighted by Yap et al. using Freeman’s logarithmically
scaled node betweenness algorithm, [13] [15] .

TABLE I
THE PATTERNS OF CHANGE

Pattern Number Pattern Number
000 2120 100 161
001 64 101 28
010 53 110 39
011 136 111 402

vote and in so doing, proved that i) axons have directionality
from the soma to the end of the axon, and that, ii) 82% of the
directions were the same for all four groups [18].

B. Neuronal Pathway Insights

At the biological level, the authors first accept that neu-
ronal pathways are constantly changing over time with rapid
myelination occurring in the first year of life [13]. Secondly,
the authors acknowledge that brain modules (highly connected
groupings of brain lobes) at two weeks old and one year
old are not the same. Thirdly, the authors accept that using
connectomes is the state-of-the-art for mapping these pathways
yet, unfortunately, it is evident that, in essence, using a two
dimensional array, that has no geometric similarity with the
brain, at all, to track these neurological events is a short-
coming. It is here that the authors found their motivation
to procure what is in this paper; a more robust and precise
means to emulate, represent and measure in a computer the
neuronal pathway evolution that occurs at the biological level.
It should also be noted that Yap et al’s 3-D representations of
the neuronal pathways suggest that i) there are hubs inside the
modules that are most likely connected to many lobes in that
module, that ii) there are bridges with edges which connect
the hubs of different modules, and that iii) a non hub leaf node
in one module may never connect to a non hub leaf node in
another module.

C. Neuronal Instantiation

The authors note that because lobe-to-lobe connections are
initialed as early as two weeks, only to be turned off at one
year, and then turned back on again at two years, while others
are turned off at two weeks, turned on at one year, and then
off again at two years [13], the authors have focused on
studying whether this seemingly random and chaotic process

has patterns that when found will enlighten researchers in
this domain as to how human sentience is formed, and have
said formation replicated synthetically in a machine. The
numbers inherent in each of these patterns are represented
in Table I. The first bit of the pattern is dependent on the
two week connectome, the second bit represents the one year
connectome and the third represents the two year connectome.
We note that there are 2120 possible connections that never
occur and 402 connections that never break. Additionally, it
is of interest that the connectomes have 630 connections and
that the number of connections added from two weeks to one
year is 189, which is also the number disconnections from
two weeks to one year. The number of connections added
from one year to two years is 92, which is also the number of
disconnections from one year to two years. This reflects the
slowdown of myelination over time. Yap et al. have found the
growing efficiency of the brain in [13].

The rest of the paper is structured as follows. In Section 2,
we present our research objectives. In Section 3, we present
our experiments. In Section 4, we present how we plan to move
from a prototype to the real model. We make our conclusion
in Section 5.

II. RESEARCH OBJECTIVES

The aforementioned research has lead the authors to answer
four questions. 1) What is the purpose of the changing lobe
to lobe connections? 2) Is there a development phase to the
neuronal pathways? 3) Is there an initialization phase? 4) At
which connectome do humans start independent thinking and
if so, what pathways are crucial to this independent thinking?

A. Transversal Definition

We start by defining the Transversal propagation of connec-
tivity and pruning by focusing on forming a means to measure
the path distance from one lobe to the next and present (1)
and (2):

SSP = SingleShortestPath(lobei, lobej) (1)

Ti =
78∑

j=1,j 6=i

SSP (i, j) (2)

where lobe(i) and lobe(j) are the brain lobes as indexed
by i and j from the automatic anatomical labels provided
by Montreal Neurological Institute [13]. The Single Shortest
Path is the length of the single shortest path defined in the
connectome graph preliminaries. Additionally, we define Ti,
transversal of the ith node, as the sum of all the shortest paths
from the ith lobe to the jth lobe excluding the path to from
the ith lobe to itself. 78 is the number of brain lobes in our
connectome. Each of the 78 brain lobes is fully connected to
all the other 77 lobes in the brain. Accordingly, we reference
Fig.3 (b) and determine the single shortest path from the right
Anterior Cingulate Gyrus lobe (ACG-R) to the right Median
Cingulate Gyrus lobe (MCG-R) is one.

The single shortest path from ACG-R to the right Posterior
Cingulate gyrus lobe (PCG-R) is two. For ACG-R to the right
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(a) (b)

Fig. 3. Connectivity: This shows a snippet of the connectome and the
graph produced. (a) connectome, and (b) graph

Parahippocampal gyrus lobe (PHG-R) it is also two. However,
for the ACG-R to the right Calcarine cortex (CAL-R) there are
multiple paths, the shortest being a length of three. T ACG-R
is the transversal of node ACG-R and is defined by 2 as the
sum of all the SSP of A, therefore T ACG-R=1+2+2+3=8.

MaxTransversal = max(Ti, i = 1..78) (3)

MinTransversal = min(Ti, i = 1..78) (4)

where the MaxTransversal is defined as the maximum
of traversals, see (2), of all the nodes transversal, i step-
ping through the lobes from 1 to 78 lobes, as shown in(3).
MinTransversal is defined as the minimum of all the nodes
transversals, defined in (2), as shown in (4). Once again this
calculation looks at the lobes i from lobe 1 through lobe 78,
similarly to the MaxTransversal.

B. Defining Maximum Traversal Length

We have determined that a common denominator to cor-
rectly replicating human sentient neurological evolution in
a machine, lasers in on how accurately one can define and
measure the maximum traversal length. The maximum traver-
sal length on the two week connectome is 257; see 3. The
maximum traversal for the one year connectome is 219, and
212 for the two year connectome. We examine the maximal
transversal of 257 at two weeks, 219 at one year and 212 at two
years. Preliminary findings show that, while the connectome
is reducing the maximum length path over time, at the same
time, the minimal transversal path is increasing from 107, at
two weeks, to 127 at one year, and 128 at two years. It is also
interesting and not understood why the number of connections
remains stable at 630 during this period.

C. Optimizing Maximum Traversal Length

The optimization of maximum transition length with the
constraints of pairs of connections (connection, disconnection)
over time and stable 630 connections over time could lead
to a model that predicts the connectome development. Of
course, more data and analysis is necessary to order the
transitions of the connectome. This gives us an optimization
problem, namely, minimize the maximum transition length,
with the constraint of stable number of 630 connections. This
optimization is how we propose to predict which transitions
will occur. Left unbounded, the model would keep pruning

Fig. 4. The red lines emphasize a few lobes moving out of Module one

and connecting, thus we shall just look at the best 189 from
two weeks old to one year old and compare our predictions
to the actual changes that occur. We will then start with the
one year old and execute the same optimization, this time only
taking the best 92 pairs of disconnect and connect.

A further challenge is matching the modules at different
ages. Fig. 4 shows how certain brain lobes will move from one
module of the brain to another. This occurs due to the changing
connections those lobes have with other brain lobes. This
figure provides the reader with insight to view the changes
in the figures of the next section. In the next section, we
examine the development of the connectome from conception
to one year old. Noting the changes that occur just inside the
first lobe for simplicity of explanation. The changes that occur
across all 78 lobes, modifying from 3 brain modules to four
brain modules at two years old are too complex to put on one
sheet of paper. The actual lobes involved in particular changes
are details to be reconciled by our predictions.

III. EXPERIMENTS

The authors hypothesize that it is possible to measure the
path from any node to another node in terms of the number
of edges traversed through the connectome. Our justification
for this proposition is that because we know that as the brain
develops from three to four modules, it is logical to expect that
the total number of edges traversed is decreasing. To formulate
our methodology we base our experiments off of the following
determinate. Fig. 4 shows the detail that should be noted as
stepping through the determinate.

1) At conception no brain lobes exist.
2) Over time, the brain lobes form and connections are

established.
3) Fig. 5(a) shows the first brain lobes appearing in module

one of the brain.
4) Fig. 5(b) shows the neuronal pathways being formed be-

tween some of the existing lobes in module one of the
brain. The same growth is occurring in the second and
third modules of the brain.
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(a) (b)

(c) (d)

Fig. 5. Connectome Proliferation: Isolating the first highly connected
lobes of the module 1 of the brain, we see the following stages (a)
Module one shows initial lobes appearing. (b) all lobes in module
one appear with first synapses, (c) first brain module complete at
two weeks, and (d) after two weeks, initial edge pruning occurs.

5) Fig. 5(c) shows the the connectome lobe 1 completed at
two weeks of age.

6) Once the two week connectome is formed, we know that
connections will be broken and others formed leading to the
one year connectome. Fig. 5(d) shows synaptic connections
being broken. While the prototype shows multiple edges
dropping, we note i) that this is only module one of the
brain and ii) it is highly likely, that while a synapse/edge
is disconnected, another synapse is formed, maintaining
the full connectedness of the connectome and the 630
connections.

7) Fig. 6(a) shows all the edges dropped that are not in
the one year connectome. While this gives the reader an
overview of how the connectomes are changing over time.
One should note that even though it may appear that all
the lost edges are dropped before adding nodes and edges
to achieve the one year connectome, evidence shows that
this is not what happens in the human brain. The lobes do
not go away but rather connect to another module of the
brain. The edge modifications are most likely intermingled.
We need to know if a neuronal pathway is dropped if the
myeline becomes available to form another synapse/edge.

8) Fig. 6(b) shows nodes moving out of module 1 between
two weeks and one year. A node switches modules when
it becomes more connected to the nodes/lobes of the new
module then its current module.

9) Fig. 6(c) shows the rest of the nodes moved out of module
1 and into another module. This is the final node/lobe state
that is expressed in the one year connectome.

10) Fig. 6(d) shows a node from another module moving into
module 1.

(a) (b)

(c) (d)

Fig. 6. Connectome Pruning (a) After two weeks, edge pruning
completed. (b) After two weeks, some nodes break away from module
1. (c) After two weeks, all nodes to break away from module 1, have
done so., and (d) At one year, the first new node moves into module
1.

11) Fig. 7 shows how at one year lobes from other modules
have become more connected to the module 1.

Fig. 7. Nodes and edges are added to complete module 1 for the one year
connectome

The ordering of these modifications is most definitely not
occurring en masse, not all edge deletions, then all node
deletions, then all node additions, then all edge additions. As
already stated the lobes do not go away, but rather become
connected to one of the other modules. Therefore, the nodes
should not go away, but rather be connected to lobes in another
module of the brain. Noting that from one year old to two years
old a forth module appears. The graph with all 78 lobes/nodes
and 630 synapsis/edges is incomprehensible. The connections
are created when the synapse strength had crossed a certain
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threshold. The connection is broken when the synapse strength
drops below that threshold.

The rapid myelination in the first year eventually slows
down. We need some measure of this myelination availability
and usage in forming a synapse to be able to predict when
the next neuronal pathway can be formed. If the myeline is
not available, the synapse and neuronal pathway will not be
formed. We know what connections exist at two weeks old.
With enough data we should be able to measure the total length
of these pathways and determine the myeline needed to form
them. This could lead to a side study on what mechanism
provides the myeline and what factors such as nutrition, O2,
and time influence said mechanism. Simultaneous growth in
the three lobes could provide competition for resources. We
need to measure the myeline production and usage over time.
Only then can we use regression analysis (Time Series) to
plot the brains resources availability and use over time. Once
these curves can be predicted, then they can be used to spot
deviation in individuals brain growth. These deviations can
then be catalogued, accumulated and used for finding disease
or giftedness.

Another possibility is to find an arbitrary variable for
the synaptic length growth potential over time. Rather then
measure the myeline availability measure the total synapse
length over time. [13] provides average synapsis length over
time, an average implies a sum divided by a count. If this data
is available, we should be able to regress the growth in number
and growth of length of the synapsis over time. These growth
rates along with a scripted ordering of synapsis connectivity
will then predict when connections are built.

Fornito et al. [16] suggest that the DNA explicitly controls
the brains growth. This infers that if there was a resource
problem the brain may not have formed properly, potentially
altering the expectations of a DNA study. In which case, it may
be better to compare the connectome development to disease
expression, rather than the DNA to disease expressions. This
leads the authors to conclude that it raises the importance of
researching how the brain is formed rather than studying the
DNA process at the neurological level.

IV. FROM PROTOTYPE TO THE REAL MODEL

o model the real connectome development we dynamically
mimic four constraints, 1) the maximal traversal minimization
over time, 3) that there are always 630 connections, 3) that
the average synapse length is always increasing, and 4) that
the connectome remains fully connected.

In order to accomplish this, we shall implement connectome
changes in pairs, one disconnect paired with a connect. These
pairs shall be created by ordering all the connects in increasing
synapse length and the disconnects in increasing synapse
length. Then, pairing the smallest connect with the smallest
disconnect, to give the list of pairs to be implemented over
time. We then shall ensure that the connectome remains fully
connected over time. The pairs of actions(connect/disconnect)
will need to be examined for orphan creation, where a
node/lobe has a degree of 1 and that link is being deleted.

TABLE II
THE ACTION TABLE

Action the action to be taken connect or disconnect
LobeFrom and To the lobes being connected or disconnected
Day and Time the projected day and time the action will occur
Length the length of the connection
TimeToComplete the time necessary to complete the action

Since we know that the connectome stays fully connected,
we know there is another connect in the list that reconnects
that node/lobe. The two actions shall then swap partners,
such that the disconnect and connect will maintain that par-
ticular node/lobe inclusion in the connectome, and maintain
the fully connectedness of the connectome. To maintain the
full connectedness, the connection will be created before the
disconnect.

Once the actions list is refined, the actions can then be
implemented over time. The rate of increase of myelin avail-
ability applied to project when the next action will occur. That
is, when there exist enough myeline available to satisfy the
net gain of pathway creation. We shall build the action table,
see Table II, to provide the time ordered list of connectivity
growth.

The length of synapsis should be known. [13] shows the
average synapse length is increasing over time. The average is
the sum of all the lengths divided by the number of synapsis.
In future experiments we may find the synapse growth rate
could replace the myelin availability function, or provide the
myeline available function with another variable. Considering
a biological process is not instantaneous, we shall set a length
of time to complete the action.

The rate of myeline availability or rate of synapsis length
growth shall be determined by regression analysis. We have the
data points that from two weeks to one year there are 189 pairs
of actions taken. While we do not know what the pairs are, we
do know what the 189 disconnects are, and we do know what
the 189 connects are. From one year to two years there are 92
pairs of action, likewise we know the 92 connects, and the 92
disconnects. With only two points we can only have a linear
function. Research into the ConnectomeDB will provide more
defined pairs of actions over time, thus more data points for
the regression. Several regression attempts (linear, quadratic,
polynomial, exponential, logarithmic) shall be executed to find
the best correlation coefficient, r.

Assessment of the Accuracy of the algorithms developed
will be possible when more connectome data becomes avail-
able. The National Institute of Health (NIH) is sponsoring a
Baby Connectome Project that began in 2016 where the data
will be available to NIH sponsored researchers [19].

V. CONCLUSION AND FUTURE WORK

In considering where neuroscience research has lead we
reiterate our original concept which was to produce a minimal
ontology, recognizing that a toddler has minimal common
sense and must learn it from experiences. In pursuing the
neuroscience, we find the connectome, a representation of the
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brains fully connected network between 78 cortical regions.
But rather than having a stable connectome as a child, the
connectome is more stable as an adult. What we have run
into is the innate process of building the networked brain.
The neuroscience shows us the result of the innate process of
building the brain, but does not, as of yet, show us how it is
built.

A systematic approach to define the requirements of synthe-
sizing the brain needs to be taken. Mapping known capabilities
to cortical regions and corresponding tool that has been built
or needs to be built. Evaluating all existing tools for input,
processing and output. All inputs shall be received from the
network that simulates the connectome. All outputs shall be
delivered to other cortical consumers through the synthesized
connectome. The collective process shall mimic our notion
of common sense. What started as an attempt to minimize
the scope of the common sense problem has led us to the
extensiveness of the brains innate development in the first
years of life. What we set upon to build is not stable, but rather
time dependent, adding a fourth dimension as we observe the
connectome evolve to its adult stability.

This research has revealed that the max traversal shortens
with time. In essence, the shorter max traversal provides
a shorter path from one brain lobe to all the other brain
lobes. This quicker transmission of brain signals provides
humans with an increasing brain speed as we age. This
in turn provides us a mathematical means to differentiate
between ”quick wittedness” versus ”not the sharpest tool in
the shed”. Both of these phrases are common judgments
of a person’s level of common sense. We have determined
that a common denominator to correctly replicating human
sentient neurological evolution in a machine, lasers in on how
accurately one can define and measure the maximum traversal
length.

For our future research we will be studying how Prescott
et al. [20] have built their humanoid robot, named ICub,
based on psychological division. Prescott proposes using the
human cognitive architecture, yet they take a psychological
self approach to their brain inspired control architecture.
However, they make no mention of connectomes, or the latest
neural networks of the brain. Conversely, the authors have full
faith that studying and replicating the neurological approach
is more realistic and shall prove more fruitful in the long term.
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