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Abstract—Brain stimulation has been used in practice to treat
neurological diseases, such as Parkinson’s Disease and Epilepsy.
However, the stimulation signals are generated based on trail
and error; and the underpinning theory of this treatment is
still unclear. Artificial neural network (ANN) resembles biological
neural network in the brain and has been used for many arti-
ficial intelligence applications such as classification and pattern
recognition. In order to generate accurate stimulation signals in
brain stimulation treatment, it is beneficial to establish an ANN
model to simulate the brain dynamics and study the effects of
various stimulation signals. Previous research shows that brain
activities captured by Electroencephalogram (EEG) demonstrate
chaotic patterns. Chaotic systems, such as Hénon map can be
represented by a set of mathematical equations, and therefore
are predictable and controllable. The aim of this research is to
implement an optimal ANN architecture model to generate the
output pattern of a chaotic system, which can be used to simulate
the brain dynamics under stimulation. This paper presented the
preliminary work of an ANN architecture design and optimization
for generating the outputs of Hénon map chaotic system, and the
simulation results for controlling the chaotic system with periodic
stimulation signals. The ANN design method and chaotic control
method can be extended for other chaotic systems in general.

Keywords—Brain stimulation; Chaotic systems; Artificial Neural
networks; Dynamic control; Hénon map.

I. INTRODUCTION

The growing interest in brain stimulation as a form of
neuromodulation has led to increased empirical data from
clinical practice for further theoretical research. Targeted brain
stimulation has been employed to treat neurological diseases,
with reported success in controlling shaking in Parkinson’s
Disease and Epilepsy seizures. However, theoretical and an-
alytical research is urgently in need to discover the impact,
especially the potential long-term side effects of these focal
perturbations. Therefore, it is critically important to develop
theoretical models in order to design high performance dy-
namical control systems for brain stimulation.

Brain stimulation has been employed clinically to diagnose,
monitor and treat neurological disorders, such as epilepsy
seizures [1] [2] and Parkinson’s disease [3]-[6]. Commonly
used non-invasive stimulation methods include transcranial
magnetic stimulation (TMS), transcranial direct current stimu-
lation (tDCS) [7] [8] and transcranial focused ultrasound [9].
Various data recording methods and devices, such as positron
emission computed tomography (PET) [6], electroencephalo-
graph (EEG) [10], functional magnetic resonance imaging
(fMRD) [11] [12], and recently some single devices [13]-[16]

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-579-1

have been used to monitor the brain stimulation effects on brain
activities. This provides valuable research data for further study
to optimize stimulation protocols, which include identifying
accurate target stimulation area and applying effective stimuli,
in order to improve the performance of the treatment and
meanwhile minimize or eliminate the potential side-effects.

Previous research reported that brain waves demonstrate
chaotic behaviors [17] [18]. A chaotic system is a bound
system which obtains the existence of an attractor. Chaotic
time series are dynamic systems that are extremely sensitive
to initial conditions and can exhibit complex external behavior.
A chaotic system can be stable, periodic or chaotic depending
on the system parameters as well as its initial conditions. A
known chaotic system can be analyzed and controlled based
on its system equations using conventional dynamic control
methods. However, when the equations of a chaotic system
are unknown, such as the EEG time series signals, the pattern
recognition of such a system and the discovery of its system
parameters become a challenging task, which is important for
the dynamic control of the system.

Artificial Neural Network (ANN) is a leading machine
learning method inspired by biological neural network struc-
ture. In recent years, ANN has been widely used for pattern
recognition and classification based on a number of pre-defined
features. An ANN model with a feedback loop can be designed
to generate chaotic outputs by training the ANN using the
output values of a chaotic system with selected parameters and
initial conditions [19]. Since a chaotic system with specified
initial values and system parameters can be represented by
an ANN model, the system can be controlled by varying the
weight and bias values of the ANN. The training process is
carried out on a computer and the weights are generated for
all neurons in an ANN architecture. These weights are then
used in constructing an ANN model to generate the expected
outputs for the target chaotic system. The implementation cost
and speed of an ANN architecture is determined by its com-
plexity, therefore it is beneficial to use less number of hidden
neurons to achieve the target training performance. A simple
ANN design generally has a 3-layer architecture, including
one input, one hidden and one output layer. The MATLAB
Neural Network Toolbox is used to train the ANN with three
MATLAB training algorithms: Levenberg-Marquardt, Scaled
Conjugate Gradient algorithm and Bayesian Regulation. The
optimization of the ANN architecture is important for improv-
ing the performance of hardware implementation on a Field
Programmable Gates Array (FPGA) device.
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Network control theory has been used to study the effects
of stimulation on brain networks [20]. Network control refers
to the possibility of manipulating local interaction of dynamic
components to steer the global system along a chosen tra-
jectory. The neural network based chaotic model can aid the
understanding of the underlying structural connectivity that
modulates the system dynamics. A novel approach is presented
to combine the ANN design and the dynamical control theory
for the control of brain dynamics. In this approach, an ANN
model is designed with optimized architecture based on Hénon
map chaotic system. Hénon map [21] has its significance in
studying chaotic systems with a simple 2-dimensional structure
and is used initially as the study subject of the research project.

In previous related work, a model-based hardware imple-
mentation of the Hénon map is presented in [22] and the
dynamic analysis of the system stability at critical points with
varying system parameters is provided by [23]. The chaotic
system can be controlled to change from chaotic mode to
stable or periodic mode by adding a period stimulation pulse
signals. The design approach and control method can be easily
extended for other chaotic systems in general, such as 3-
dimensional Lorenz attractor [24].

Section II describes the ANN design and training proce-
dure; section III explains the chaos control of the Hénon map;
section IV discusses the conclusion and future work.

II. ANN DESIGN AND TRAINING

The ANN is a network of interconnected neurons arranged
in multiple layers, including one input layer, one output layer
and one or multiple hidden layers. A general mathematic rep-
resentation of an individual neuron within an ANN architecture
is shown by equation(1).

N1
=Y whai+bhy  j=1,2,..N W

=fi(a})

where NV is the number of neurons at [-layer. Each hidden
neuron j receives the output of each input neuron i from the
input layer multlplled with a weight of w] ;- The sum of all
weighted inputs is used by an activation function f; to produce
the output of the hidden layer neuron and feed it forward
to the output layer. A similar weighted sum is generated for
each output neuron. b o 1s the bias of the jth neuron at the
lth layer, which are added as noise to randomize the initial
condition in order to get better chance to converge. The weight
matrix connecting between the (I — 1) layer to the ** layer
is represented by equation (2).

w11 W12 W1,N; 1
l W2,1 W2,2 W2, N;
w! = -1 2)
WN;, 1 WN,,2 WN;,N;_, Ny xNj_1
Let y! = (1,92, ..., yn,) be the output vector from the [*?

layer, the weighted sum vector to the [+1%" layer is represented
by (3), the outputs are calculated using (4), where f is the
activation function.
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A. ANN Architecture Design

The ANN model design process includes identifying the
correct topology of the network. An optimal ANN architecture
should contain minimal number of hidden layers and hidden
neurons, and yet sufficient enough for representing the variabil-
ity of the training data. A network with insufficient complexity
will fail to learn the underlying function, while a network with
more neurons and layers than required will cause overfitting
of the model and fail to generalize. An ANN model design
approach for chaotic systems based on model topology analysis
[19] is used. After the construction of the ANN, its predictive
ability needs to be measured. The accuracy is a quantification
of the proximity between the outputs of the ANN and the target
output values, measured by mean square error (MSE).

The implementation performance of the chaotic system
depends on the ANN topology. For the Hénon map ANN
design, both input and output layer has two neurons, one
hidden layer is employed. In order to optimize the ANN
architecture with a minimal number of the hidden neurons
to improve implementation performance, 16 different ANN
topologies with one to sixteen hidden neurons are trained using
three training algorithms respectively to find the optimal ANN
topology. Sigmoid function is used as the activation function
for the neurons in the hidden layer. Ramp activation function
is used for the output layer [25].

B. Training Data and Training Algorithms

The 6,000 training samples for Hénon map are generated
in MATLAB using the ode23 method. During the training
process, the first pair of samples (x1,y;) is provided as the 2
inputs of ANN, the second pair of samples (z2, y2) is provided
as the target outputs. Then the second pair is provided as the
inputs and the third pair as the target outputs, and so on. The
training samples are divided into three subsets: training(70%),
validation(15%) and testings(15%). The training set is used
for computing the gradient and updating the network weight
and bias values. The validation set is used to monitor the
error during training process in order to avoid overfitting.
The test set is used to test the training performance. The
ANN training is carried out using three network training
functions provided by the MATLAB Neuron Network Toolbox:
trainlm, trainbr and trainscg. trainlm function updates
weight and bias values based on Levenberg-Marquardt (LM)
optimization [26]. trainbr function also updates weights and
biases based on LM optimization. It uses Bayesian Regulation
(BR) process [27] to minimize and determine a combination
of squared errors and weights, in order to produce a network
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TABLE I. ANN TRAINING FUNCTION PARAMETERS

Training Fuctions T LM [ BR [ ScG
Learning rate 0.01 0.01 0.01
Momentum Constant 0.9 0.9 0.9
Maximum Epochs 1000 1000 1000
Maximum Training Time inf inf inf
Performance Goal 0 0 0
Minimum Gradient 1.00E-07 1.00E-07 1.00E-06
Maximum Validation Checks 6 0 6
Mu 0.001 0.005 N/A
Mu Decrease Ratio 0.1 0.1 N/A
Mu Increase Ratio 10 10 N/A
Maximum mu 1.00E+10 1.00E+10 N/A
Sigma N/A N/A 5.00E-05
Lambda N/A N/A 5.00E-07

with good generalization. trainscg function updates weight
and bias values based on Scaled Conjugate Gradient (SCG)
method [28]. The training parameters of these three MATLAB
functions are listed in Table. L.

Each algorithm is used for 16 different ANN topologies,
with the number of hidden neurons increasing from 1 to 16
in the architecture. Three training iterations are carried out
per architecture per algorithm. Each training iteration runs
for 1000 epochs. An epoch is a measure of the number of
times all of the training vectors are used once to update the
weights. The learning rate is 0.01. It is a constant used by the
training algorithm to update the weight and bias values at each
step. The momentum is 0.9. This is another constant value for
adjusting the learning rate by adding a proportion of the weight
value in the previous step. As the training time is infinity
(inf) and the training goal is 0, the training stops when the
performance gradient falls below the Minimum Gradient, or
the Maximum Epoch is reached, or the validation performance
has increased more than the Maximum Validation Checks since
the last time it decreases.

C. ANN Performance Evaluation

The ANN training result is measured by the error between
the calculated ANN output y and the target training output .
The training target is a threshold error value small enough for
the output to be considered as correct. The performance of
the ANN training process is evaluated by how fast and well
the error converge to the target threshold. The most common
method for measuring the output error is MSE, as illustrated
respectively by (5).

1 R
MSE = N ;(yz — §;)? 5

where N is the number of outputs, which is 2 in the case of
Hénon map: y; and ys. For 16 architectures and three training
algorithms: LM, BR and SCG, the ANN training is carried out
three repeated iterations per architecture per algorithm. The
training performance (MSE) are listed in Table. II.

The training performance of the Levenberg-Marguardt al-
gorithm is shown in Figure 2(a). It can be observed that
the MSE values for all three iterations over the number of
hidden neurons have non-monotonicity. Nevertheless, the MSE
is decreasing in general. The MSE values for all three iterations
decrease below 1.7E-07 (= 1.7 x 10~") with only 2 hidden
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Hidden Layer

2 2

Figure 1. ANN Architecture for Hénon Map Chaotic System

neurons. The MSE of iteration I increases when the number of
hidden neurons increases from 2 to 3; and the MSE of iteration
IIT has big increase from 2.3E-8 to 8.6E-6 (by 2 logarithmic
scales) when the number of hidden neurons increase from
3 to 4. The best performance is achieved with 15 hidden
neuron in iteration II, when MSE=1.1397E-10. Although the
overall performance is improving with increasing number of
hidden neurons, it is hard to predict accurately whether the
performance can be improved by adding one more neuron for
an individual iteration. The result is random.

The training performance of the Bayesian Regulation algo-
rithm is shown in Figure 2(b). Similar to the LM algorithm, the
MSE values for all three iterations decrease below 1E-07 with
only 2 hidden neurons, but increase as the number increases
from 2 to 3 for iterations I and III. The overall trend is for
the MSE to gradually decrease while the number of hidden
neurons increases, but the effect for adding or removing one
neuron for each training iteration is unpredictable. The smallest
MSE (3.1178E-12) is achieved by iteration III with 15 hidden
neurons.

The training performance of the Scaled Conjugate Gradient
algorithm is shown in Figure 2(c). The smallest performance
(MSE=5.9783E-05) is achieved when n=4. The MSEs in-
creases generally while n increases after n=4. The LM and
BR algorithms have better training performance than the SCG
algorithm.

The average MSE values of all three iterations for each al-
gorithm is compared in Figure 2(d). The training performance
can be only improved slightly once the number of hidden
neurons is greater than 2. The increased number of hidden
neurons will increase hardware resource utilization for the
system implementation. The ANN model is generated using
double precision floating point data format during the training
process in MATLAB simulation environment. The fixed-point
data format for the FPGA implementation does not require
the target MSE to be smaller than the quantization error. For
instance, the 32-bit fixed-point data format with 18 fractional
bits can have 2718 (= 3.8147¢—06) resolution, which is bigger
than the smallest MSE achieved by the ANN model with 2
hidden neurons using the LM and BR training algorithms.
Therefore, the ANN model is designed using 2 hidden neurons.
The ANN architecture is illustrated by Figure 1, including an
input layer with two inputs, a hidden layer with two hidden
neuron, and an output layer with two outputs. A Simulink
Model is created using the ANN with delayed feed-back loop
as shown in Figure 3; and the Simulink simulation output of
the ANN-based Hénon map chaotic system is shown in Figure
4. The training performances and training states for the three
training functions of the selected architecture with 2 hidden
neurons are plotted in Figure 5. For LM and BR, the training
stops at epoch 1000. For the SCG, the training stops at epoch
255 as the maximum number of validation fails reaches 6.
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TABLE II. TRAINING PERFORMANCE (MSE) OF 3 TRAINING ALGORITHMS WITH 16 ARCHITECTURES — EPOCH 1000

MSE || Levenberg-Marguardt (LM) Il Bayesian Regulation (BR) I Scaled Conjugate Gradient (SCG)
Neurons | | I | 11 | 1T | | 1 | I | it | | 1 | 11 | 1T
1 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2828
2 7.5920E-08 7.5411E-08 7.5841E-08 8.1986E-08 8.1497E-08 8.1474E-08 2.3649E-03 2.8101E-01 2.9964E-03
3 1.7042E-07 3.7541E-08 2.3484E-08 9.1948E-07 5.4859E-08 1.5598E-06 1.3356E-03 1.3299E-03 1.3042E-03
4 2.0187E-09 1.9369E-07 8.5939E-06 1.4455E-09 9.3581E-10 1.7478E-07 5.9783E-05 2.1042E-04 4.8217E-04
5 4.7927E-09 3.5006E-09 3.1200E-09 4.7033E-10 4.6482E-10 1.9332E-10 6.9701E-04 9.5137E-04 5.3533E-05
6 5.2199E-08 1.8775E-08 2.1202E-09 1.5030E-09 8.8459E-12 1.4452E-09 6.2341E-04 6.2949E-05 1.6708E-04
7 1.4853E-09 1.2016E-08 2.7629E-09 1.2308E-10 1.4387E-09 3.5900E-11 4.6338E-04 6.5173E-05 1.0628E-04
8 4.5645E-09 1.6143E-09 4.8532E-09 2.9488E-10 8.4649E-11 6.2597E-11 3.8860E-04 1.4984E-04 2.1843E-04
9 3.2232E-10 5.3065E-10 3.3891E-10 8.5851E-10 7.0971E-10 7.0933E-11 8.9483E-05 1.1520E-04 6.4021E-04
10 8.5592E-09 6.0050E-10 1.9888E-10 4.2823E-11 1.9704E-11 1.6047E-10 4.0709E-04 1.5928E-04 6.7822E-05
11 3.4364E-10 4.5139E-10 1.6145E-09 9.6083E-11 1.3954E-11 2.6842E-11 2.7726E-04 1.2903E-04 1.4429E-04
12 2.0994E-10 2.1447E-09 8.7262E-10 7.7306E-11 3.9343E-12 1.4594E-10 1.2205E-04 3.3368E-04 | 9.9476E-04
13 7.4649E-10 1.8049E-09 6.6516E-10 1.5392E-10 8.2397E-11 1.6851E-10 6.2968E-04 5.2315E-04 1.4134E-04
14 1.3254E-09 2.2304E-09 5.6996E-10 1.6843E-11 1.1866E-10 3.6662E-11 4.8872E-04 6.1157E-04 4.5022E-04
15 3.8671E-10 1.1397E-10 4.1528E-10 1.6680E-11 8.8259E-12 3.1178E-12 2.2542E-04 7.3086E-04 1.9543E-04
16 4.1175E-10 3.7105E-10 2.3944E-09 6.6127E-12 9.4176E-12 8.9851E-12 5.4813E-04 5.5410E-04 3.2486E-04
ANN Training Performance LM ANN Training Performance BR
1.E Oﬂ T T T T T T T T T T T T T T T 1
1.E+00 —_— M - —_———— | N
B 1.E-01 \
1E01 \ p—— 1 E-02 \ ot |
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(c) Scaled Conjugate Gradient

(d) Average of 3 Iterations

Figure 2. ANN Training Performance for Hénon Map
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Figure 3. Simulink Model for ANN-based Hénon Map Chaotic System
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Figure 4. Simulink Simulation Outputs of ANN Model (6000 samples)

III. CHAOS CONTROL OF THE HENON MAP

In order to control chaotic systems for brain stimulation,
periodic pulses can be generated as stimuli. The stability of
a chaotic system at its critical points can be analyzed by
calculating the eigenvalues of the Jacobian matrix of its system
equations. Based on the analysis, stimulation signals can be
generated to alter the state of the chaotic system.

A. Periodic Orbits and Critical Points

Given a 2-dimensional discrete system X, 11 = F(X,),
which can be represented by (6).

Tnt1 = P(x’ruyn)a Yn+1 = Q(xnayn) (6)

where X is a vector in R2; F is a map of a domain
D of R? onto itself; P and @ are scalar valued functions.
A critical point of a system is defined as a point at which
Xny1 = F(X,) = X, for all n [29]. The term ‘critical point’
is often referred to as ‘fixed point’ of dynamic system. The
type of critical point is determined from the eigenvalues of
the Jacobian matrix of the function F'(X) at the critical point.
A critical point of period N is a point at which X, n =
FN(X,) = X,, for all n. Given that a discrete nonlinear
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system represented by (6) has a critical point at (z,ys), the
Jacobian matrix at the critical point can be represented by (7).

or 9P
J(xsvys) = <g§ %)

ox oy

@)

(5,9s)

Suppose that the Jacobian matrix has eigenvalues \; and
Ao. In the discrete case, the critical point is stable as long as
[A1] < 1 and |A2| < 1, otherwise the critical point is unstable.
The critical points of period one X satisfies X, = F(Xj).

The discrete Hénon map equations by definition are lised
in (8).

Tpi1 =1+ yn —az2,  ypi1 = bz, ®)

where z, and y, are system variables, o and [ are
system parameters. A reformed equivalent set of equations are
. . . 1
obtained by taking a transformation T, = STn, Y, = gyn,
as listed in (9). It is easier to use the reformed equations for
stability analysis and control [23].

Tni1 =+ BYy — T2, Y1 =Ty, )

The critical points of period one and the Jacobian matrix
for the original Hénon Map are listed in (10).

_(B-1)+VI-F)+da

Ts = 2c

%5((6—1)1 2(1—/3>2+4a> (10,
«

—2ax 1
":( 8 0)

The critical points, Jacobian matrix and its two eigenvalues
of the reformed Hénon map equations are listed in (11).

B—-1—+/(B—-1)?%+4a
1 =4 = B
s =y CB=1+ (B —1)2+4a
2 =Y2 =
2
(11
-2z f
1=(1 %)
A\ _< 2?4+ —x 0 )
b2 0 -2+ p—x
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Figure 5. ANN Training Performance for ANN with 2 Hidden Neurons

The Hénon map has two real critical points of period one

The determinate of the Jacobian matrix is |3|, which is less
if and only if (1 — 3)? 4+ 4a > 0. Therefore a > 0, |B] < 1.

than 1.
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Figure 6. MATLAB Simulation for Hénon Map Chaos Control. o« = 1.2, 8

B. Chaos Control Using Periodic Proportional Pulses Method

Control and synchronization of chaotic system using the
periodic proportional pulses method is evaluated in [29] [30]
and can be adapted for the control of brain stimulation.
Instantaneous pulses can be applied to the system variables X,
every N iterations. Define the composite function C = K F,
K is the diagonal matrix with diagonal elements k; and ko,
which can be derived for a given period N and a given critical
point X. A critical point X, = (x4,ys) of the function F'
satisfies KFV (Xs) = (X;). The Jacobian(J) of C has two
eigenvalues. The critical point is locally stable if both the
modulus of eigenvalues are less than one. The absolute of the
determinate of J : |det(J)| = | 8] < 1 indicates that the Hénon
chaotic system is a attractor.

Practically, this method can be easily applied when dealing
with chaos control with periodic orbits of low periods. Figure 6
shows time series signals with period-one, period two, period
three and period-four stimulation respectively.

IV. CONCLUSION AND FUTURE WORKS

The paper presented an ANN-based Hénon map chaotic
system model design and the optimization of the ANN archi-
tecture with the consideration for FPGA hardware implemen-
tation. The ANN-based chaotic system model is designed for
simulating chaotic brain activities and the dynamic control of
the chaotic system by varying the weight and bias values of
the ANN. The ANN has a 3-layer architecture and is designed
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= 0.4, k = 0.2; Control period: 40 < n < 80; Initial values: z9p = 0.1,y0 =0

using 16 different topologies with 1 to 16 hidden neurons
respectively. It is shown that the simple topology of 2 hidden
neurons can be implemented to generate the desired chaotic
outputs, which is highly beneficial to improve performance
and reduce resource utilization for hardware implementation.
The ANN model was trained by 3 MATLAB training func-
tions: trainlm, trainbr and trainscg, which can be used to
generate Simulink model for simulation, and for the further
FPGA hardware model development using the Xilinx System
Generator in the MATLAB software environment. The ANN
design approach with topology optimization can be extended
to other chaotic systems and will be used for the design and
development of a dynamic control system for non-invasive
brain stimulation in order to treat neurological disease. The
chaotic system analysis and control is also discussed based on
Hénon map, which can be extended to other chaotic systems.
The control simulation results are presented as preliminary
research work and will be applied to the ANN-based chaotic
system control for brain stimulation. Future work includes
the hardware implementation of the designed ANN on FPGA
device. The ANN design and optimization approach will be
used with other state-of-the-art training algorithms to compare
the training speed and training performance in order to develop
an optimal online training algorithm for hardware implemen-
tation.
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