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Abstract — Automated neuron tracing from microscopic 
images enables high-throughput quantitative analysis of 
neuronal morphology to elucidate functions of neural circuits. 
We have developed a transfer-learning approach that trains a 
deep convolutional neural network to trace neurons in 3D 
image stacks. Our neural network model consists of two major 
components. One is responsible for detecting foreground, the 
other takes the output of the first components and detect the 
central lines of neurites. They are trained sequentially, which is 
more efficient than training a whole deep neural network from 
scratch. The most spectacular aspect of our approach is that 
our training data is generated by synthesizing 2D simple lines 
in noisy backgrounds instead of consisting of manually labeled 
real neuron images which are labor intensive and time 
consuming to collect. Our method first processes each slices of 
3D image, and then integrate them back to produce 3D tracing 
results. Preliminary test results show that the trained neuron 
tracer is capable of accurately tracing various types of neurons 
in noisy images. 

Keywords-Neuron Tracing; Convolutional Neuron Network; 
Neuron Tracing; Deep Learning, Transfer Learning. 

 

I.  INTRODUCTION 
It is widely recognized that there is a strong connection 

between the morphological and functional properties of 
neurons. The analysis of neuron morphology can shed light 
on the functional bases of neural systems that consist of 
various types of neurons connecting with each other. With 
the rapid advances of imaging technologies, experimental 
neuroscientists are now able to quickly generate huge 
volume of 3D neuron images, which demands in-time 
analysis of neuron morphology. However, manual tracing of 
neurons in 3D images is time consuming, labor intensive, 
and often subjective. Hence, it is important to automate 
neuron tracing to generate accurate results. Digital 
reconstruction of neurons from microscopic images consists 
of several major tasks [1] , such as, soma segmentation, 
neurite tracing, spine segmentation, and so on. In this work, 
we focus on tracing neurites. 

Many automated 3D neuron tracing algorithms have 
recently been developed [2]-[17] . They are in general 
capable of accurately tracing neurites. However, each of 
them relies on some pre-designed models to estimate certain 
parameters (e.g., foreground thresholds) from images, bridge 
gaps, or fit certain shape models (e.g., tubes, curves, etc.) to 

images. It is challenging to design a universal model for 
microscopic neuron images captured by different imaging 
instruments under a wide spectrum of setting. Hence, the 
designs of those models are often based on a small validation 
set, and can limit the generalization performance of the 
corresponding neuron tracing methods. 

This work was motivated by the incredible capability of 
an average human being to trace the central lines of general 
curvature structures in various noisy backgrounds even 
though this individual never received any special training to 
perform such a task. We speculated that it might be possible 
to use simple synthetic stimuli to train a computational 
model to detect central lines, which can then be applied to 
trace complex neurite structures. The obvious advantage of 
this methodology is that we can avoid using intensive and 
subjective human labors to annotate training data. In this 
work, we explored the possibility of training the model by 
Deep Learning [18]  and Transfer Learning [19] . We chose 
Convolutional Neural Network (CNN) [18] , which was 
biologically-inspired by the groundbreaking work of Hubel 
and Wiesel on visual cortex [20] , as the base of our Deep-
Transfer-Learning network (DTL-NN) model. Our approach 
first trains a deep neural network to detect foregrounds and 
central lines in synthetic 2D images (ground truth is trivially 
known), and then refines the trained model by adding a 
hidden layer and using a small manually labeled real dataset 
to make it capable of accurately trace neurons imaged under 
the desired conditions. Given the 3D image stack of a 
neuron, we apply a trained DTL-NN to detect central lines of 
neurites in each 2D image slice. The detected 2D central 
lines are then pieced together to form the 3D structure of the 
neuron. Our methodology can not only be used to train 
neuron tracers, but also be used to build an expandable 
feature extractor for other complex computer vision 
problems. 

The rest of the paper is organized as the following. In 
Section 2, we describe the structure of our neural network for 
foreground detection, centerline extraction and transfer 
learning. We also explain how to generate the synthetic 
training dataset, the training procedures, and the post-
processing method. In Section 3, we show the experimental 
results of applying our approach to real datasets. Finally, the 
paper is concluded with discussions. 
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II. METHODS 
This section describes the technical details of our Deep-

Transfer-Learning neural network, the training data, and 
other key steps of our approach. 

A. Overview 
Our automated neuron tracing approach (Fig. 1) traces 

each individual image stack to obtain the intermediate 
tracing results, which are then combined together by a post-
processing procedure to generate the final 3D tracing results. 
The tracing of individual image stacks is performed by our 
DTL-NN that consists of three main cascade components, 
which were trained to detect foreground, extract central lines, 

and adapt to real images, respectively. Below we explain in 
details how we effectively train the DTL-NN tracing model 
using synthetic data and transfer-learning, and how the 
intermediate tracing results are combined together to produce 
the final tracing results.  

B. Synthezie Training Data 
It is well known that a large training data set of high 

quality is essential to obtain a superior machine-learning 
based model.  For example, one of the driven forces behind 
recent striking advances in Computer Vision is high quality 
manually labelled training sets, such as, ImageNet [21] . 

 However, the amount of high-quality manually labeled 
neuron images is highly limited with respect to the almost 
infinite number of possible experimental conditions and 
subjects. To deal with this problem, we generated a large-
scale training dataset by synthesizing a large number of lines 
in all directions with different widths and intensities in 
various noisy backgrounds. The ground truth of this dataset 
is obviously known. Some examples are shown in Fig. 3. 
Currently, we only consider lines as the basic structural 
elements of neurites. In the future, we can include more 
types of basic structural elements.  

C. Train Foreground Detection Module 
Foreground detection is a crucial step and can greatly 

affect downstream analysis. Most neuron tracing methods 
built their own model for detecting foregrounds manually 

Combine 
tracing 

results of 
individual 
2D images 

into final 3D 
tracing result 

Figure 1. The pipeline of our neuron tracing approach. 
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Figure 2. Training procedures of our neural network model. 
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                 (a)                             (b)                             (c) 
 
Figure 3. A synthetic training sample. (a) Foreground mask, (b) 
centerline mask, (c) synthesized image after adding noise to (a). 
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(e.g., specify a relatively simple parametric form of the 
foreground detection models, and the model parameters are 
either fixed or can be adjusted based on local characteristics 
of images that can be calculated by some fixed rules). We 
would like to automatically learn a foreground detection 
model from data, which can learn to adjust itself to different 
imaging settings in the future.  Initially, we built a large 
CNN (Fig. 4) for detecting foreground, which however 
worked relatively poor (Fig. 5b) especially in the areas 
around bright neurites. We hypothesized that the foreground 
detection results can be improved if the foreground detection 

model is able to take better advantage the local structural 
information, such as, directions. The model in Fig. 3 may be 
able to learn some local structural information, however, 
implicitly. In addition, mixing various structural information 
together makes learning more challenging (i.e., harder to 
converge to a better solution).  

Therefore, we redesigned our CNN-based foreground 
detection model (Fig. 6), and explicitly trained it to take 
advantage of local direction information. We divided all 
directions into six direction spans: [-22.5° 22.5°], [7.5° 
52.5°], [37.5° 82.5°], [67.5° 112.5°], [97.5° 142.5°], and 
[127.5° 172.5°]. This design mimics the anatomy of the 
vision neural systems in carnivores and primates, in which 
neurons with similar direction preferences are clustered into 
radial columns and are organized in a systematic fashion 
across the V1 cortical surface [22] .  

The synthetic training dataset was also divided into six 
subsets, one for each direction span. In addition, we design 
the CNN to consist of six columns, one for each direction 
span. Each column was pre-trained by using the training 
subset of the same direction span so that a trained column 
only responds to the directions within its chosen direction 
span. All neural network columns were then assembled into 
one CNN that was fine-tuned using all training data. This 

Figure 4. A trial CNN architecture for foreground detection. 
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Figure 5. (a) Original image. (b) Foreground detected by the CNN 
designed in Fig. 4. (c) Foreground detected by the CNN design in Fig. 
6. 

Figure 6. Improved CNN architecture of the foreground detection module. 
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arrangement sped up the training the whole CNN and 
produced significantly better results (Fig. 5c).  The choice of 
the spans is based on the window size of our convolution. 
Since the window size of our first convolution layer is 5 x 5, 
the minimum angular change it can capture is around 27°. 
Thus we separated the direction spans by 30° apart. Each 
direction span covers 45° so that neighboring direction spans 
have 15° overlap. This non-exclusive design allows the 
model to better detect lines close to the boundaries of the 
direction spans. 

D. Train Centerline Extraction Module 
After obtaining a robust foreground detection module, we 

trained a centerline extraction module which takes the output 
of the second-to-the-last layer of the foreground detection 
module and outputs the corresponding centerline. Basically, 
we considered the foreground detection module as the 
feature extractor that learns the intermediate representations 
of line structures for the centerline extraction module. A 
fully connected layer was added between the FC-16 and 
Softmax layers of the foreground detection module (Fig. 7). 
This modified network was trained to output the centerlines 
of line structures.  We found that it was easier to first train a 
foreground detection module and then insert a centerline 
extraction module than to train one big neural network to 
directly extract centerlines. Comparing the neural network 
weights of some neurons in the foreground detection module 
shows that their weights share similar patterns before and 
after being trained to extract centerlines (Fig. 8). This signals 
that the neurons in the foreground deteciton module have 
been appropriately trained during the training step of the 
foreground detection module.  

E. Adaptation to Real Images and Post-Processing 
Previous steps give us a deep neural network that is able 

to extract central lines of synthetic line structures in noisy 
backgrounds. More importantly, the deep neural network has 
learned internal representations for describing various line 
structures and their centerlines, which can also be very 
useful, although not perfect, for representing curvature 
structures in real images. However, real images can have 
distributions quite different from those in our synthetic 
training data. To overcome the differences between synthetic 
images and real images, we apply transfer learning to adapt 
the trained network to real data by using a small amount of 
manually labelled real data that are much easier to obtain. In 
doing this, we use a hidden layer (FC-24) to connect the FC-
8 layers of the Centerline Extraction CNN to a Softmax 
output layer (Fig. 9). This allows us to transfer the 
knowledge learnt from synthetic dataset to trace neurites in 

Figure 7. Centerline extraction neural network module. 
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Figure 8. (a) & (c) Weights of a few neurons in the foreground 
detection CNN responsible for 30° and 150°, respectively. (b) & (d) 
Weights of the neurons in the centerline extraction CNN 
corresponding to the neurons in (a) & (c).  
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Figure 9. Deep-Transfer-Learning neural network architecture. 
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real images. The new FC-24 and Softmax layers learns how 
to utilize the representations learned from synthetic lines and 
adapt them into new internal representations for processing 
real data.  

Although the model is trained to output 2D centerlines, 
its outputs are more similar to a shrunk foreground because 
the model relies on information in local patches and the 
outputs are softmax results. There is no constraint to force 
the model to output centerlines with width of exact one.  To 
obtain 3D tracing results, we developed a post-processing 
module to combine the 2D tracing results of the individual 
stacks of a 3D image into a 3D tracing result.  The post-
processing module mainly includes two steps: (a) link the 2D 
tracing results across stacks based on minimum spanning 
tree to obtain a 3D map; and (b) apply thinning to the binary 
3D map to obtain the final 3D neurite tracing result.  

III. EXPERIMENTAL RESULTS 
We tested our automated neuron tracing methods on a 

dataset containing 23 Drosophila neurons provided by the 
BigNeuron project [23][24] . Typical tracing results (Fig. 10 
& 11) show that our model is able to accurately tracing 
neurons in real 3D microscopic images although it was 
trained primarily using synthetic data. Our DTL-NN is able 
to transfer knowledge from synthetic data into real images by 
adding only one extra hidden layer. The number of 
parameters added to perform the transfer learning is 
extremely small (only ~1200 parameters).  Hence training of 
the DTL-NN can be done efficiently.  

Table 1 shows the test results computed as the average 
and standard deviation of pairwise distance from the gold 

results to our detection results, and pairwise distance from 
our detection results to the gold results. The errors are 
mainly caused by the following reasons. First, the resolution 
sensitivity is reduced by the average pooling layers within 
the network. Second, some real data contain noise much 
stronger than what was used in training the network, or some 
neurites in real data are extremely faint. This led to false 
positives (i.e., falsely detected neurites) and false negatives 
(i.e., missed neurites), and hence dramatically increased the 
detection error. A large-scale experiment is being carried out 
to thoroughly test this approach.  

TABLE I. PAIRWISE DISTANCE WITH GOLD RESULTS 

Pair 
Pairwise Distance 

Average Standard Deviation 

Gold to Predict  1.363 1.421 

Predict to Gold 1.377 1.539 

 

           
                                   (a)                                    (b) 

                
                                    (c)                                   (d) 
Figure 10. A tracing example. (a) Original image. (b) Centerline 
extraction result. (c) Post-processed result. (d) Manually labeled result. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Another tracing example. (a) Original image. (b) Centerline 
extraction result. (c) Post-processed result. (d) Manually labeled result. 
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IV. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a Deep-Transfer-Learning 

neural network which is able to learn essential features from 
synthetic lines and transfers the learnt knowledge to process 
real neuron images. One major advantage of our approach is 
that it does not requires a large amount of manually labeled 
training data. Currently, our approach trains the model to 
work on 2D images, and use a post-processing step to obtain 
the final 3D tracing results. We plan to design and train a 
DTL-NN to directly processes 3D images rather than process 
each slice, such that we may obtain more accurate 3D 
features from images than this network. We will also try to 
design a network, which can involve global information of 
the image, to further improve our results. More extensive 
validation tests of our approach will be carried out.   
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