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Abstract—The binding affinity between the Spike protein 
and the angiotensin-converting enzyme 2 receptor (ACE2) 
is one of the main determining factors in the replication 
rate of Severe Acute Respiratory Syndrome of 
Coronavirus-2 that directly affects the clinical condition of 
the patient. The presence of multiple variants indicates a 
high mutation rate of the virus. Furthermore, genetic 
variations within the coding regions of ACE2 can impact 
the susceptibility, severity, and progression of the disease. 
However, the effect of these mutations on the stability and 
affinity of the Spike-ACE2 interaction is not well 
understood. To gain insight into this interaction, 
molecular dynamics simulations are used. Although these 
simulations produce a large amount of data, they do not 
make easy to identify residues that play a significant role 
in the interaction between the proteins. To overcome this 
issue, we combined molecular dynamics simulations and 
supervised machine learning techniques to identify the 
residues that have the most impact on the interaction and 
dynamics of the complexes. The molecular dynamics 
simulations showed slight variations in complex 
trajectories, but highlighted key residues and loop region 
residues. Despite stable behavior among variants with 
only minor differences, the machine learning methods 
identified critical residues in ACE2 and Spike proteins that 
can affect virus-host interaction. 

Keywords—COVID-19; Bioinformartics; Molecular Docking; 
Polymorphism; Variants. 

I.  INTRODUCTION 

On March 11, 2020, the World Health Organization 
characterized COVID-19 [1] as a pandemic, an infectious 
disease caused by the Severe Acute Respiratory Syndrome of 
Coronavirus-2 (SARS-CoV-2). To date, November 2022, 
more than 630 million cases have been confirmed, including 
more than 6.6 million deaths globally. In Brazil alone, there 
are more than 35 million cases with almost 690,000 deaths 
[2]. COVID-19 is a respiratory disease, transmitted by the 
epithelial cells of the lung through aerosols, which can lead 
from mild viral pneumonia to Acute Respiratory Distress 
Syndrome, and in even more serious cases leading to 
multiple organ failure [3]. It mainly affects individuals with 
comorbidities and/or some type of immunosuppression. 
Some people develop the severe form of COVID-19, while 
others are asymptomatic [3][4]. The entry of the virus into 
the cell is one of the most important processes in viral 

infection, being the target in the development of vaccines 
and drugs. The invasion of SARS-CoV-2 into host cells 
depends on the interaction of the Spike structural protein 
with the human protein, present in the cell membrane, 
angiotensin-II converting enzyme [5] and  variants of this 
protein have been associated with susceptibility to SARS-
CoV-2 [3][4].  

SARS-CoV-2 has a high probability of mutating and 
adapting better to the environment [4]. The current Variant 
of Concern (VOC) is Omicron (B.1.1.529 - several 
countries), prior to this, also classified as VOC: Alpha 
(B.1.1.7 - United States), Beta (B.1.351 - Africa do Sul), 
Gamma (P.1 - Brazil) and Delta (B.1.617.2 - India) [1]. P2 
variant (or Zeta variant) (B.1.1.28.2) was detected in the city 
of Rio de Janeiro in October 2020. The mutations suffered 
by SARS-CoV-2 observed in its variants, as well as the 
polymorphisms observed in the ACE2 protein, raise 
questions such as whether genetic variability of the virus and 
the host could explain the different degrees of severity in 
cases of infection. How these mutations contribute to 
improving the stability and affinity between Spike-ACE2 
complexes is not a process fully understood.  

Molecular Dynamics simulations have been used to 
assess the stability and affinity between complexed 
structures. The trajectories resulting from these simulations 
generate large amounts of data from thousands of atoms at 
each time interval. The stability of the complex is analyzed 
by calculating the root-mean-square deviation and also by 
the number and type of contact between the structures. 
However, the high-dimensional nature and noisy output of 
the simulations make it extremely difficult to extract 
meaningful features from the trajectories, thereby hindering a 
deeper understanding of molecular processes 

Machine learning techniques are employed to analyze 
vast data sets. These methods assist in identifying key 
differences between the trajectories obtained from molecular 
dynamics simulations. Fleetwood et al. [6] demonstrated the 
usefulness and potential of machine learning techniques in 
comprehending biomolecular processes by applying both 
supervised and unsupervised techniques to three different 
biological systems. Inspired by this work, we utilized 
molecular dynamics simulations to evaluate the stability of 
complexes and applied supervised machine learning 
techniques using the resulting trajectories as input data to 
investigate the effect of genetic variability in SARS-CoV-2 
and ACE2 polymorphisms on the interaction region between 
these proteins. 
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II. MATERIAL AND METHODS 

In this section, we will outline the methods employed to 
perform molecular dynamics simulations and implement 
machine learning architectures. 

A. Molecular Dynamics 

The tertiary structure of the complex Spike and ACE2 
(PDB ID: 6LZG) was obtained from the Protein Data Bank 
[7]. Modeller software v9.23 [8] was used to fill the missing 
atoms. 

GROMACS package version 2019.3 [9] was used in the 
MD simulations of complexes. The force field used was 
CHARMM36 [10]. The molecules were solvated with 
TIP3P water molecules and neutralized by adding the 
appropriate number of Na+Cl ions considering the ionic 
concentration of 0.15 M. The energy minimisation was 
performed using the steepest descent method with a 
maximum force of 1000 Kj/mol.nm. After minimization, the 
systems were equilibrated in two stages: a canonical NVT 
set followed by an isothermal-isobaric NPT set. The NVT 
equilibrium was performed with a constant temperature of 
300 K for 500 ps. The NPT equilibrium was performed with 
a constant pressure of 1 bar and a constant temperature of 
300 K for 500 ps. The production step was conducted at 300 
K for 100 ns and the trajectories were saved every 10 ps. 
Four complexes ACE2-Spike complexes were analised: 
ACE2-Spike (wild) and 3 ACE-Spike (Omicron, Delta and 
P2 – Zeta variant). 

B. Machine Learning 

Based on Fleetwood et. al [6], we employed molecular 
dynamics trajectories as input for supervised ML 
techniques. To reduce the influence of a single model and 
enhance the stability of our results, we utilized two differing 
supervised machine learning classification strategies: 
Multilayer Perceptron (MLP) and Random Forest (RF). 
These methods were used to identify residues that most 
significantly contribute to the difference in the dynamic 
behavior between the complexes (Fig. 1). A multiplayer 
perceptron is a type of artificial neural network has multiple 
layers between input and output layers. Meanwhile, Random 
Forest is an ensemble learning technique that is used for 
classification by building many decision trees and finding 
the mode of the classes of each tree. We chose to use both 
RF and MLP because they are powerful and commonly-
used supervised machine learning algorithms. RF excels at 
performing both regression and classification tasks and is 
well-known for its robust performance and handling of 
noisy and missing data. MLP, a feedforward neural network, 
can handle regression and classification problems, and is 
frequentetly used for complex, non-linear relationships 

The input features for these algorithms include the 
contact distances between ACE2 residues and Spike. These 
distances were calculated as the minimum distance between 
the heavy atoms of residues in the interaction region. Only 
distances less than 15 Å were considered in forming our 

dataset. The values were then inverted, normalized and used 
as inputs. 

 
 

 
Figure 1.  Flowchart of the Machine Learning methods used on this study. 

The MLP was implemented using the open-source 
machine learning library Scikit-learn in Python [11]. We 
also used the data analysis and manipulation library Pandas 
[12], and the numerical computing library NumPy [13]. 
Scikit-learn is a widely-used, well-documented, and 
efficient machine learning library that provides quick 
prototyping and testing, 

We employed 8 hidden layers with 100, 75, 50, 40, 30, 
20, 10, and 5 neurons respectively, with ReLU activation. 
ReLU is a popular activation function in deep learning that 
is known for its effectiveness. The labels were one-hot 
encoded to represent categorical data numerically. The 
training process used the Adam optimizer [14] to adjust the 
node weights. This optimizer is frequentely used due to its 
demonstrated efficacy.  

We created the first profile by building a correlation 
matrix for training and testing. Four additional profiles were 
generated through bootstrapping and features with strong 
correlation were discarded using a 0.9 threshold. As a result, 
5 profiles were obtained with 1828, 1907, 1925, 1909 and 
1934 features respectively, each with 40 thousand frames. 
The MLP was trained with each of these profiles, resulting 
in 10 total MLPs. We used a train-test split to evaluate the 
performance of the ML algorithms, with 80% of the data in 
the training set  and 20% in the test set. 

Important features for classification were determined 
using Layer-Wise Relevance Propagation (LRP) [15] with 
the LRP-0 rule. LRP assigns relevance scores to input 
features, making it possible to visualize which inputs have 
the most impact on a specific prediction made by the model. 
This enhances transparency and confidence in the decision-
making of neural networks 

Our Random Forest model utilized the Gini impurity 
coefficient, which ranges from 0 to 1, with 0 indicating a 
pure split and 1 representing maximum impurity. The aim 
was to choose splits that would lower Gini impurity, 
resulting in more homogeneous class distribution in the 
tree's leaves. RF The RF classifier uses an internal 
bootstrapping process to produce consistent profiles. The 
model consisted of 100 decision trees, with 3201 features 
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and 40 thousand frames. The one-versus-the-rest method 
was employed to claculate feature importance, a strategy in 
multi-class classification that plits the problem into several 
binary classification problems. RF was implemented using 
the Scikit-learn library. 

III. RESULTS AND DISCUSSION 

The outcomes achieved at each step of our work will be 
detailed in the subsequent sub-sections. 

A. Molecular Dynamics 

We sought differences in the interactions between 
SARS-CoV-2 variants and the ACE2 protein through 100 ns 
molecular dynamics simulations for each complex. The 
simulation data was used to compute Root Mean Square 
Deviation (RMSD) and Root Mean Square Fluctuation 
(RMSF). Fig. 2A and fig. 2B show RMSD values for ACE2 
and Spike proteins, respectively.  

 

 
 

 

 

 
Figure 2.  Analysis of the trajectories obtained in the MD 

simulation. (A) RMSD of ACE2 (B) RMSD of Spike. 

Results demonstrate stability in the ACE2 protein for all 
complexes at around 10ns, with similar RMSD values 
ranging from 0.2 to 0.4 nm.  

The RMSF analysis of the ACE2 trajectory (Fig. 3A) 
showed no significant fluctuations, limited, wich were 
limited to loop regions. 

 The Spike protein (Fig. 3B) showed that the Lys444 
residue of the delta variant had the highest fluctuation peak 
of 0.20 nm, followed by the omicron variant (0.16 nm), P2 
variant (0.16 nm), and wild-type (0.14 nm). Lys444 is 
located close to Gly446, Tyr449, and Gln498, which have 
polar interactions with ACE2, according to a study by Sironi 
et al. [16]. 

 

 

 
Figure 3.  Analysis of the trajectories obtained in the MD 
simulation. (A) RMSF of ACE2 (B) RMSF of Spike. 

The Tyr449 residue is situated near to Leu452, which 
was mutated to arginine in the delta variant. Other residues 
with high fluctuation peaks are located in loop regions. 

B. MLP 

Table 1 shows the five most significants pairs for each 
complex. The residue importance values for each pair were 
determined  by finding the average LRP-0 value assigned to 
these pairs in the generated MLPs. Key residues responsible 
for differences in binding between Spike variants and ACE2 
have been identified. Some of these were previously noted 
in previous studies.  

TABLE I.  RESIDUES IMPORTANCE OBTAINED FROM MLP 

Variant 
MLP 

Residue Pair (ACE, 
Spike) 

Importance 
Value 

Wild 

(SER106, GLY485) 
(VAL107, PHE486) 
(GLN89, SER477) 
(SER19, PRO479) 
(ALA71, GLU484) 

1.0 
0.99 
0.98 
0.89 
0.82 

Delta 

(ASP30, GLU484)  
(GLN24, LYS417)  

(GLY352, ARG408) 
(ALA65, SER443)  
(ASN33, GLN498)  

1.0 
0.71 
0.68 
0.62 
0.60 

Omicron 

(GLU329, SER438) 
(GLN42, SER349)  

(TYR381, GLY502)  
(GLY352, ASN448)  
(GLY354, GLY504)  

1.0 
0.96 
0.92 
0.91 
0.9 

P2 

(PRO321, ARG403)  
(SER19, ASN477)  
(SER19, PRO479)  

(GLN325, SER371)  
(GLU37, THR415)  

1.0 
0.92 
0.87 
0.84 
0.81 

 
The analysis of the results highlights the role of key 

ACE2 residues GLN24, GLN42, GLN325, GLU329, and 
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GLY354 in interaction with protein S. Moreover, ACE2 
residue SER19, which was commonly seen among the pairs, 
is also important. A mutationin this residue S19 to P 
increased the interaction between ACE2 and Spike protein. 
However, mutations in residues ASN33 (N33I) and 
GLY352 (G352V) were found to reduce this interaction 
[17]. 

Our results highlight the key residues in the Spike 
protein that can contribute to variations in binding between 
Spike variants and ACE2. The mutation of the LYS417 to 
K417N, increases virus transmissibility. The SER477 
residue (S477N mutation) enhances binding affinity. The 
GLU484 residue, when mutated to E484K, has been linked 
to antibody resistance [4]. The only exception is the 
simultaneous presence of the (SER19, PRO479) pair in both 
the Wild and P2 variants, as no other pair of residues 
showed were significance across other variants. 

C. RF 

Table 2 displays the top five residues that were 
determined by the Random Forest model, based on their Gini 
importance values. 

TABLE II.  RESIDUES IMPORTANCE OBTAINED FROM RF. 

 

Variant 
RF 

Residue Pair (ACE, Spike) 
Importance 

Value 

Wild 

(SER19, VAL483)  
(SER19, CYS488)  
(SER19, CYS480)  
(SER44, TYR505)  
(SER19, GLN474)  

1.0 
0.95 
0.60 
0.52 
0.52 

Delta 

 (ALA36, ASN501)  
(GLY66, ASN501)  
(ALA342, THR500)  
(ASN103, TYR505)  
(LYS68, ASN501)  

1.0 
0.98 
0.93 
0.71 
0.64 

Omicron 

(ALA25, ASN417)  
(GLN24, ASN417)  
(ILE21, ASN417)  

(LYS353, ARG498)  
(THR27, ASN417)  

1.0 
0.98 
0.97 
0.94 
0.88 

P2 

(SER106, LYS484)  
(SER19, CYS480)  

(SER105, ASN487)  
(GLY104, ASN487)  
(SER105, LYS484)  

1.0 
0.90 
0.87 
0.80 
0.79 

 
The residues pairs identified by the  Random Forest 

model differed from those identified by the MLP model. 
However, some residues were identified by both methods. 
Several of these residues have been previously reported, 
including TYR505 in the Spike protein, whose mutation can 
increase transmission [4], and ARG498 in the Omicron 
variant, which leads to increased binding affinity with ACE2 
[18]. SER19, LYS353, and THR27 are crucial residues in 
ACE2 [17]. SER19 was found repeatedly among pairs and 
variants. The exception was the (SER19, CYS480) pair, 
which was present in both the Wild and P2 variants, but no 
other residue pair was present in multiple variants. 

IV. CONCLUSIONS AND FUTURE WORK 

The interaction between the Spike and ACE2 proteins is 
crucial in determining the replication rate of SARS-CoV-2 
and affects the progression of the disease in infected patients. 
SARS-CoV-2 exhibits a high mutation rate, as evidenced by 
the emergence of various variants over the past two years. 
Polymorphisms in the coding regions of ACE2 may impact a 
patient's susceptibility to the disease, as well as its severity, 
and clinical outcome. However, the impact of mutations and 
polymorphisms on the stability and interaction between the 
SARS-CoV2-ACE2 complex is not yet fully understood.  

In our work, we combined molecular dynamics 
simulations and machine learning techniques to examine the 
interaction between SARS-CoV-2 variants and human 
ACE2. The simulations provided insight into the protein 
complex interaction, while ML methods identified important 
residues in the binding region. 

Our molecular dynamics simulations showed stability 
similarities among the variants. The ACE2 protein complex 
with Spike-Wild showed slightly lower stability, as indicated 
by RMSD values, compared to the SARS-CoV-2 variant 
complexes. This aligns with the expectation that mutations in 
the Spike interaction region increase stability. The ACE2 
protein in the wild-type complex is therefore more flexible 
and less stable. The Spike protein in the Delta variant had 
slightly higher RMSF values, with a peak at Tyr444 near key 
residues that interact with ACE2, including Tyr449 near the 
L452R mutation. Replacing the hydrophobic Leucine with 
the polar Arginine may enhance intra- and intermolecular 
interactions. 

We achieved an accuracy score of 1 and loss values less 
than 0.005 for both machine learning methods using the test 
set. High accuracy and low loss on test data suggest that the 
model is performing well, not guarantee that the model is not 
overfitting. Further evaluation using other data sources, such 
as cross-validation, is needed to determine if overfitting is 
present. 

The ML approaches successfully identified key residues 
from both proteins responsible for differences in binding 
region, some of which have been previously reported in the 
literature. This demonstrates that our method was able to 
identify residues that significantly contribute to the 
distinction between virus and host interaction due to 
mutations in Spike (variants) and ACE2 polymorphisms. 

Our study shows that machine learning can simplify the 
complexity of virus-host interactions by reducing 
dimensionality and identifying crucial residues. Our findings 
indicate that there may be additional important residues 
beyond those previously considered, which can impact the 
interaction between Spike and ACE2 proteins. These 
residues could account for differences in stability and 
affinity, leading to varying levels of susceptibility to SARS-
CoV-2 and resulting in varying degrees of disease severity. 
In our work, we aim to gain a deeper understanding of the 
relationship between mutations and the affinity between 
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Spike-ACE2 by not only exploring other variants, but also 
incorporating various machine learning methods. 
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