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Abstract—Single-cell analysis has real potential for reshap-
ing the future of biomedical research allowing for a better
understanding of the natural properties of both healthy and
diseased tissues that, in turn, allow for better opportunities for
overcoming current challenges in drug discovery, diagnostics and
prognostics. A large body of research in this field produces
large quantities of data. Merging with fast-developed Machine
learning (ML) and Artificial Intelligent (AI) algorithms would
allow single-cell analysis research to be conducted more efficiently
and accurately than currently possible. Therefore, there has been
a surge of ML and AI developments for the whole life cycle
of the downstream single-cell analysis process. However, there
is a limitation to reusing, exchanging, sharing, applying the
most advanced technologies, and automating the experimental
environments and outcomes in cross-disciplinary collaborative
research. This paper presents an automation framework to
address these limitations and shows how AI and ML research can
contribute to biomedical automation and control. Moreover, the
real-world case will be evaluated to demonstrate the prototype
implementation at the end of the paper.

Index Terms—Single-cell analysis, RNA-Seq, Machine Learn-
ing, AI Automation, Downstream Analysis, Knowledge Graph

I. INTRODUCTION

Since the turn of the century, bio-informatics research un-
derwent a technological revolution allowing the generation of
single-cell genomics data. One of the most common and fast-
developed techniques is single-cell Ribonucleic acid sequenc-
ing (RNA-seq) which represents quantification and profiling
of the changing gene expressions in single cells and how
they differ across thousands of cells within a heterogeneous
sample [1]. Single-cell genomics offers a unique opportunity
to allow joint multidisciplinary research across multiple types
of datasets [2]. The generation of large datasets has its own
challenges that include but are not limited to sharing and
reusing computational methods, algorithms, pipelines, and
other resources. In addition, the automatic creation of a new
analysis process composing existing research outcomes to

solve a given task is crucial to fast-track the research output,
and dissemination [3], [4]. Our research aims to provide an
automatic AI framework that could address the challenges in
single-cell downstream data analysis including data annota-
tion, data quality control, data normalisation, data dimensional
reduction, and data analysis [5]. In data analysis, cutting-edge
methods such as Machine learning algorithms can be applied
for more efficient and meaningful classification, clustering,
segmentation, and prediction [6]. With the development of
Deep Neural Networks (DNN), models have been developed
for single-cell analysis which creates further technology bur-
dens to reuse and deploy the solutions by non-programming-
focused researchers [7].

The paper has two main contributions to make the down-
stream data analysis more shareable and reusable and auto-
matically provide new solutions creatively:

1) The developed analysis methods can be shared and
reused as semantic microservices registered in the frame-
work with annotations. Therefore, the microservices can
be dynamically allocated and composed later to perform
new and suitable tasks.

2) A semantic knowledge representation and learning
framework is developed. The framework can learn the
context knowledge of the tasks and dynamically search,
compose, and run the registered microservices to com-
plete future (similar) requested tasks.

In Section 2, current single-cell downstream analysis meth-
ods, pipelines and tools will be discussed. In Section 3, the
proposed automatic AI framework will be introduced and
explained. In Section 4, the use case will be evaluated with
visualisation results. In Section 5, the conclusion will be
provided with future work discussions.
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II. SINGLE-CELL DOWNSTREAM ANALYSIS METHODS,
PIPELINE AND TOOLS

Single-cell RNA sequencing (scRNA-seq) data can be anal-
ysed using big data processing and machine learning technolo-
gies. These technologies enable the investigation of complex
biological questions at the single-cell level that can result in
more direct and physiologically relevant and urgently needed
observations and understandings. [8] Briefly, the single-cell
RNA sequencing process can be broken down into several
sequential stages [9], [10]:

• Single-cell isolation can occur from healthy or diseased
tissue from any organ of interest. The cell is lysed,
which is followed by RNA isolation, purification and
quantification, RNA fragmentation, and cDNA generation
(reverse transcription uses primers are used to initiate
binding to its complementary sequences on the RNA
template and serves as a starting point for the synthesis of
a new strand ensuring the preservation of original cellular
information [11].

• Library-based amplified and tagged cDNA from each cell
can be pooled and sequenced [12]. At the end of this
stage, large quantities of raw data are prepared.

• Computation algorithms focused on downstream data
analysis. The analysis can be used for data reprocessing
(quality control), normalisation, feature extraction to clus-
tering, sub-population identification, and understanding
gene expression differences across different contexts [13].

In the downstream analysis, quality control refers to the
identification of low-quality cells (culture of single cells in
droplets, plates, or microfluidic devices can be technically
challenging, which can result in the cell undergoing biological
stress or even death. On occasion, data from more than one
cell can be captured, or even data is recorded where no cell is
present at all these undesired variances from the experimental
norm are referred to as “low-quality”). This is generally
achieved by analyzing the raw data, which is the most critical
step for downstream analysis and results in interpretation [14].
Numerous tools (i.e., FASTQC, Kraken, and RNA-SeQC) [15]
with different metrics have been developed for quality control,
such as the total number of reads detected per cell and the total
number of unique genes detected in each sample. These tools
provide interfaces allowing researchers to upload the raw data
to visualise and process the data with specified metrics and
thresholds. For example, “External RNA Controls Consortium
Spike-In Controls” can be used to provide information on the
sensitivity, specificity, and dynamic range of the datasets by
measuring abundances and ratios between spike-in RNAs and
endogenous RNAs. This ratio can estimate the total amount
of RNA in the captured cells.

The normalisation step is also essential to ensure accurate
and reliable downstream analysis. Normalisation approaches
not only account for sequencing depth but also account for
library sizes. Library sizes vary for many reasons, including
natural differences in cell size, variation of RNA capture,
and variation in the efficiency of PCR amplification used to

generate enough RNA to create the sequencing library. There
are two main approaches to this correction. Many methods
use a simple linear scaling to adjust counts such that each
cell (row) has about the same total library size. Examples
include converting to counts per million (CPM) and closely
related methods such as scran. While simple, these approaches
do a reasonable job of correcting for differences in library
size. Other methods are more complex and helpful in dealing
with complex sources of unwanted variation (e.g., for highly
heterogeneous populations of cells with different sizes) [18].
The extra function of Removing Unwanted Variation (RUV) is
proposed by [19], which adjusts for nuisance technical effects
by performing factor analysis on suitable sets of control genes
(e.g., ERCC spike-ins) or samples (e.g., replicate libraries).

The feature extraction step focuses on dimensionality reduc-
tion which will increase the analysis interoperability (a large
set of variables and return a smaller set of components that
still contain most of the information in the original dataset) and
decrease the analysis complexity. The most popular algorithms
are tSNE (t-Distributed Stochastic Neighbour Embedding) [16]
and UMAP (Uniform Approximation and Projection) [17].
tSNE combines dimensionality reduction (e.g., PCA) with
random walks on the nearest-neighbour network to map high-
dimensional data to a 2-dimensional space. UMAP is a non-
linear and nondeterministic dimensionality reduction method
that requires the random seed to ensure reproducibility. While
tSNE optimises for local structure, UMAP tries to balance the
preservation of local and global structure [18].

The final step is clustering or classification analysis to
understand differences in gene expression. Machine learning
algorithms such as K-means, logistic regression, support vector
machines, random forests, and neural networks can be applied
[20]. Asking bioinformatics scientists and researchers to code
solutions step-by-step is not helpful or efficient. Therefore,
many pipeline tools are developed such as Scater [13] (a
pipeline R library to support researchers to have a full pro-
gramming package on the downstream analysis). Most recently
the devCellPy [21] (a Python tool that enables automated
prediction of cell types across complex annotation hierarchies)
and the R code pipeline [22] and scWizard (a web application
tool for specifying the template of the downstream analysis)
[23] have been utilised.

However, these pipelines or the full stack of develop-
ment packages still require high-level knowledge of coding
with a specific programming language. Therefore, reusing,
exchanging, and sharing the experimental environments and
research outcomes in cross-disciplinary collaboration are very
challenging [24]. In addition, comparing many different algo-
rithms to find the best one for processing data and analysis
is extremely time-consuming and requires very specialised
knowledge [4], [25]. For instance, independent research groups
have not extensively used Deep Learning (DL) algorithms in
their biological studies due to a lack of expertise and robust
computation resources [26]. Finally, cutting-edge technologies
will be delayed in application because of the high bar of
programming. Thus, an automated framework will be the key
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Fig. 1. Platform Architecture

to addressing these challenges [27]. The paper proposes a
framework based on advanced knowledge graphs, microser-
vices, and knowledge-based AI technologies. This framework
aims to separate algorithm development and analysis tasks for
different disciplinary researchers. In the end, the platform will
be able to automatically create a downstream analysis pipeline
for bio-scientists.

III. THE PROPOSED FRAMEWORK ARCHITECTURE AND
PROTOTYPE DEVELOPMENT

The proposed framework consists of three layers as shown
in Figure 1:

• Semantic layer that provides metadata descriptions of the
analysis task context, policies, and microservices regis-
tered in the platform. The task context simply specifies
the inputs, analysis task, domain, and desired output data.
Each microservice only has one function to do a specific
task that can be performed in a different stage of the
analysis. The stages are normally data translation and
loading, data normalisation, data processing, and data
analysis.

• Automation layer that selects and coordinates microser-
vices to create a pipeline dynamically for completing
the task. The task can be a simple task handled by
one single microservice. However, most of the functions
need to compose several services together dynamically.
The automation performs selections and coordination
through semantic reasoning and context-based reinforce-
ment learning.

• The output and interaction layer that releases the results
of the analysis process which can be single microservice
outputs or a pipeline’s outcomes produced at each stage of
the analysis. The researchers can interact with the system
at any stage to suggest ratings and provide further context.
The interaction data will be fed back to the semantic
layers to enhance the policies.

Fig. 2. Microservice registration interface

A. Semantic Knowledge Graph schema

There are four types of schema defined using OWL (Web
Ontology Language) [28]. OWL is a knowledge graph ontol-
ogy design standard.

• The microservice ontology contains namespace, identity,
input data, output data, domain, dependency, purpose, and
ML category, as well as other properties to able, create
the dynamic invocation settings (see Figure 2).

• The task context ontology includes task identity, task
input data, task desired output data, and domain.

• The solution pipeline ontology defines a workflow created
by having one or composing multiple microservices to
achieve the desired output.

• The policies ontology defines scores for each service
against each task context with a default score of 0. This
means that the platform will learn the procedures and try
to remember the best solution by evaluating all possible
microservices or combinations.

B. Dynamic microservices selection and composition

We implemented five engines to deal with microservices
selection, invocation, optimisation, composition, and policy
learning. The process of dynamically creating a solution is
represented in Figure 3.

The analysis task context is the input to trigger the au-
tomatic process and the search engine then starts to create
a SPARQL (a knowledge graph query language) [29] query
to match semantic compatible microservices that can produce
the desired output. The outcomes from the search engine can
be either, a single result (a compatible single microservice
or pipeline found), multiple results, or no result. The first
situation is simply to complete the task and feed the results
to the task requester, then the requester can provide the score
as feedback to the policy engine. For the second situation, a
queue containing all possible compatible results is created to
allow the invocation engine to invoke them one by one to feed
the output to the optimisation engine that can select the best
solution through quality and performance evaluation as well as
run-time feedback from the task requester. For the no-matching
condition, the composition engine starts to try to compose
a sequence of microservice services to complete the task by
relaxing some context-searching criteria. The composition is

3Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-058-2

BIOTECHNO 2023 : The Fifteenth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies



Fig. 3. Automatic data processing and analysis engines

completed when the relaxed criteria are no longer required
after one or some other microservices produced a mediation
outcome to fill the gap. The composition process may also
succeed or fail. The results will be recorded through the policy
engine to remember the successful microservice, pipeline of
them, or no solution outcomes against a task context. In the
future, a similar task will be performed faster by reusing the
whole solution or part of the solution.

C. Interfaces for interaction

The web interfaces are developed in the framework to
support interactions. AI microservices can be registered and
shared by researchers or AI engineers (see Figure 2). Re-
searchers can then use the task interface to specify the analysis
task for asking the framework to provide the best solution
based on the knowledge about the registered microservices
(see Figure 4). Whenever a step is completed in the process
towards the goal, the output can be presented to the researcher
for immediate feedback to support the next steps or overall
input to the solution (see Figure 7). All the feedback will
contribute to the task context policies that improve the output
of the framework.

IV. USE CASE DEMONSTRATION

In this section, we use a clustering analysis case study to
highlight how the proposed framework can solve a real-world

Fig. 4. Task specification interface

Fig. 5. AnnData Structure

downstream single-cell data analysis task. The clustering anal-
ysis task works on a mouse brain single-cell RNASeq dataset.
The dataset is publicly available through a workshop tutorial
at [30]. There are five sequential processing and analysis steps:

1) Data semantic transforming and loading: For in-
stance, applying AnnData structure [31], where AnnData
stores observations (samples) of variables/features in the

Fig. 6. Quality control microservice semantic description
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Fig. 7. Visualisations of analysis steps

rows of a matrix (see Figure 5).
2) Data quality control: This aims to find and remove

the poor quality cell observation data which were not
detected in the previous processing of the raw data. The
low-quality cell data may potentially introduce analysis
noise and obscure the biological signals of interest in
the downstream analysis.

3) Data normalisation: Dimensionality reduction and scal-
ing of the data. Biologically, dimensional reduction is
valuable and appropriate since cells respond to their
environment by turning on regulatory programs that
result in the expression of modules of genes. As a re-
sult, gene expression displays structured co-expression,
and dimensionality reduction by the algorithm such as
principle component analysis can group those co-varying
genes into principle components, ordered by how much
variation they explained.

4) Data feature embedding: Further dimensionality re-
duction using advanced algorithms, such as t-SNE and
UMAP. They are powerful tools for visualising and
understanding big and high-dimensional datasets.

5) Clustering analysis: Group cells into different clusters
based on the embedded features.

Based on the above five steps, we developed seven microser-
vices which include AnnData loading, data quality control,
normalisation services (PCA+CPM algorithm), two feature
embedding services (t-SNE and UMAP), and clustering ser-
vices (K-mean clustering and Louvain graphical clustering
algorithms).

The microservices were semantically registered into the
framework through the interface. Figure 6 depicts an example
of quality control microservice semantic description in the
knowledge graph repository.

With all the microservices registered, researchers can start
expressing the analysis task to stop, interact and provide feed-
back at any stage during the process of automatically creating
the solution. The researchers can also see visualisations of
outputs produced by different steps (see Figure 7). Therefore,
researchers can provide preferences for selecting microservices
if there are options.

A realistic example is that a researcher can specify a
clustering task applied to the mouse brain single-cell RNASeq
dataset. The framework will first try to see if a single mi-
croservice can complete this task. The answer is ’no’ because
no semantic-matched microservice can take the RNASeq CSV
input and provide the clustering output. At this juncture, the
microservice that can take the RNASeq CSV will be invoked to
process the data into the next step with the output of AnnData.
If there are multiple choices in the composition sequence,
all possibilities will be invoked to run unless the previous
knowledge in the policies has a priority. The possibilities have
multiple solutions at the end for researchers to analyse for
giving professional feedback to the system. The feedback will
help greatly with the knowledge graph policies. For example,
suppose the researcher gives feedback to the system that
UMAP is the better embedding method than t-SNE but has no
priority on the clustering methods. In that case, the framework
will produce two possible clustering results shown in Figure
8.

V. CONCLUSION AND FUTURE WORK

The potential of single-cell research, along with ML and AI
technologies, to address critical biomedical and disease clas-
sification and clustering issues and facilitate comprehension
in the near future is substantial [32], [33]. Our research iden-
tified the current limitations of reusing, exchanging, sharing,
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Fig. 8. Two clustering outcomes from automatic process

applying the most advanced technologies and automating the
experimental environments and outcomes in cross-disciplinary
research collaboration. Therefore, we proposed an AI au-
tomation framework that can semantically share implemented
ML algorithms or AI models for a general purpose. Possible
solutions can be automatically generated through interactions
with researchers.

Our future work will increase the general informatics
purposed ML algorithms and AI model developments and
registration. More downstream analysis tasks can be tested
and evaluated.
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