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Abstract—Patient classifiers should be able to rely on the 

strength of machine learning methodologies while not losing 

biological interpretability. So far, most of the developed 

methods lack in one of the two aspects. We propose Simpati, a 

pathway-based tool for patient classification, which enables 

accurate classification focusing on the detection of relevant 

biological features and patient cohesive communities. The tool 

makes it possible to classify patients and investigate the 

features which were mostly representative of each class. It 

presents ad-hoc algorithms for the processing of patient 

similarity networks and proposes an effective simulation 

strategy as a recommender system to predict a patient's class 

based on graph topology. Its computational performance, 

classification performance and biological validation were 

performed on genetic data from different types of cancer and 

compared favorably with state-of-the-art competitors. 

 Pathway-based classification; Network-based propagation; 

Patient similarity network; Subgroup cohesive algorithm. 

I.  INTRODUCTION  

High-throughput biological data provide valuable 

information to clinicians for the prognosis and treatment 

response of patients. They offer quantitative and qualitative 

evidences to biomedical scientists for developing a study or 

confirming wet-lab results. Pathway-based analysis is a 

technique to investigate these data and detect molecular 

mechanisms related to the patients [1][2]. The pathway 

space is more robust to noise than the single feature level, 

summarizes the information of multiple patient’s molecules 

into the pathway activity (inhibited or activated), reduces 

the model complexity and maintains predictive accuracy 

[3][4]. Nowadays, pathway-based analysis is mostly 

performed through enrichment tools, fundamental methods 

which provide to clinicians understanding of the cellular 

functions affected in a patient, so that they can better define 

a disease phenotype and manually classify patients. 

Although some attempts have been made to couple pathway 

enrichment with classification [5], pathway-based classifiers 

that do not require pathway enrichment (i.e., supervised 

classifiers able to integrate simple pathway information to 

classify biological samples), are not yet strongly developed.  

Among them there are two classifiers that exploit the idea of 

pathway. The first is PASNet [6], which incorporates 

biological pathways in a Deep Neural Network. The neural  

 

network is composed by an input gene layer, a pathway 

layer, a hidden layer that represents hierarchical 

relationships among biological pathways and an output layer 

that corresponds to the patient classes. The second is netDx 

[7] and represents pathways thanks to the Patient Similarity 

Network (PSN) paradigm. In a PSN, each node is an 

individual patient and an edge between two patients 

corresponds to pairwise similarity for a given patient’s 

feature (e.g., gender, height, gene expression). All the user-

provided data are converted into PSNs and molecular data 

can be converted into networks representing pathways. This 

made netDx a pioneer classifier able to combine multi-

omics and pathway specific features. The decision system of  

the software relies on GeneMANIA [8], state-of-art gene 

function predictor, to select the best patient similarity 

networks and to use them in the classification. netDx 

revealed to be better than canonical machine learning 

algorithms and to provide a good level of interpretability 

based on the network's graphical representation. However, 

the software requires the user to define a similarity measures 

for each input data and manually tune hyper-parameters, 

making the results highly dependent on users choices. 

Additionally, netDx does not consider the topology of the 

networks for inferring the relationships between training and 

testing patients, providing a black box prediction difficult to 

interpret. 
A classifier should be able to benefit both from the 

interpretability of pathway-based enrichment tools and the 

strength of machine learning methodologies [9]. We want to 

stand up to the challenge by proposing the pathway-based 

classifier Simpati. Our method provides a novel feature-

selection strategy for classifiers based on patient similarity 

networks, implements a subgroup cohesive algorithm for 

extracting patient communities in PSNs and proposes an 

effective simulation strategy to predict a patient's class 

based on graph topology. Plus, the method introduces ad-

hoc operations for genetic data to reduce the number of 

hyper-parameters, similarity measures, or external software 

that the user has to define or install, it naturally handles 

outliers and integrates a graphical user interface to allow the 

visualization of the networks. 

This text is structured as follows: in the Methods section 

the general workflow of the tool is described and different 
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subsections detail the implementation of each step. These 

include all steps necessary for data preparation, feature 

selection and prediction, as well as a description of required 

input data and possible downstream analyses. In the Results 

section, Simpati performances are compared to those of  two 

state-of-the-art competitors, both in terms of computational 

requirements, classification performance and biological 

interpretation. Finally, the Conclusions section remarks the 

impact of this classifier, its limitations, and its future 

development.  

II. METHODS 

In this section, a general overview of Simpati’s workflow is 

given, then the other subsections detail the specific aspects 

of implementation of each step. The R package to use 

Simpati and its graphical interface can be found online 

[10][11]. 

A. Overview 

Simpati is a binary patient classifier, which exploits the 

similarity of patients’ molecular profiles at the pathway-

level. An overview of the method is shown in Figure 1. It 

takes as input patients' genetic profiles similarly to a gene 

differential analysis setting where counts have been library 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

normalized and two classes are to be compared. The method 

has to be provided also with a list of pathways and a gene  
interaction network. Simpati transforms the profile of each 

individual patient to take into account the interconnectivity 

of genes. Each profile is propagated over the interaction 

network and the transformed data are used in the 

downstream analysis. Next, Simpati creates, selects and 

cleans PSNs. For each set of genetic features falling into a 

pathway, Simpati creates a Pathway-Specific PSN (psPSN), 

tests if the two patient classes show separability and finds 

cohesive communities inside each class. A psPSN is 

retained if it shows a strong intra-similarity between patients 

of one class, while having at the same time a weak intra-

class similarity in the other class and a weak inter-class 

similarity. Once a network is selected as significant, Simpati 

removes patients showing an outlier pathway activity as 

compared to the rest of patients in the same class. Signature 

pathways are then used to classify patients of unknown 

class, based on their similarity to labeled patients.  

B. Network-based data preparation 

The first step is the transformation of patients’ biological 

profiles using a network-based propagation algorithm. Each 

single-level feature gets a new value based on its a priori  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                            

 

Figure 1. Simpati’s workflow: (a) Overview of the main steps. (b) Input: matrix of features by patients, feature interaction network, features grouped by 

pathways. (c) Each patient’s profile is propagated on the interaction network. (d) Within each pathway’s subnetwork patient’s similarity is computed. 
Patient’s similarities are the edges of Pathway-Specific Patient Similarity Networks (psPSNs). (e) A psPSN is signature if intra-class similarities are 

stronger that intra-class similarities of the other class and inter-class similarities. (f) Unknown patients are classified based on their similarity to other 

patients and on how well they resemble class representatives. 
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information (e.g., gene expression) and on its associations 

with all the other molecules in the network. At first, the 

values of the patient’s genetic features are mapped to their 

corresponding nodes in the provided interaction network, 

then Simpati propagates their values through 

the interactions. Each node, including the ones without a 

value, gets a score, which reflects its starting information 

and the amount given and received from its neighbors. 

Simpati propagates using the random walk with restart 

algorithm on the row-normalized network [12]. Propagating 

a patient’s profile starting from the genetic single-value 

features allows us to obtain a genome-wide profile. This is 

relevant because the profile can be compared across patients 

and gives a genome-wide overview of all the genes. 

Moreover, this is particularly beneficial when we deal with 

sparse data (e.g., somatic mutation data) where fewer 

features are identified from the analysis [13].  

C. Pathway specific patient similarity  

Simpati computes a pairwise similarity between patients 

for each set of genetic features falling into a specific 

pathway. In this way, Simpati creates a database of psPSNs 

reflecting the similarity of patients in each pathway. The 

nodes of a psPSN are all the patients with known class and 

the edges are weighted to reflect the pairwise similarity of  

patients in the features belonging to the pathway. 
The approach of measuring similarity on a pathway-

level, not only allows to reduce the dimensionality of the 

features to be compared across patients, but it also creates a 

feature space, which is more robust to noise compared to 

single features, while still retaining predictive accuracy [14]. 
Pathway-specific patient similarity is computed as a 

linear combination score of three factors. The first one (1) is 

the Weighted Jaccard and determines how similar the 

propagated values between two profiles are; the second 

factor (2) determines how high or low the propagated values 

are, while the third factor is the opposite of their difference 

(3). The similarity increases as the two patients have similar 

values and at the same time high values for the same single-

level feature. This is reflected in the final similarity 

measure, called Trending Matching (4): 
 

WJp(Pa,Pb) = ∑g min(mg,a, mg,b)                                 (1) 
                                                        ∑g max(mg,a, mg,b)   

 
MGp(Pa,Pb) = ∑g (mg,a+ mg,b)/2                                  (2) 

                                                           |p|                                          
 

DIFFp(Pa,Pb) = 1-|WJp(Pa,Pb)-MGp(Pa,Pb)|                          (3) 
 

TMp(Pa,Pb) = WJp(Pa,Pb)+MGp(Pa,Pb) +DIFF(Pa,Pb)              (4) 
 

where p is a pathway, Pa and Pb are two patients, g are all the 

features | g  ∈ p, and m is the matrix of features by patients. 

D. Feature selection and Best Friend Connector algorithm 

Simpati evaluates which pathways are signatures for one 

of the classes. The members of one class must be more 

similar (strong intra-similarities of one class) than the 

members of the opposite class (weak intra-similarities of the 

other class) and the two classes are not similar (weak inter-

similarities). In other words, the topology of the psPSN 

must reflect the presence of a clique of nodes belonging to 

the same class being more strongly connected than the rest 

of the patients. Despite this criterion being genetically 

intuitive, it is not easy to satisfy due to the complex 

structure of a patient similarity network where each patient 

is connected to any other member of the classes in 

comparison. One patient can easily be more similar to the 

patients of its opposite class in one specific pathway activity 

and decrease the separability of the groups. To account for 

this situation and making the feature selection more robust 

to outliers at the level of the single pathway, we developed 

an algorithm called Best Friends Connector algorithm 

(BFC). The latter is a cohesive subgroup detection algorithm 

implemented specifically for PSNs to find the strongest 

community of patients from each class in a network. The 

algorithm relies on the definition of the concepts of first 

order best friend (1BF), second order best friend (2BF) and 

outsiders. Given a root node, its 1BFs are its most similar 

nodes. 2BFs are the nodes that are not among the root’s 

1BFs but are 1BFs to one of the root’s 1BFs. Outsiders do 

not belong to any of the previous definitions. The algorithm 

performs the following operations. It first adjusts the 

weights of the intraclass connections. Precisely, it increases 

the similarity of two patients when they both have a weak 

similarity with outsiders and it decreases it in the opposite 

case. Then, it iteratively considers one patient as root, it 

assesses the average of the intraclass connection weights of 

the subgroup composed by his 1BFs and 2BFs. When each 

patient has been considered, the algorithm retrieves the set 

of best friends who got the strongest connections. The 

cardinality of the 1BFs and 2BFs subgroups, as well as the 

size of the final subgroup, are customizable.  

E. Classification 

The signature pathways identified by Simpati are used to 

classify unknown patients. Each of them is compared to 

already annotated patients and assigned to the same class of 

who is most similar to. However, the only strength of 

similarity could be misleading. The unknown patient could 

have the strongest similarity with outlier members of the 

class. Therefore, we designed Simpati to consider also how 

much the unknown patient represents the class. 
The patient to be classified undergoes the same 

preprocessing described for annotated patients: its profile is 

propagated in the interaction network and its pairwise TM 

similarity to each annotated patient is computed, so that the 

unclassified patient becomes itself a node in each signature 

psPSN. Then, Simpati associates the profile to one of the 

classes based on the results of two approaches. For the first, 

it determines the average similarity of the patient to the 

members of each class. The patient would be assigned the 

class to which it has the strongest similarity. For the second 
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approach, Simpati pretends that the patient belongs to one 

class and measures how far it is from being considered an 

outlier. The patient would be assigned the class in which it 

is considered less of an outlier with respect to the other 

members. More specifically, the patient is simulated to 

belong to one class and the BFC algorithm is run iteratively. 

At each run, the algorithm is asked to return a smaller 

number of strongly connected individuals. The iteration 

stops when the patient does not belong to the best subgroup. 

A large number of iterations reflects a strong similarity of 

the patient to the class representatives. Due to this, the 

patient would be a candidate to be assigned the class in 

which it survived the highest number of iterations. Simpati 

assigns the patient to the class that has been predicted by 

both the approaches. In case, the results are not concordant, 

then Simpati does not make the prediction and the pathway 

together with its PSN are removed from the downstream 

operations. This step is performed for all signature psPSNs, 

then the patient’s definitive class is the one to which the 

patient has been most frequently assigned. 
The classification performance are evaluated with a 

leave one out cross validation approach, such that iteratively 

one patient is considered unknown and composes the testing 

set, while the others are known and are used as training to 

determine which pathways are signature. The performance 

on the testing set are computed using area under the receiver 

operator characteristic curve (auROC) and area under 

precision recall curve (auPR) metrics. 

F.  Downstream Analysis 

The signature pathways that are used to classify at least 

one patient are reported in the final output of Simpati and 

information about which class they were identified to be 

signature for. To further pinpoint the most relevant 

pathways and confirm their signature role for a class, an 

empirical probability value is computed. On each signature 

psPSN it is tested whether by randomly shuffling the 

patients between the two classes, the pathway is still 

predictive of the original signature class. 
To improve the interpretability of the results some other 

information is computed. First, it has been established that 

signature pathways reflect strong similarity between 

members of one class. However, Simpati also reports 

whether the members are similar in having high values (e.g., 

high gene expression), reported as up-involved signature 

pathway, or low values (e.g., low gene expression), reported 

as down-involved signature pathway. Additionally, based on 

the BFC results, it is reported how many times a patient has 

been considered an outlier for its class. 
When the features of the profiles provided as input to 

Simpati are genes and the classification aims to determine 

association to a disease, it is possible to validate the 

biological relevance of the identified pathways within 

Simpati. Queries to the gene-disease associations database 

(DisGeNet) [15] and to the Human Protein Atlas [16] allows 

detecting whether the features returned are already known to 

be associated with the disease being tested. 
To obtain a graphical representation  of the psPSNs of 

interest, Simpati offers a graphical interface, which allows 

to obtain a compact representation of the networks. Patients 

are grouped based on their similarity so that, instead of 

plotting all nodes, only some representatives are depicted, 

making the interpretation of the figure much more feasible. 

G. Data preparation for testing 

Simpati performances were tested by classifying patients 

from five cancer types, extracted from The Cancer Genome 

Atlas (TCGA) using the R packages curatedTCGAData 

(v1.1.38) [17] and TCGAutils [18]. Two  types of biological 

omics were tested for each cancer type, gene expression 

from RNAseq data and somatic mutations. The classes 

assigned to the patients were based on disease stage 

progression binarized into Early (stage I and II) or Late 

(stage III and IV). Data preparation for the RNAseq 

followed the workflow defined by Law et al. [19], while 

somatic mutation data have been converted into a binary 

matrix, where a value equal to one was indicating a mutated 

gene in a patient and zero otherwise. Finally, the six 

datasets  were composed of the following number of 

samples: 14 Liver hepatocellular carcinoma (LIHC) (7 

Early, 7 Late), 21 Stomach adenocarcinoma (STAD) (8 

Early, 13 Late), 37 Kidney renal clear cell carcinoma 

(KIRC) (24 Early, 13 Late), 45 Bladder Urothelial 

Carcinoma (BLCA) (8 Early, 37 Late), 75 Lung squamous 

cell carcinoma (LUSC) (60 Early, 13 Late) and 152 

Esophageal carcinoma (ESCA)  (91 Early, 61 Late) 

patients.  
Pathways were collected from the major databases 

MSigDB [20] and GO [21] and KEGG [22], while a Biogrid 

network (v4.2.191) [23] was used  to model the biological 

feature’s interactions.  

III. RESULTS 

Simpati classification results and computational 

performance were compared to those obtained with netDx 

(v1.2.0 14-10-2020) for both gene expression and somatic 

mutations on the prepared TCGA datasets and with PASNet 

only for gene expression, as this tool does not handle sparse 

data. Additionally, a biological validation of the pathways 

retrieved was performed on Simpati and netDx. An online 

repository is available with a tutorial on how to replicate the 

results [24]. 
The classification comparison was performed on the 

metrics supported by both netDx and PASNet, the auROC 

and the auPR. These were obtained from a 10-fold cross-

validation approach in netDx and a stratified 5-fold cross-

validation repeated 10 timed in PASNet, based on the 

authors’ vignette, while for Simpati it was obtained through 

the leave one out cross validation approach. Figure 2 shows 

how Simpati performs better than the competitors in both 

the measures and the biological omics. Simpati also proves  
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Figure 2. Classification performance comparison between methods. The 

top box shows performance on the RNAseq datasets, the bottom box on the 
somatic mutation datasets. 

 
to be more reliable in each dataset with a standard error 

equal to zero due to its leave-one out cross-validation 

approach.   

The patient similarity network paradigm used by Simpati 

and netDx brings many advantages both in the feature 

selection, in the classification phase and in the overall 

interpretability of the software. However, these pros come 

with a price, which is the software scalability already 

introduced as a challenge by Pai et al. [5]. A PSN is a 

complete graph that the methods build with all the patients 

and for every pathway. This means that an increment in the 

number of patients and in the number of annotated pathways 

lead the methods to require more computational resources. 

netDx and Simpati faced this point with different 

approaches. netDx is implemented in R and Java, uses the 

disk to save temporary files and applies a sparsification of 

the PSNs to decrease the number of edges and so the 

amount of information associated with them.  Simpati is 

implemented completely in R, natively supports parallel 

computing and handles all the data of the workflow as 

sparse matrices or vectors. The RAM usage and the running 

time required to classify the TCGA datasets were monitored 

with the same hardware settings for all tools (32-Core 

Processor, 251 Gigabyte System memory). Simpati 

compared favorably in the usage of the resources, as 

reflected in Figure 3. On average across the datasets, 

Simpati it’s ~ 16 times faster than netDx and requires ~ 1.5 

times less Gb of RAM. Both netDx and Simpati 

outperformed PASNet performance. 

Both Simpati and netDx provide the most relevant pathways 

they detect during the workflow. These pathways should 

help characterize patient’s classes and improve the 

interpretability of the method. For this reason, Simpati 

integrates into its workflow a biological validation step 

exploiting DisGeNet and the Human Protein Atlas. For each 

dataset, a set of key words describing the disease are 

defined, then the percentage of key words associated with 

the pathway in DisGeNet at least once are reported. 

Additionally, Simpati reports the percentage of features in 

each pathway which are associated with the cancer type in 

 
Figure 3. Computational performance comparison between methods. The 

top box shows running time in hours, the bottom box shows RAM usage in 

Gigabytes.   
 

the Human Protein Atlas.  In order to compare the biological 

validity of the methods, these values were computed for 

netDx and Simpati signature pathways and only the most 

biologically relevant pathways were kept. Two criteria for 

retaining relevant pathways were tested: pathways having at 

least one key word associated in DisGeNet and pathways 

having more than 90% of features associated with the cancer 

type in the Human Protein Atlas. The number of pathways 

satisfying these constraints were compared and results are 

shown in Figure 4.  

 
Figure 4. Biological validation comparison. The top box shows the relative 

proportion of signature pathways associated with relevant dataset key-

words between the two methods and the bottom box shows the relative 

proportion of signature pathways associated with disease-type between the 
two methods. 

 

This analysis highlights how Simpati is able to select 

biologically significant pathways directly associated with 

the patients it classifies and it performs better than the 

competitor.  

IV. CONCLUSIONS 

Simpati is a pathway-based classifier of patient classes 

for genetic data. It is the first classifier employing novel ad-

hoc algorithms for PSNs to detect pathway-specific 

similarities. The tool is strongly centered around providing a 

good interpretability, as it provides signature pathways to 

unveil the altered biological mechanisms of  a disease 
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phenotype. Thanks to a propagation algorithm that considers 

the interconnected nature of the cell’s molecules, Simpati 

can classify dense, sparse, and nonhomogeneous genetic 

data. Future work will be focused on the development of 

strategies for the integration of multiple omics and on 

improving scalability for larger datasets. 
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