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Abstract—Among the challenges that the COVID-19 pandemic
outbreak revealed is the problem of reducing the number of tests
required for identifying the virus carriers. To cope with this
issue, a prevalence testing paradigm based on Group Testing
and Compressive Sensing approach or GTCS was examined. In
these settings, a non-adaptive group testing algorithm is designed
to rule out sure-negative samples. Then, a compressive sensing
algorithm is applied to decode the positives without requiring any
further testing. The result is a single-round non-adaptive group
testing - compressive sensing algorithm to identify the positive
samples. In this paper, we propose a heuristic random method to
construct the test design called α−random row design or α−RRD.
In the α−RRD, a random test matrix is constructed such that
each test aggregates at most α samples in one group test or pool.
The pooled tests are heuristically selected one by one such that
samples that were previously selected in the same test are less
likely to be aggregated together in a new test. We examined the
performance of the α−RRD design within the GTCS paradigm
for several values of α. The experiments were conducted on
synthetic data and sensitivity to noise was checked. Our results
show that, for some values of α, a reduction of up to 10 fold in
the tests number can be achieved when α−RRD design is applied
in the GTCS paradigm.

Index Terms—Group Testing, Pooling Design, Compressive
Sensing, COVID19-PCR

I. INTRODUCTION

The problem of group testing is the problem of identifying
a small amount of items or subjects known as defective items
or positive subjects within a pile of elements using group tests
or pools.

Denote the number of positive subjects by d and the total
number of elements by n. A group test or a pool is a subset
of subjects. A test result is positive if it contains at least one
positive subject and negative otherwise. The objective of group
testing algorithms is to find the set of positive subjects, denoted
by I , with minimum number of group tests.

In this paper, we will examine non-adaptive group testing.
In non-adaptive algorithms, tests are independent and must
not rely on previous results. Therefore, all the tests can be
performed in a single parallel step. The set of tests in any non-
adaptive deterministic (resp. randomized) algorithm can be

identified with an (resp. random) m×n test design matrix M
(also called pool design) that its rows are all the assignments
a that correspond to the group tests selected by the algorithm.

Group testing approach was first introduced during World
War II [3], when Robert Dorfman, in 1943, suggested the
method to reduce the expected number of tests needed to
weed out all syphilitic soldiers in a specific unit. Among
its recent applications, due to the recent pandemic outbreak,
group testing approach for accelerating COVID-19 testing was
widely applied across the globe. Due to severe shortages
in testing kits supply, a number of researches adopted the
group testing paradigm for COVID-19 mass testing not only to
accelerate the testing process, but also to reduce the number
of the tests required to reveal positive virus-carriers [4] [5]
[6] [9] [12] [13] [16]. In many labs, COVID-19 detection was
performed using Polymerase Chain Reaction tests or PCR tests
for short. PCR-based machines can perform multiple parallel
tests in single run, while each run can be several hours long.
Driven by the process of PCR testing, non-adaptive group
testing is most fit for these settings. In this context, the items
in question are samples taken from potential patients and the
positive subjects are samples that test positive to the virus.

While many researchers applied Dorfman’s attitude with
multi-stage PCR runs, some have examined designing single-
PCR round tests instead. One of the promising directions is
the Group Testing - Compressed Sensing paradigm (GTCS)
used in [7] [8] [10] [14]. This method includes the following
stages; initially, a test matrix M is designed for a single
non-adaptive group testing round. Upon test results delivery,
a two-stage decoding process is performed. The decoding
process is purely combinatorial and does not involve any
further sample testing. Using standard non-adaptive group
testing decoding (e.g., Combinatorial Matching Pursuit or
COMP algorithm [2]), a substantial amount of samples that
tested negative to the virus are ruled out. Obviously, the
main benefit of this phase is to reduce the dimension of the
compressed sensing problem by cutting down the number of
samples that need further decoding. This is crucial due to the
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computational complexity of compressed sensing algorithms.
In the next stage, compressive sensing techniques are used
over the reduced problem (e.g., Orthogonal Matching Pursuit
- OMP [15], Fast-OMP [11]), to identify real carriers.

The design of the test matrix M is crucial for both group
testing phase and the compressive sensing phase that follows.
In [14], the design matrix is constructed using Reed Solomon
error correcting codes. The authors has checked their method
on a set of n = 384 samples in which 5 samples are positive
(about 1.3%). For pool size of 48 and using 48 group tests,
they could recover all the 5 positive samples. In the work of
Jirong, Mudumbai and Xu [10], the authors investigated two
types of pooling designs. The first is Bernoulli random matrix
where each entry is selected to be 1 or 0 with equal probability.
The second design is obtained using expander graphs where
each column has a fixed number of non-zero entries. The
designs tested in [7] are based on Kirkman triples.

In this paper, we propose a heuristic random method to
construct the test design M called α−random row design or
α−RRD. In the α−RRD, a random test matrix is constructed
such that each test in M aggregates at most α < n samples in
one group test. This model is useful in applications were tests
reliability might be compromised if the pool size is large. We
call α the pool size. The matrix rows are selected one by one.
The main idea of the construction is to choose the non-zero
entries of a new row according to two considerations: samples
that belong to the same subject participate in similar number of
tests on average (fairness); and samples that were previously
selected in the same test are less likely to be aggregated
together in a new test (sparsity). We perform experiments on
noiseless and noisy synthetic data to examine the performance
of the design, while applying Orthogonal Matching Pursuit
or OMP as the compressive sensing algorithm. Practically,
test designs need to be deterministic, meaning, they need to
be predefined before the testing process. To use random test
design, it is acceptable to make simulations of several random
designs and choosing the design that performs best on some
set of data. Then, this design is adopted to be used as a
deterministic one for the real time tests.

The advantage of the α−RRD design is first that it can be
applied for any dimensions m and n. In many applications,
the pool size is crucial for the accuracy of the testing process,
therefore, it is highly recommended to use α as small as
possible. In some applications there is an upper bound on the
number samples that can be merged in one pool. Therefore,
the α−RRD design fits those settings when choosing α within
the bounds of the pool size.

Our experiments results suggest that using the GTCS frame-
work with α−RRD design can reduce the number of tests
dramatically. In the experiments, we tested the performance of
the framework on designs with total number of tests m = 96
and the number of samples can be n = 400, 600 or 900.
For each value of n, we tested on several pool sizes α that
range between α = 12 up to 48. The number of positives d
ranges from 1 up to 20. For each n, α and d, we calculated the
average error in restoring the positives subset over 200 random

sets. The results imply that there is an evident correlation
between the value of α and the performance of the process;
choosing higher values of α can increase the success rate in
identifying the positives. Moreover, the tests results show that
the GTCS paradigm with the α−RRD matrix, can improve
dramatically the total number of tests. In some settings, a
10−fold improvement can be achieved compared to the single
sample per test approach.

The paper is organized as follows. In Section II, we cover
some definitions and preliminaries required for defining the
problem of group testing and the compressive sensing in
mathematical terms. Moreover, in this section, we define the
group testing - compressive sensing (GTCS) paradigm. In
Section III, we describe in details of the α−RRD design
and give a detailed algorithm for constructing such design.
Section IV outlines experiments results designed to measure
the performance of the α−RRD design as part of the GTCS
paradigm, and in Section V, we give some conclusions and
future directions.

II. DEFINITIONS AND PRELIMINARIES

In this section, we define the mathematically of the prob-
lems of group testing and compressive sensing.

A. The group testing − GT problem

Let X = [n] := {1, · · · , n} be a set of n items or subjects,
and let I ⊆ X be the set of positive (defective) items such
that |I| = d � n. A group test or a pool is a subset Q ⊆ X
of items. The quantity α := |Q| is called the pool size. The
result of the test Q with respect to I is defined by Q(I) := 1 if
Q∩I 6= ∅ and Q(I) := 0 otherwise. Alternatively, we identify
the test Q ⊆ X with an assignment a ∈ {0, 1}n where ai = 1
if and only if i ∈ Q.

The set of tests in any non-adaptive group testing algorithm
can be identified with an m × n test design matrix M (pool
design), where each row corresponds to an assignment a ∈
{0, 1}n that defines a group test selected by the algorithm.
Upon performing the tests defined by M , each test of the
m assignments in M yields the value 1 or 0 according to
whether the tests contains at least one positive sample or not.
Let y ∈ {0, 1}m denote the test results obtained by performing
the tests of M , and let x ∈ {0, 1}n be a vector such that xi = 1
if and only if i ∈ I . Formally,

y =M � x,

where the operation � is defined as follows; for each 1 ≤ i ≤
m,

yi =

n∨
j=1

Mi,j · xj , (1)

where the ∨ operation is the logic OR. It is easy to see that,
the definition from (1) is equivalent to yi = 1 if and only if
M(i) ∩ I 6= ∅, where M(i) is the set that corresponds to the
test defined by the ith row in M .
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B. The compressive sensing − CS problem

Assume that each subject sample can be measured by a real
valued number that expresses the magnitude or the load of the
examined symptom (e.g., viral load in COVID-19 case). Let
x̂ ∈ Rn be a n−dimensional real-valued vector that signifies
the symptom load of the subjects; i.e., for each 1 ≤ i ≤ n, x̂i
indicates the symptom load of the subject i, where the value
of x̂i is directly proportional to the load. Symptom-free items
will have their corresponding load measure equals to 0. We
assume that the number of positives d� n, therefore, the load
vector x̂ is d−sparse; it includes only d non-zero entries. The
objective is to restore the indexes of the non-zero entries in x̂.

Similar to the definition of the result vector y from the GT
settings, the design matrix M , also called the sensing matrix
in the compressive sensing context, defines the load vector
ŷ ∈ Rn where each entry ŷi correlates with the load of the
ith pool in M . That is,

ŷ =M · x̂, (2)

where the (·) operation is the standard matrix multiplication,
therefore, for each 1 ≤ i ≤ m,

ŷi =

n∑
j=1

Mi,j · x̂j . (3)

In this paper, we are interested in restoring the indexes of
the non-zero entries of the vector x̂, which is equivalent to
restoring the binary vector x from the GT settings.

Formally, to find solutions for (2), we consider the following
optimization problem (P0):

min
x̂

‖x̂‖0 s.t. ŷ =M · x̂ (4)

where ‖x‖0 denotes the zero norm, L0, which is defined
as the number of non-zero entries in x. The problem in
(4) is NP-Hard. The main difficulty in solving (P0) is that
the constraint is highly non-smooth due to the L0 penalty.
Therefore, some relaxations are considered for approximating
the solution. Even if the problem (P0) has a unique solution,
for slightly perturbed vector ŷ, the system M · x̂ = ŷ will no
longer have a sparse solution as desired (a solution with at
most d non-zero entries). Moreover, the L0 measure is strict,
and a small random noise in x̂ causes the solution of (P0) to
be fully dense. To cope with these two problems, the following
alternative problem (P ε0 ) is considered:

min
x̂

‖x̂‖0 s.t. ‖M · x̂− ŷ‖22 ≤ ε2. (5)

It is well known that the ε−deviation in the constraint in
(P ε0 ) overcomes the two difficulties. Therefore, compressive-
sensing algorithms designed to solve the problem (P ε0 ) have
inherent robustness for noise. The OMP algorithm finds the
best approximation for the solution of (5) using a greedy
attitude. Other methods relax the L0 norm via the L1 norm.
In our experiments, we choose ε = 10−3.

C. The group testing - compressive sensing paradigm - GTCS

The GTCS paradigm suggests a non-adaptive group testing
generic algorithm for identifying the exact set of positives
while using compressive-sensing based decoding techniques.
The GTCS paradigm is composed of three basic phases.

1) Create and perform the actual tests: Create a test
design M and perform the group tests defined by
the design. Practically, the outcome of this stage is a
vector ŷ ∈ Rn as described in (2) and (3). This stage
is followed by two-stage decoding process to exactly
identify the test of positives. The vector y is derived
from ŷ by assigning each entry yi = 1 if ŷi > 0, and
yi = 0 otherwise.

2) Group testing decoding: using standard group testing
decoding methods (e.g., Combinatorial Maching Pursuit
or COMP algorithm [2]) on the problem y = M � x,
a subset X0 ⊆ X of items that are guaranteed by the
GT algorithm to be negative samples is identified. This
stage is used to reduce the size of the problem to be
solved in the next stage. The rational behind this step
is to exploit the fact that GT decoding algorithms like
COMP has zero false negatives (i.e. all sample that were
detected by the algorithm as negative ones are actually
negative). Therefore, eliminating the set of sure-negative
samples X0 reduces the computational complexity of the
step that follows, while keeping its decoding accuracy
intact.
The reduced compressive-sensing problem is established
by applying the following enhancements. Given the set
X0 that includes the sure negatives, we define a new set
Xr := X \X0. Let Y0 ⊆ [m] be the set of tests indexes
that yielded the result 0 in the previous stage. The new
test design matrix Mr is constructed from M , X0 and
Y0 by projecting M on the columns that correspond to
the samples in X\X0 and the rows that appear in the set
[m]\Y0. Therefore, the resulting matrix is an (mr×nr)
binary matrix where mr = m−|Y0| and nr = n−|X0|.
The reduced test result vector ŷr is derived from ŷ by
deleting the entries that correspond to Y0.

3) Compressive sensing decoding: by applying standard
compressive sensing algorithms (e.g., OMP) on the
reduced problem ŷr = Mr · x̂r, and using the results
from previous stage, the vector x̂r and therefore, the
vectors x̂ and x can be restored.

III. RANDOM ROW DESIGN - α−RRD

In this section, we propose a random design for GT. For
this design, we restrict the pool size to be at most α < n.
The design is constructed row by row. The main idea of the
construction is to choose the non-zero entries in the new row
according to two principles;

1) Fairness: Elements that participated in the minimum
number of tests in previous rows, will be more likely
to be chosen in the new test.
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2) Sparsity: Elements that were previously selected in the
same test, will be less likely to be assembled together
in the new test.

For a vector a = (a1, . . . , an) ∈ {0, 1}n, recall that
H(a) := {i : ai = 1} ⊆ [n]. The set H(a) is also called
the support of a. The Hamming weight of a is denoted by
ω(a) and is equal to ω(a) = |H(a)|. Let 0n (1n, ∞n) denote
the all zero (one, ∞ resp.) vector of length n. Let A(m×n)
be an m × n matrix over {0, 1}. For all 1 ≤ i ≤ m, denote
by A(i) ∈ {0, 1}n the ith row of the matrix A, by A(j) the
jth column and by Ai,j the element in A that corresponds to
the ith row and the jth column. The columns weight vector
of a matrix Am×n is a vector w = (w1, . . . , wn) ∈ Rn such
that wj =

∑m
i=1Ai,j . Practically, the weight column vector

indicates the number of tests each element participated in.
The procedure RRD(n,m,α) from Fig. 1 describes the

RRD strategy to choose a random design A with m rows
and n columns where each row is of Hamming weight at
most α. The algorithm starts by randomly choosing the first
row in A from the set of binary vectors of length n and
Hamming weight α. Assume that the first `−1 rows are already
chosen, and let A`−1 be the matrix defined by those rows. Let
ŵ = (w1, . . . , wn) ∈ Rn be the columns weight vector of
A`−1. Then, the algorithm chooses the first non-zero entry in
the `th row uniformly randomly from the set of indexes that
correspond to the entries of minimal value in ŵ. This choice
complies with the fairness principle.

Let k < α be the number of non-zero entries that algorithm
already chose for the `th row. The k + 1 entry is chosen as
follows. Let Qk be the set of indexes of the non-zero entires
chosen so far in the current row. Let Z be the set of rows
indexes i, such that H(A(i)) ∩ Qk 6= ∅, and let ŵ be the
weight vector of submatrix of A defined by the rows in Z. The
algorithm evaluates ŵ in steps (8) and (9) in Fig. 1. Then, the
algorithm constructs the set of indexes S ⊆ [n] that includes
all the indexes j such that wj is of minimum value among the
entries in ŵ and sums the corresponding columns. Let X be
the set of column indexes with minimum value. Then, among
the indexes in X, choose s ∈ X uniformly at random and
assign A`,s = 1. These are steps (10) − (16) in the algorithm
in Fig. 1. This choice complies with the fairness principle.

Fig. 4 describes the procedure CalcSelectedRows. The
procedure outputs a set of row numbers C ⊆ {1, . . . , ` −
1} such that i ∈ C if and only if H(A(i)) ∩ Qk 6= ∅. The
procedure UpdateWeight calculates the weight vector w =∑
j∈C A(j) (See step no. 2 in Fig. 2). To ensure that the entries

in Qk are excluded from the selection of the next non-zero
index, the weight vector w is updated to have the value ∞ in
the corresponding indexes. (See step 8 in Fig. 2).

The selection of the set S complies with the sparsity
principle. The set S is derived from the weight vector ŵ by
selecting the indexes with minimal weight, where the weight
is evaluated over the rows that agree with one or more of
the entries selected for the current test. The initialization step
in SumColumns implies that the choice of the next non-
zero entry of the current test will be from the indexes in

Procedure: m, n, α
Output: An m× n design matrix A

1: A← {0}(m×n).
2: Choose a ∈ {0, 1}n uniformly at random from all vectors

of weight α.
3: A(1) ← a.
4: for ` = 2 to m do
5: k ← 0, Q0 ← {}
6: while k < α do
7: k ← k + 1.
8: C ← ClacSelectedRows(n,Qk−1, A, `− 1)
9: ŵ ← UpdateWeight(n,Qk−1, C,A)

10: ŵmin ← min1≤j≤n ŵj
11: S ← {p : ŵp = ŵmin}
12: ẑ ← SumColumns(n,A, `− 1, S)
13: ẑmin ← min1≤j≤n ẑj
14: X ← {t : ẑt = ẑmin}
15: Select s uniformly at random from X .
16: Qk ← Qk−1 ∪ {s}.
17: A`,s ← 1
18: end while
19: end for
20: Return A.

Fig. 1: The procedure RRD(m,n, α)

Procedure: UpdateWeight(n,Q,C,A)
Output: An updated weight vector w

1: if C = ∅ then
2: w ← 1n

3: else
4: w ←

∑
j∈C A(j)

5: end if
6: for i = 1 to n do
7: if i ∈ Q then
8: wi ←∞
9: end if

10: end for
11: Return w

Fig. 2: The procedure UpdateWeight

S (See Fig. 3). Those indexes are the ones with minimum
agreement with the current test, therefore, choosing the next
non-zero entry from them is the best choice to keep the sparsity
principle. The selection of the set X in step 14 of the algorithm
in Fig. 1 complies with the fairness principle; among the best
candidates from the indexes of S, the algorithm chooses s
uniformly from those that appeared minimum number of times
over all the previous tests.

The time complexity of generating α−RRD design is poly-
nomial in the dimensions of the design and can be easily
generated for any dimensions m and n.
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Procedure: n,A, `, S.
Output: Sum all columns in A

1: w ←∞n

2: for each i ∈ S do
3: wi ←

∑`
j=1Aj,i

4: end for
5: Return w

Fig. 3: The procedure SumColumns(n,A, `, S)

Procedure: n,A, `, S.
Output: Calculate selected rows

1: C ← ∅
2: for each i = 1 to ` do
3: if (H(A(i)) ∩Q 6= ∅) then
4: C ← C ∪ {i}
5: end if
6: end for
7: Return C

Fig. 4: The procedure CalcSelectedRows(n,Q,A, `)

IV. EXPERIMENTS AND SIMULATIONS

In this section, we outline tests results of the performance
of the α−RRD design when chosen as the test design in the
GTCS generic paradigm. For the GT decoding, the COMP
algorithm is selected to generate initial sure-negative set, while
the OMP is used as the CS algorithm in the final stage.

A. Data generation

We test the performance of the α−RRD design on both
synthetic noisy and noiseless data, where an α−RRD design
matrix is generated for the dimensions m = 96 and n =
400, 600 and 900. Despite the fact that the construction from
section III does not impose any limitation on the parameter m,
the choice of the value of m in the experiments is derived from
the number of tests that can be performed in parallel in most
PCR machines used in the industry. We examine several values
of α starting from α = 12 up to 48. The minimum choice of
α is derived from the applicability of the compressive sensing
algorithm on the constructed matrix, while the maximum
value of the pool size matches the maximum value tested for
COVID-19 PCR pool designs [14]. The number of positive
subjects d ranges from 1 up to 20. For each choice of n and α,
an m×n α−RRD matrix M was randomized according to the
algorithm from Fig. 1 for several values of α. For each value d,
we randomized 200 vectors x̂ = (x̂1, x̂2, · · · , x̂n) ∈ <n with d
non-zero entries that signify the symptom load in the positive
samples amongst the n samples. The vector x̂ is chosen where
the d non-zero entries are chosen uniformly at random, while
the symptom load of each non-zero entry is chosen uniformly
over the real range [1, 2].

For each realization x̂, the test result ŷ is generated accord-
ing to ŷ =M · x̂. In the noisy settings, a random noise vector
v with energy ‖v‖2 = 10−3 was added to ŷ to generate a

noisy version of ŷ, denoted by ỹ = ŷ+ v (here, ‖ · ‖2 denotes
the L2 norm of the vector v). In the noiseless case, we have
ỹ = ŷ. Given the design matrix M and ỹ , we use the COMP
algorithm followed by OMP to restore the support of x̂. Denote
by x̃ the result calculated after the OMP phase. Let S be the
true support of x̂, i.e. S = {i|x̂i > 0}, and S̃ be the support
of x̃. The support recovery error is defined as

1− |S ∩ S̃|
max{|S̃|, |S|}

.

B. Tests results
Our experiments results suggest that using the GTCS frame-

work with α−RRD design dramatically reduces the number of
tests. Fig. 5 shows the average support recovery error over all
the 200 trials for each value of d and α for the noiseless case
when n = 400, 600 and 900, where the number of positive
samples is up to d = 20. In all these settings, an α−RRD
design matrix with total number of tests m = 96 is selected.
For n = 400 and positives rate near 2.5% (d = 10), the
average error in restoring the correct support is less than 0.005
when α approaches 20. Moreover, the error drops to 0 for
positives rate 1.5% (d = 6) for α = 16. This is 4−fold
improvement compared to the single test per sample settings.
For n = 900 and positives rate up to 1% (d = 9), for α = 48
the error probability is less than 0.06. When the rate is 0.5%
and α = 48, the error probability drops to near 0 value. (See
Fig. 5.(c)). This is 10−fold improvement over single-test per
sample method.

The results of the noiseless settings are reproduced also
for the noisy case. For example, Fig. 6.(a) shows the average
support recovery error over all the 200 trials for each value of
d and α for the noisy case, when n = 400. It can be noticed
that, for the same settings of the noiseless case, i.e, α = 20
and d = 10, the error is bellow 0.005, and reaches 0 for d = 6
and α = 16. For n = 900 and positives rate up to 1%, for
α = 48, the error probability is less than 0.06 and for positive
rate 0.56% (d = 5) the error rate is near 0 (See Fig. 6.(c)).

Moreover, the results imply that there is a correlation
between the value of α and the performance of the process;
choosing higher values of α can decrease the average error
in identifying the positives. For example, in the noisy case,
Fig. 6 shows that for n = 400 and d = 10 (p = 2.5%), the
average error for α = 12 is greater than 0.1 while it can be
decreased bellow 0.005 for α between 20. For n = 600, and
p = 1%, when α = 16, the error is about 0.069 while it drops
to less than 0.001 when α = 44. Similarly, for n = 900,
p = 0.56% and α = 48, the error probability is near zero,
while for α = 20, the error is higher than 0.1. This paradigm
is reproduced in both noisy and noise free case too.

In practice, deciding the best value for α for the problem in-
hand can be done while taking in consideration the limitations
of the test process (for example, if there is some upper bound
on the pool size). Once such limitations on the value of α
are known, we can use computer simulation on synthetic data,
similar to the ones described in this work, to decide on the
best choices of α for each settings.
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The results in Fig. 5 and Fig. 6 show that the error rate
increases with d. This behavior is as expected from any
group testing - compressive sensing algorithm, since those
are designed to be used when the solutions x and x̂ of the
equations (1) and (2) are sparse vectors, meaning the number
of the non-zero entries d is very small relative to n, more
precisely when d = O(

√
n).

It is worth noticing that, the differences in the noisy case vs.
the noise-free case are almost negligible. This behavior can be
explained by two major factors. First, group testing decoding
algorithms like COMP used in our simulations, are known
for their robustness for false negatives (a false-negative is a
sample classified by the algorithm as negative, but it is actually
positive). That is, the set of samples classified by the GT
algorithm as sure-negatives and therefore excluded from the
decoding of the CS algorithm, does not include false-negatives.
Therefore, it is highly unlikely to miss positive samples during
the GT initial classification. The second factor is the noise-
tolerance of the compressive sensing algorithm. Specifically,
the OMP algorithm is known for its high accuracy in the
presence of noise, while its drawback is its computational
complexity.

V. CONCLUSION

In this paper, we suggested a new random pooling design
α−RRD. This design can be used as part of the GTCS
paradigm in order to build a single-round non-adaptive group
testing protocol to exactly identify positives within a large set
of elements. The complexity of generating α−RRD design
is polynomial in the dimensions of the design and can be
easily generated for any dimensions m and n. By its design,
the α−RRD pooling matrix is designed to restrict the size of
the pool α which might be critical for test accuracy. If there
is no practical restrictions on the size of α, then, given the
parameters m,n and positives rate, the best choice for the
parameter α can be concluded using computer simulations.
Moreover, since random sensing matrices can perform well
with compressive-sensing algorithms, the GTCS paradigm
can be further tested with other well-known group testing
random designs such as RID, RrSD, RsSD and Transversal
design [1]. Similarly, other compressive sensing algorithms
can be applied too. Besides being tested on synthetic data, it
is worth examining the efficiency of the method and the design
on real COVID-19 data or any other disease that follow the
same paradigm.
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(b). Identification support error for n = 900,m = 96
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Fig. 5: Probability of support error for d up to 20, n = 400, 600, and 900, m = 96 and α ≤ 48 for the noise-free case.
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(b). Identification support error for n = 600,m = 96
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(c). Identification support error for n = 900,m = 96
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Fig. 6: Probability of support error for d up to 20, n = 400, 600, and 900, m = 96 and α ≤ 48 for the noisy case.
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