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Abstract—Bioreactors are complex sets of tubes, sensors and
actuators embodied in recipients of different shapes and sizes,
used thoroughly in biotechnical and chemical investigative and
commercial environments for hours on end. Stirred tank biore-
actors are widely used and available globally, whose design is
intentioned for in-batch and continuous operations. They serve
as closed controlled systems for specific organic compounds
reaction examination when treated with agitation changes and
temperature shifts, as well as oxygen saturation and viscosity
variation for both aerobic and anaerobic processes. In particular,
the rapidness and magnitude at which a substance changes
its associated pH affect its solubility and molecular structure,
possibly reaching its denaturalization. Hence, analyzing and
acting upon these systems pH, where several parameters interact
with each other, is crucial for avoiding compound stressing and
arriving to the desired products in addition to coherent investi-
gation conclusions. The pH level management, commonly done
manually by scientists, serves the purpose for applying fuzzy logic
principles where historical data, as well as human expertise and
experience, can be best utilized in designing the controller sets
of inference rules and membership functions. Thus, this paper
focuses on experiments design and proven tuned applications
with limited microorganisms capacities of adaptative neuro-fuzzy
process trained with custom genetic algorithms for automatic pH
control in 5 litres stirred tank bioreactors, joined with practical
comparisons between other control engineering formulations.
While earlier related research focused on simulated reactions
and theoretical control, this empirical procedure gives promising
results on 10 seconds cycles of sensing and actuating, achieving
an average (.1 pH error margin on stability when utilized on
an agitation and temperature controlled environment. This study
provides scientists with an extendable and configurable procedure
so to successfully and efficiently control pH on closed systems
using an affordable master-slave micro-controllers architecture.

Keywords—fuzzy logic, automatic control, pH controller, biore-
actor design, optimization engineering
I. INTRODUCTION

Bioreactors are meticulously designed and carefully manip-
ulated closed systems, crucial for biotechnological and chem-
ical procedures in both academical and commercial contexts
[1]. Its research usages usually aim to analyze biochemical
active organic compounds behaviour and response when af-
fected by different cycles of natural conditions variations such
as temperature [2], oxygen saturation [3] and viscosity [4].
Its main market-oriented utilization ranges from large scale
production of consumables or custom alcoholic beverages and
milk processing [5] to more contained and closely examined
small scale on vaccines fabrication and proteins synthesis [6].
These systems standard capacity vary between contents of
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approximately 5 litres for investigation purposes and 200 litres
for mass production [7]. This paper proposes and compares
approaches to bioreactor pH control guided by classical and
fuzzy logic, which are general and independent of the systems
dimensions, but dependent on its substances concentrations.

Controlling the pH of compounds formed by microorgan-
isms in a liquid medium is paramount for the proper study and
analysis of the biomolecular processes that occur, as well as for
the correct and expected nutrients development and biological
functions availability [8]. Nonetheless, given the strict system
requirements for accurate usage, this mandatory regulation
mechanism needs to act in conjunction with other relevant
controlled properties (e.g., external vest temperature, agitation
rotor speed) whose variance produce changes on pH and vice-
versa [9]. This intrinsic unavoidable feedback joined by the
microorganisms behavior unpredictability demands generally
complex solutions through classical means. Using fuzzy logic,
however, trained human experience and deductive thinking can
be emulated on a robust, reliable and efficient controller [10].

The presented approaches are tested with multiple com-
pounds on bioreactors with working regular agitation speeds
from 120 to 220 rpm for molecular oxygenation and tem-
perature variation between 18 and 42 Celsius grads. Further
sterilization ranges, i.e., microorganisms cleansing, are not
considered for pH control.

Figure 1 shows the used system architecture and commu-
nication sequencing per cycle regarding devices related to pH
control. It corresponds to a centralized master-slave structure
where the master has the control logic of all regulatory
properties of the system and the slave communicates and
mandates over the peripherals sensor and actuators, consisting
on one peristaltic pump for each acid and base drops.
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Figure 1. Proposed architecture and sequencing of control system.
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This paper proceeds with a brief review of related biore-
actor control literature followed by considerations of rele-
vant preliminary experiments necessary for particular system
understanding. Then, it focuses on proposed classical, fuzzy
and neuro-fuzzy perspectives on pH control in order to later
compare its testing results and applications.

II. LITERATURE REVIEW

Bioreactor design’s research and analysis is a discipline
whose beginnings date back several decades while being con-
tinuously encompassed and updated with evolving practices
and techniques in its search for generality, scalability and
efficiency [11]. Indeed, recent viral outbreaks not only pro-
moted the technical relevance of the biotechnological field but
also demanded sophisticated tuned precision and fault tolerant
equipment to fulfill the increasing vaccines requirements [12].

Currently, the majority of bioreactor control observations
consists on specification and hierarchical delineation of inter-
ested magnitudes sets whose regulation may provide greater
dominion over part of the system processing. These properties
are then subjected to traditional ON-OFF or PID controls
(usual for agitation and temperature procedures) [13], as well
as neural networks on supervised reinforcement learning algo-
rithms [14]. Albeit useful in practice, these perspectives stand
as too complex to the general public, with little availability
for further customization.

Contemporary remarks on bioreactor pH control remain
traditional variations of classical loop stresses on particular fer-
mentation compounds using stepwise aggregation procedures
[15] and/or C'O4 sparge feedback commands [16]. Although
tested optimal within their specific environment and processes,
these studies depict certain lack of generality and flexibility
for more broaden and global scenarios.

Recent related researches on fuzzy control of bioreactors
describe specialized designs of a predictive model and fuzzy
supervisory controllers for anaerobic processes [17], as well as
adaptive PI controller with fuzzy-based parameter selection for
fed-batched procedures [18]. Although these methodologies
are innovative, they are focused on simulated reactions of
scarce microorganisms types with theoretical specifications.

III. PRELIMINARY EXPERIMENTS

This section focuses on initial experimentation with selected
peripherals and associated operational fault managements, nec-
essary in every control design. The proposed procedure also
requires a historical analysis and abstraction of the system’s
time evolution over iterated pH homogeneous variation.

A. Peripherals Examination

The utilized glass two-electrode sensor measures pH with a
precision of 0.002 in the entire range 0-14 at usual aforemen-
tioned conditions, with reference electrode fixed at 6.86 [19].
It communicates with slave controller using a communication
module through I2C data protocol, industrially used between
integrated circuits on environments with little signal interfer-
ence [20]. This enables additional automatic functionalities of
connectivity check and calibration verification.
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The low-pressure electrical peristaltic pumps are integrated
with DC engines and generates drops of tested approximate
69uL through silicon tubes of 1 cm diameter [21]. These are
activated by slave controller using dual h-bridge motor drivers
and Pulse Width Modulation (PWM) as shown in Figure 2.
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Figure 2. PWM signaling to peristaltic pumps for 1 to 5 drops expulsion.

Thus, sensors and actuators are commanded using afford-
able Arduino slave controllers, which are connected to a
Raspberry Pi master controller where the procedural control
decisions are defined. Master and slaves controllers commu-
nicate through Modbus ASCII serial protocol [22], which
redundantly corroborates message information on both ends.
This system design enables the usage of multiple sensors and
actuators with a correspondent latency increase.

B. Operational Considerations

Automatic sequential systems functioning over long periods
of time demand in practice to define actions consequence of
possible defects and events. Due to its overarching simplicity,
procedures based on GEMMA framework [23] are structured
for pH control, segmenting strategies as functioning, stop and
failing processes shown in Figure 3.
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Predominant faults are classified as measurement defects,
communication errors and actuators malfunction, all not mu-
tually exclusive. Measurement defects are non blocker faults
result of incorrect sensing that require message repetition.
Communication errors are blocker faults consequence of bad
frame reading or writing on a given endpoint, which obligate
system stop and physical connector checking. Actuators mal-
function provoke unexpected expulsions of acid or base drops,
or none entirely.

Bidirectional communication between master and slave con-
trollers, as well as with sensors, provides with acknowledg-
ment notification possibility after each action, enabling repeti-
tions or cancellations. However, communication with actuators
remains unidirectional as there are no guarantees of consistent
requested drops amount. This is considered on control logic, as
incoherent system interaction generates corrective maneuvers
on subsequent iterations.

C. System Analysis

The actuators interact with the bioreactor by the expulsion
of standard acid HCI with pH 1.8 and base NaOH with pH
11.6, both on 70% concentrated solutions. When analyzing
regular pH increments and decrements on organic compounds
with constant homogenization, an immediate effect is identi-
fied on the pH measurement. Moreover, no apparent inertia is
observed on the response as is illustrated in Figure 4, even
when using multiple continuous drops. These factors cause
that the usual working range is limited by the pH of acid and
base expelled by actuators.

Considering these observations and given the need of pro-
longed continuous system functioning of days at a time, as
well as the limited quantity of actuator solutions and engines
life expectancy before replacement, extra requirements such
as the usage of minimal drops with loose intervals over time
are imposed.
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Figure 4. Incremental variation on pH result of periodic drop expulsions.

The addition of a buffered solution as an intent to maintain
the pH level at a certain value provokes the natural differen-
tiation of the system response into zones, distinguishable for
the steepness of the pH variation. Figure 5 illustrates this,
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Figure 5. Variations of pH using three drops in a buffered KX Ho POy solution
of Streptococcus Thermophilus in lacteus medium, with zones distinctions.

where five distinct zones are defined and named based on
the nearness to buffer control or border limits and transitions
between each state, for separate increments and decrements.
These temporal behaviour is performed for traditional buffers
KHyPOy, CoHsNaOy, CoH4O9 and CCL;),(BO?,)Q on sets
of 1, 3 and 5 continuous drops, resetting the system setup for
each iteration. In order to avoid excessive compound waste,
this analysis can be miniaturized on smaller recipients with
same conditions and adequate substances concentration.

Several limitations are also required for consideration. First,
bioreactors are usually used nearing maximum capacity with
relevant compounds, and exceeded inclusions of actuator so-
lutions are undesirable. Second, the system is needed for
prolonged continuous system functioning of multiple days
and it must endure limited quantity of actuator solutions and
engines life expectancy before replacement. These imposes an
extra requirement of minimal drops usage with loose intervals
over time, granting a 6 to 10 seconds idle cycles in between
consecutive control measurements and conditional expulsions
of acid or base.
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IV. CONTROL OBSERVATIONS

Previous experiences compendium and its analysis enables
the structuring of custom classical, fuzzy and neuro-fuzzy con-
trollers. These logic seek simplification and customization that
fulfills requirements of counteracting biochemical reactions
due to pH variations lesser than 0.2 per 10 seconds cycles.

A. Classical Controller

Given the observed non-inertial and immediate characteris-
tics of pH permutations, a ON-OFF controller with decisions
based on pH sensibilities and an error deadband for both
increments and decrements of 0.05 from objective is used.

Figure 6 illustrates the general ON-OFF sequential logic,
having as output the acid or base drops quantity to expel on
system in the current control cycle.
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Figure 6. Diagram of utilized sensibility-based ON-OFF control logic.

The general idea, albeit compound specific, requires for
significant drops expulsion on buffer zone (e.g., 5 drops
for 0.02 variation) and considerably less on transition and
reference zones (e.g., 1 and 3 drops respectively for same
variation).

B. Fuzzy Perspective

An alternate broader approach is using fuzzy logic con-
trollers, looking for a soft system response given ambiguous
inputs and avoiding non-trivial mathematical modelling.

Figure 7 shows the global fuzzy control sequencing loop
with the same drops amount parameter as decision output.
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Figure 7. Diagram of proposed fuzzy-based control logic within the system.
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In this case, input functions refer to error and sensibility,
while output function allude to drops quantity expulsion for
acid and base. Figure 8 exhibit a combination of triangular and
trapezoidal membership functions that characterize fuzzy sets
elements of both inputs expressed by linguistic variables result
of a support fuzzification process, defining its universe of
discourse. Through this method, a mapping of the crisp input
values to the defined membership functions and truth values
is performed. Then, these variables are used among max-min
inference rules resulting in output linguistic variables, which
conclude on the drops quantity after a defuzzification process
guided by discrete centroid method, thus favoring the rule with
the output of greatest area. In centroid defuzzification the truth
values result of each rule are OR’d, i.e., the maximum value
is used and the results are then combined using a centroid
calculation.
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Figure 8. Fuzzy knowledge database, with membership functions definitions
and linguistic variables indications.

The conditional rule base is described as follows:
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The selection of acid or base drops expulsion is decided
implicitly by the rules based on the error differential sign.

When processing these inference rules using max-min, if
an AND relationship is specified, then their minimum value is
used as the combined truth value, occurring analogously with
OR relationships and their maximum value.

Given the carefulness needed for these systems variable
conditions, traditional common practices for pH regulation are
the manual addition of acidic and alkaline solutions. Thus,
practical human experience is mandatory for the definition
of mentioned placement and usual ranges of membership
functions, as well as for distinguishing each linguistic variable
and truth values. In consequence, the proposed solution is
diagrammed by empirical methods using a trial-and-error
approach on Streptococcus Thermophilus, Escherichia Coli,
Myxococcus Xanthus and Deinococcus Radiodurans while
testing grade fuzzification methods together with weighted-
average and mean-max defuzzification processes.

C. Neuro-Fuzzy Approach

Another alternative consists in joining fuzzy logic with cus-
tomizable learning methodologies, thus providing with adap-
tative responses over natural changes on system behaviour. In
this case, again, input functions refer to error and sensibility,
while output function allude to drops quantity expulsion for
acid and base. This perspective, diagrammed in Figure 9,
enables constant feedback between the fuzzy neural network
and the genetic algorithm, which selects the amplitude sets
{e1,ea,e3}, {b1,b2} and {q1, g2, g3} of the predefined mem-
bership functions based on historical pH variations with given
buffer. Consequent permutations over neural formulations ad-
justs dynamic responses over persistent system modifications.
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Inputs Linear  gypification ~_Logic

Fuzzy Inference
Tranformation Operators

(Rules) Defuzzification

pHMeasured Actuators
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Figure 9. Neuro-fuzzy flow representation, including neural network iterations
trained using a genetic algorithm helped by historical data.

Selected Mamdani-based feed-forward neural network is a
5-layer sequence with two inputs and one output that resem-
bles aforementioned traditional fuzzy flow. Transitions from
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layers 1 to 2, as well as layers 4 to 5, contain [0,1] weights with
equal average values in order to ensure symmetrical answer
distributions on error input (/) and drops output (Out).

A genetic algorithm is used for training and selection of
adequate amplitude sets and neural network configuration on
each t cycle iteration. Defined selection rules dynamically
choose past contiguous iteration’s sets as parents of future
generations. Custom crossover rules linearly combine these
parents using proportional [0,1] parameters {«, 3,7} based
on historical data, as shown in below equations.

eﬁ_l eg_l eg_l
t t t) t—2 t—2  t-2
(61 €9 63)—(011 arr Oé]][) 61[ 62[ 63[
6575 6%75 ef{d
btfl btfl bP71
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(bl b2) - (5[ BII) <bt—2 bt—2 bt—2
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t—1 t—1 t—1
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(¢t & &) =0 v o) a7 &7 4
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Customization attributes enable constant or evolutionary
proportional parameters indication, as well as fixed or variable
parents selection. Particularly, setting constant proportional
parameters provide equal pondering on membership varia-
tions per cycle, while using evolutionary variations generates
dynamic functions for reaching certain behaviour at a given
point in time. Moreover, configuring fixed parenting promotes
constant and stable considerations of parenthood relationships,
while selecting variable parenting allows for suppressing or
emphasizing set behaviours caused by expected disturbances.
Both evolutionary proportional parameters and variable par-
enting involves preliminary optimization steps with specific
distributions, which resolve primarily on fewer or lower buffer
usage and consequent error in regime. Possible combinations
of aforementioned approaches broaden the system’s response
and behaviour for a given experiment context, which might de-
liver further research and production possibilities for in-batch
microorganisms growth. Furthermore, initial iterations are de-
fined mirroring aforementioned traditional fuzzy perspective,
thus aiming at overcome natural system hysteresis and early
reactions. Seeking simplification, no specific mutation rules
are currently determined or deemed necessary.

D. Results Comparison

Generalizing outcomes are complex for systems with non-
identical repeatable experiences, even more when considering
different combinations of input parameters values and process
cycles through ever-changing environmental conditions. How-
ever, certain particularities can be observed for most use cases
that enable objective control results distinctions.

Figure 10 shows examples of the system evolution with
active pH controls that illustrates the comparable similarities
between all the examined approaches.
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pH Controls Evolution over Time (Objective 10.1)
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Figure 10. System response to pH controls at different objectives setpoints
on Streptococcus Thermophilus solution with buffer K Ho POy.

According to these tuning and verification experiments re-
sults, the ON-OFF, fuzzy and neuro-fuzzy controllers stimulate
the system to successfully reach pH levels with less than
required 0.1 error margin without considerable overdraft nor
oscillations when stationary for both increments and decre-
ments. In fact, the fuzzy control gets to higher precision results
than the classical control, i.e., closer to pH objective at regime,
at a similar variation speed but at a greater transition time. This
differentiation can be clearly appreciated on decrements and
when a more extended pH variation is needed. Indeed, the
fuzzy and neuro-fuzzy controllers are empirically more robust
to noisy data caused by sensor malfunctions or circumstantial
system behavioral spikes and levels reactions variations in
setpoint vicinity in lesser approximation cycles quantities.

The neuro-fuzzy approach applied here defines balanced
and constant proportional parameters while assuming fixed
parents selection of three previous cycle iterations. As shown
in Figure 10, it provides with sharper transition periods on both
pH increment and decrement compared to traditional fuzzy
perspective, with softer albeit slower adaptability changes
and smaller divergences from objective. In particular, more
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accurate results with faster transitions can be obtained when
setting evolutionary parameters along with same fixed parents
selection, or variable parenting with extended preceding cycles
considerations for further adaptability possibilities.

V. CONCLUSION

In this paper, three different approaches to pH control in
bioreactors were proposed and its results compared through
tuning and application of compounds with Streptococcus
Thermophilus, Escherichia Coli, Myxococcus Xanthus and
Deinococcus Radiodurans with standard actuators NaOH and
HCI together with usual buffers K HyPO4, CyH3NaOs,
C3H,05 and Ca3(BO3)2. Motivated by the natural relevance
of pH property on the growth and survival of different microor-
ganisms, and sought of general customized and flexible pro-
cedures for its control, all perspectives achieved an acceptable
functioning with variable precision within the system char-
acteristics and set requirements using affordable and scalable
devices. Improvements related to diminishing transition times
and increasing selection of membership classes can be further
pursued for more meticulous or precise control and expanding
current action ranges with additional limited drops quantities.

While the classical ON-OFF controller presented a more
standard and direct logic sequence, the fuzzy and neuro-fuzzy
propositions aimed at a more generic, customized and adapt-
able scheme to uncertain biochemical reaction changes with
nonlinear behaviour. Due to its successful empirical testing
and customization capabilities, the neuro-fuzzy approach is
recommended to use on standard stirred tank bioreactors,
with possible further investigation related to variants on other
systems (e.g., other bioreactor types), as well as studied
influence of different actuators concentrations and biological
compounds characteristics (e.g., distinct buffers solutions and
microorganisms combinations).

Potential real world use cases of this procedure involve
commercial consumable fermentation and composition (e.g.,
milk derivatives preparation), as well as vaccine components
concoction and manufacturing (e.g., antivirus processing for
different animals) for small and large scale aerobic or anaer-
obic production. This is justified by the main dependence of
the proposed procedure on compounds concentrations and in-
dependence of the system dimensions or capacities. Also, other
academic use cases consist on studying certain microorganisms

behaviour under stressing contexts in addition to genetic codes
examinations, apart from traditional teaching and cultivation
of recombinant DNA on proteins and bacteria. Thus, the
complete process focused on reducing manual control and
automating the simultaneous managing of multiple system
properties, which is a contemporary trending practice on
general bioreactors with long-term processes.
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