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Abstract—Genomes may be analyzed from an information
viewpoint as very long strings, containing functional elements
of variable length, which have been assembled by evolution. In
this work, an innovative information theory based algorithm is
proposed, to extract significant (relatively small) dictionaries of
genomic words. Namely, conceptual analyses are here combined
with empirical studies, to open up a methodology for the ex-
traction of variable length dictionaries from genomic sequences,
based on the information content of some factors. Its application
to human chromosomes highlights an original inter-chromosomal
similarity in terms of factor distributions.

Keywords—Genome languages, information content, Kullback-
Leibler, word extraction.

I. INTRODUCTION

Human genome computational analysis is one of the most
important and intriguing research challenges we are currently
facing. Genomes carry the main information underlying life of
organisms and their evolution, including a system of molecular
rules which orchestrate all cell functions [1]. Our work here
follows and outlines some trends of research which analyze
and interpret genomic information, by assuming the genome to
be a book encrypted in a language to decipher [2–7], in order
to convert the genomic information into a comprehensible
mathematical form, such as a dictionary of variable-length
factors that collects words of the unknown genomic language.

According to a common approach in computational ge-
nomics [8–12], a genome is represented by a string over
the nucleotidic alphabet. This representation easily leads to
affinities with a text, written in a natural language, which is
comprehensible by means of its vocabulary, giving both syntax
and semantic of words.

Several studies define properties for words which result to
be salient features in analysing genomic sequences [13]. Min-
imal absent words, maximal or palindromic repeated words
are some examples [14–16]. These approaches are focused on
finding specific words to be used as key features of a string for
analysing its property or for comparing it to another sequence
[17]. The extracted words are often sparsely located in the
analysed sequence [18], thus they do not constitute a real
linguistic analysis of genomic strings.

According to recent advancements, the concept of functional
element is central, defined as a genomic segment that codes
for a defined biochemical product or displays a reproducible

biochemical signature [6, 19]. An information theory based
analysis clearly plays an important role in deciphering such
elements as the genomic language [20], and it allows us
to confirm the linkage between DNA fragments and their
information content [4, 8, 19, 21–23].

In [24, 25], the authors applied a methodology developed for
literary text to extract fixed length genomic dictionaries. Ex-
amples of fixed length dictionary extraction procedures could
be provided by applying notions such as word multiplicity
or word length distributions. On the other hand, graphical
investigative analyses, based on expected frequency gaps,
show the unpredictable behaviour of genomic sequences and
help to detect peculiar words [26].

If we think of a book, semantically significant words have
a fairly medium number of occurrences and they are clustered
according to the topic described in specific part of the book.
Several works are focused on finding genomic words exhibit-
ing some special kind of (somehow clustered) repetitiveness,
with a global frequency quite different than the expected
frequency in purely random sequences having the same length
of an investigated genome [8, 21, 22, 27–29]. A very relevant
and peculiar word periodicity is revealed by the Recurrence
Distance Distribution (RDD), which measures the frequency
at which a given word occurs at given distances [30]. Its
application to coding regions shows the informational evidence
of the codon language, and in [31–33] some characterizations
of recurrence behaviours were pointed out for very short k-
mers. However, only fixed length dictionaries were extracted
from real genomes by means of such a distribution [25].

In this paper, we start from a modified version of an
algorithm introduced in [24], in order to apply it to real
genomes. We call it V-algorithm, from the first name of the
authors who designed it. Both these original and modified
algorithms are aimed at finding words forming local clusters
(the approach is explained in Section II-A). Then, we propose
a new RDD-based algorithm, we call it W-algorithm, which
extracts variable length dictionaries of interests from several
real genomic sequences and collects words having a recurrence
distribution maximally different than their random distribution.
Such a selection is developed by computing the (locally)
maximum divergence, from random sequences, of the RDD
of each string obtained by elongating an initial seed word
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over the genome. The divergence from random sequences
is a crucial issue in information analysis of strings [34, 35]
and in analyzing mathematical properties of dictionaries. The
methodology in [24] to find dictionaries is therefore here
improved by the V-algorithm, and a more general approach
is proposed (Section II-B) by means of the RDD based W-
algorithm, that works with the global word recurrence distance
distribution rather than with only a first slice of it.

II. MATERIAL AND METHODS

This section summarizes the genomic word extraction
methodology reported in [24], which was our starting point to
develop a variant of it, the V-algorithm, and then introduces
a novel RDD-based extraction algorithm, called W-algorithm.
We also propose some criteria to evaluate extracted genomic
dictionaries. Following the terminology from our previous
work [12], a genome is a string over the genomic alphabet
Γ = {A,C,G, T}. Given a genome G, we call Dk(G) ⊆ Γk

the k-dictionary of all k-mers occurring in the genome G.
Given a word α ∈ Dk(G)), a recurrence distance distribution
(RDD) informs how many times α occurs at a given distance
d. Thus, a recurrence is a pair of positions (p1, p2) (with
p1, p2 < |G| and p1 < p2) such that α occurs in p1 and p2 and
no other occurrences of α are in the middle. The recurrence
distance is given by p2 − p1.

A. A clustering coefficient based approach

RDD has been used to identify keywords by applying a
methodology that associates a clustering coefficient C to k-
mers [24]. The main idea is based on the fact that keywords are
not uniformly distributed among a literary text, instead they are
clustered. The approach combines the information provided
by the spatial distribution of a word along the text (via the
clustering coefficient) and its frequency, since the statistical
fluctuation depends on the frequency. This basic approach has
been used in [25] to assign a relevance to 6-mers and 8-mers
in Homo sapiens and Mus musculus. The 8-mers were sorted
by their normalized clustering coefficient (called σnor), and
it has been shown that part of the top-200 clustered words
(about 70%) appears in known functional biological elements,
like coding regions and transcription factor binding sites.

The whole recurrence distribution is synthesised with a
single parameter σ, to quantify the clustering level, previously
presented in [9] for studying the energy levels of quantum
disorder systems [36], and a clustering degree σnor assigned
to words, for the identification of keywords in literary texts,
obtained by means of the relation between the σ of a real word
and the theoretical expected one (coming from a theoretical
hypothesized distribution), as in the following.

For a given word, the parameter σ is the standard deviation
of its normalized set of recurrence distances, σ = s/d̄,
where s is the standard deviation of the recurrence distance
distribution, and d̄ is the average recurrence distance. When
the RDD is a geometric distribution, the parameter is denoted
by σgeo and it is equal to

√
1− p, since s =

√
1− p/p and

d̄ = 1/p, where p is the word frequency. Thus, the resultant

normalized clustering measuring σnor of the given word is
given by σ

σgeo
= s/d̄√

1−p . For values of σnor near to 1, the
recurrence distribution of the word is close to the geometric
one, thus it indicates a randomness of the word. In fact,
a random sequence is generated by a Bernoullian process,
then different occurrences of a given word are independent
events, and the event of having k occurrences of a word (in a
segmentation unit) follows a Poisson distribution. Therefore,
according to probability theory [37] its waiting time, that is the
distance at which a word recurs, is an exponential distribution
(having a geometric distribution as a discrete counterpart).

For words with low multiplicity, the statistical fluctuation
is much larger, and it is possible to obtain an higher σnor for
rare words placed at random, and they would be misidentified
as keywords. Thus, the authors applied a correction by a Z-
score measure that combines the clustering of a word and its
multiplicity n. The resultant clustering measure C is given by
the following equation: C(σnor, n) = σnor−〈σnor〉(n)

sd(σnor)(n) , where
〈σnor〉(n) = 2n−1

2n+2 and sd(σnor)(n) = 1√
n(1+2.8n−0.865)

.
Parameter values were obtained via extensive simulations, by
taking into account the distribution of σnor in random texts.
They represent the mean value and the standard deviation of
such empirical distribution. The C coefficient measures the
deviation of σnor with respect to the expected value in a
random text, in units of the expected standard deviation. In
this case, C = 0 indicates randomness, C > 0 that the word
is clustered and C < 0 that the word repels itself.

In [24] also an approach to explore the lineage of a word
(from a short word to one of its possible elongations), without
any knowledge about the effective word length, was provided.
Given an initial word length k0, some of the words in Dk0(G)
are selected, according to their C measure, that must be
greater then a C0 measure corresponding to a fixed percentile
(usually 0.05). Successively, for each of these initial words,
their lineage is explored by selecting only the elongations
having a C measure greater than C0, and up to a fixed
maximal word length: these are properly the two points we
changed in the V-algorithm presented in the next section. The
longest visited lineage is selected as a word with semantic
meaning, and the process is repeated for different values of
k0 (ranging from 2 to 35), until a dictionary is obtained by
discarding repeating words.

B. The RDD-based W-algorithm

We use RDD to calculate the divergence of the real distri-
bution of a word within the genome from its frequency over a
random string with the same genome length [29, 38]. Such a
divergence is used as a measure of the information content of
a word. Low expressive words are elongated by an expansion
procedure, until they reach a reasonable level of significance
according to which they are classified as genomic words of
the extracted dictionary.

We assume that the higher the entropic divergence from
the above exponential distribution, the more specialized and
evolutionary selected is the genomic element. In this sense,
low multiplicity words already represent elements owning high
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level of significance. Instead, for what concerns repeats, we
associate their meaning with their repetitiveness-profile, as it
is revealed by their RDD. A word has to occur along the
genomic sequence several times and at different distances.
See an example in Figure 1, where the exponential distribution
represents the random recurrence behaviour of the word. RDD
of words along real genomes is often sparse, meaning that
several distances (of recurrence) actually do not appear in the
genome. This is why we evaluate the sound (i.e., more fitting)
exponential distribution after removing peaks, that are absent
in exponential functions, and by imposing a normalization
ensuring the overall unitary probability.

Fig. 1. RDD of word CGC (the jagged curve) in human chromosome 22

The degree of significance of a word is its random deviation,
measured by the function in 1, based on the the entropic
divergence (Kullback-Leibler divergence [27]), between the
real RDD of a word (over the analysed genome) and its
expected exponential distribution.

More technically, given a word α, which occurs in a genome
G, we calculate its random deviation as the entropic divergence
between its RDD and a suitable exponential distribution. To
this aim, we first extract the real RDD of α over G, which we
refer as Rα. Then, we estimate a two parameters exponential
distribution Eα, by making use of the Nelder and Mead Sim-
plex algorithm [39]. A denoised distribution is used as input
for the estimation procedure: it is obtained by applying a low-
pass filter (over Rα) in order to attenuate peaks. Afterwards,
we remove from Eα the domain values which are not present
in Rα, namely the gaps of Rα. Successively, both Rα and Eα
are normalized in order to become probability distributions.
Finally, the random deviation of α is chosen as:

r(α) = max(KL(Rα, Eα) , KL(Eα, Rα)), (1)

where KL is the asymmetric Kullback-Leibler entropic diver-
gence.

In our algorithm (reported in Listing 1) estimation of the
information content of a word α is computed by the function
r(α). Word elongation is realized until the random deviation
does not start to decrease. As it may be seen in Figure
2, smaller seeds allow the algorithm to generate words α
corresponding to the first peak (local maximum) of r(α). To
produce a longer significant word α, corresponding to the
second peak of r(α), a longer seed has to be taken as a starting
string. In all our computational experiments, r(α) showed

W:=∅ ;
ForEach α ∈ D0 :

E l o n g a t e (α,W )
W := W \D0 ;
Re tu rn W

Listing 1. Extraction Algorithm

i f r(αx) ≤ r(α),∀x ∈ Γ t h e n W := W ∪ {α}
e l s e ForEach x ∈ Γ

i f r(αx) > r(α) t h e n E l o n g a t e (αx , W )
Listing 2. Elongation procedure: Elongate (α,W )

to have only two peaks, whose localization depends on the
genome length.

Fig. 2. Expansion procedure

We would like to extract all the words α such that both
α[1, |α|−1] and αx (where αx is any elongation of α occurring
in G at least once) own a lower level of significance, namely
a lower random deviation, with respect to α. The goal can be
reached by examining all the words within G from monomers
up to a word length equal to the maximum repeat length of G,
and by discarding hapaxes. However, such an approach turns
out highly expensive, and it cannot be applied efficiently for
long genomes. Thus, we developed an expansion procedure
with the aim of elongating seed words, let say monomers, up
to more meaningful words. The (variable length dictionary)
extraction algorithm, combining word elongation and random
deviance test (in the expansion procedure) is given by two
recursive functions in Listings 1 and 2, where D0 denotes the
set of seeds Dk0(G).

The main idea is to compare the random deviation of a word
with those of its elongations. If an elongation results in a word
more significant than its root, then the root word is discarded
and the elongated word is selected. The process is applied
recursively over the word branching of the selected elements
(see Listing 2). Seeds are discarded from the output dictionary.
Three steps are implemented to compute random deviations.
For all factors α of the genome i) RDD of the current
word α is computed, by also removing distribution noise
(peaks) and transforming Rα into a probability distribution;
ii) an exponential distribution Eα is computed from Rα
and normalized to be a probability distribution; iii) random
deviation rα is computed by means of the Kullback-Leibler
(entropic) divergence.
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We employ two elongating functions (along both directions
of the genome double string) and the resulting dictionary is
the union of the dictionaries obtained with the two elongations.
We refer with WL2R and WR2L as the dictionaries extracted
by following the 5′ − 3′ and 3′ − 5′ verses, respectively, and
with W = WL2R ∪WR2L as the resulting dictionary.

C. Dictionary evaluation

Extracted dictionaries are evaluated by means of infor-
mation measurements, such as the word length distribution
of their elements. Two other parameters are the sequence
coverage, which is the percentage of positions i in the genome
such that G[j, k] is a word of the extracted dictionary D
for j < i < k, and the average positional coverage, which
is the average over positions i of number of words G[j, k]
for j < i < k of the dictionary D. They are denoted
by cov(G,D) and avg(covp(G,D)), respectively. A good
dictionary must have a high sequence coverage, but a low
overlapping degree among its elements. In fact, if we consider
Dk(G) as a language, for a certain value of word length k,
then it has the maximum sequence coverage (all positions of
the genome would be involved by at least one k-mer) but
also the maximum positional coverage, since each position of
the sequence is involved by up to k different words of the
dictionary. On an ideally good dictionary, both parameters are
close to one, meaning that its words cover almost the entire
genome and tend to not overlap.

III. RESULTS

Both algorithms described in previous section were run over
all human chromosomes belonging to the reference assembly
hg19.

A. Dictionaries extracted by the V-algorithm

Table I shows the number of extracted words (that is,
dictionary sizes), for each single human chromosome, and
their union at the bottom, for both the algorithm in [24]
and the V-algorithm, by starting from different seed lengths,
and by implementing two filters as redundancy strategies: one
discarding duplicates (same words coming from different seed
lengths) and the other discarding prefixes (in order to estimate
the relative amount of prefixes).

The result is that the V-algorithm is able to select a smaller
set of words, with a lower gap between the two redundancy
discarding strategies. This is essentially due to the fact that the
higher is k the lower are the C measures of k-mers. Therefore,
comparing the C measure of a word, relatively longer than k0,
with the measure of its proper prefix is more restrictive than a
comparison with the measure of the initial word of length k0.
From this behaviour, we can speculate that the V-algorithm
selects words with an higher semantic meaning.

In Table I, it is evident that the V-algorithm extracts a
smaller amount of duplicates and prefixes than the algorithm
in [24] (even when starting from seeds with different length).
Indeed, smaller variable length dictionaries were extracted by
the V-algorithm, with fewer duplicate discarding steps, and a

TABLE I
NUMBER OF EXTRACTED WORDS BY THE ORIGINAL AND MODIFIED

ALGORITHMS

Chr Orig. Orig. ratio V-algo V-algo. ratio
no dup. no pref. no dup. no pref.

1 276,178 210,728 0.763 57,064 57,055 1.000
2 281,698 227,544 0.808 119,582 118,368 0.990
3 259,805 203,888 0.785 102,640 101,142 0.985
4 251,067 201,760 0.804 108,229 106,879 0.988
5 259,167 207,300 0.800 112,846 111,581 0.989
6 255,025 198,487 0.778 106,193 104,510 0.984
7 269,392 208,465 0.774 113,139 111,840 0.989
8 259,586 206,241 0.794 118,551 117,295 0.989
9 212,362 152,523 0.718 33,886 33,878 1.000
10 234,663 186,844 0.796 100,616 99,595 0.990
11 249,374 188,012 0.754 94,484 93,417 0.989
12 247,842 187,931 0.758 99,147 97,579 0.984
13 176,546 149,563 0.847 81,634 78,868 0.966
14 209,881 162,515 0.774 94,312 90,313 0.958
15 207,173 177,125 0.855 107,114 103,917 0.970
16 229,208 166,653 0.727 62,732 62,673 0.999
17 204,905 160,475 0.783 85,091 84,303 0.991
18 161,710 131,900 0.816 65,985 65,558 0.994
19 258,781 197,822 0.764 123,913 122,541 0.989
20 171,474 131,434 0.766 66,320 65,597 0.989
21 130,763 100,427 0.768 50,698 50,233 0.991
22 147,002 120,259 0.818 77,797 74,511 0.958
X 279,938 213,093 0.761 124,793 123,006 0.986
Y 194,014 137,284 0.708 66,088 65,986 0.998

union 4,281,701 3,737,766 0.873 1,813,776 1,798,241 0.991

smaller amount of prefixes (which needed to be discarded in
the original algorithm).

B. Dictionaries extracted by the W-algorithm

The RDD-based W-algorithm was applied (with values
for seed length from the range 1 − 12) to extract genomic
dictionaries from each human chromosome, and some analysis
was performed also on the union of such 24 dictionaries.
However, here we show data only for some (more explicable)
chromosomes, for (more significant) seed lengths up to 8.

TABLE II
WORD LENGTH DISTRIBUTION OF HUMAN CHROMOSOME 1

k0
k 1 2 3 4 5 6 7 8
4 2 13 20
5 31 134 202 272
6 63 349 517 995 1,261
7 57 180 232 350 475 1,343
8 57 193 277 430 679 3,001 10,668
9 10 144 241 529 1,073 7,602 29,521 53,314

10 5 201 326 794 1,391 9,126 59,951 129,872
11 2 151 233 569 923 4,302 63,089 184,296
12 64 91 198 323 973 24,275 97,646
13 21 30 51 81 225 4,592 20,670
14 2 3 10 18 40 875 3,525
15 2 2 5 6 11 190 724
16 4 5 5 5 9 54 165
17 1 1 2 2 3 17 54
18 5 19
19 5
20 6
21 3
22 6
23 1

The Word Length Distribution (WLD) related to human
chromosomes 1 is shown in Table II by reporting the car-
dinality of words having a given length and being generated
by starting from a given seed length. A common feature is to
have two modes in the k-dictionary sizes, that is, two local
maximum values (indicated in bold) for some lengths k. In
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Table II, such values are 6 (for seeds long from 1 to 5) and
10-11 (for seeds long from 2 to 8). Although they do not
have fixed values (for tests performed on the other human
chromosomes and not shown here), they are not very variable.

Another empirical result, confirmed on all the other chromo-
somes, is that the dictionary generated by starting from seeds
k−1 long is a proper subset of that generated by starting from
seeds k long, apart of the words long k. In fact, words with
the same length of the seed are eliminated by the algorithm
and do not appear in the WLD tables.

Extracted dictionaries are evaluated according to both their
sequence and their (average) positional coverage: these data
related to chromosome 1 are reported in Table III and Table
IV respectively, where it is clear that parameter goodness does
not increase with the word or seed length k0.

TABLE III
HUMAN CHROMOSOME 1: SEQUENCE COVERAGE VALUES

k0
k 1 2 3 4 5 6 7 8
4 0.0291 0.0291
5 0.0309 0.0790 0.1362 0.1681
6 0.0269 0.3149 0.5504 0.7767 0.8426
7 0.0742 0.2479 0.3878 0.6430 0.7691 0.8141
8 0.0285 0.0616 0.0899 0.1187 0.1384 0.1643 0.2634
9 0.0115 0.0209 0.0303 0.0499 0.0615 0.0714 0.1593 0.6315

10 0.0008 0.0054 0.0071 0.0128 0.0206 0.0329 0.0974 0.5388
11 0.0025 0.0077 0.0088 0.0108 0.0127 0.0174 0.0602 0.3509
12 0.0028 0.0031 0.0081 0.0089 0.0101 0.0342 0.2858
13 0.0000 0.0006 0.0013 0.0054 0.0065 0.0070 0.0155 0.1209
14 0.0035 0.0048 0.0049 0.0056 0.0065 0.0066 0.0101 0.0451
15 0.0026 0.0036 0.0036 0.0050 0.0052 0.0052 0.0065 0.2140
16 0.0016 0.0017 0.0017 0.0071 0.0028 0.0032 0.0090
17 0.0011 0.0011 0.0012 0.0013 0.0013 0.0014 0.0031
18 0.0006 0.0006 0.0006 0.0006 0.0012 0.0012 0.0020
19 0.0000 0.0003
20 0.0000 0.0002
21 0.0001
22 0.0000
23
24 0.0000

By observing the data in Table III, the best coverage of
the chromosome (corresponding value 0.84) is obtained by
the examers obtained starting from 5-mers as seeds, while the
average positional coverage of such a dictionary is 2.7715 (see
Table IV), which is far from one. However, this dictionary was
our choice for the chromosome clustering analysis described
below, because we gave a priority of importance to sequence
coverage. Relatively to only positional coverage values, in
Table IV we may notice that words of length 10 (or longer, for
instance 15) exhibit good (i.e., less than 2) values for any seed
length up to 7, while examers have good positional coverage
with shorter seeds (long up to 3).

Finally, we extracted dictionaries of examers on each single
human chromosome, and from their pairwise intersections,
in absolute and relative terms, we found interesting results,
reported in Figure 3, where four groups of chromosomes may
be identified at the second level of the dendrogram, having
cardinalities of dictionary intersection of the same order of
that of the extracted dictionary from each single chromosomes
(see leaves of the dendogram). Our dictionary based method
was then capable to discriminate by structure similarity the
following clusters of human chromosomes.

TABLE IV
HUMAN CHROMOSOME 1: AVERAGE POSITIONAL COVERAGE

k0
k 1 2 3 4 5 6 7 8
4 1.0078 1.0078
5 1.0807 1.1690 1.2411 1.4198
6 1.1539 1.3022 1.6590 2.3201 2.7715
7 1.0934 1.2876 1.4587 1.9817 2.5877 2.9160
8 1.1569 1.2590 1.3125 1.4228 1.5184 1.5836 1.5572
9 1.4480 1.5411 1.5211 1.7039 1.8791 1.8661 1.5470 1.7484

10 1.0006 1.1090 1.1033 1.1697 1.1926 1.2632 1.2580 1.5457
11 4.0810 2.1729 2.0809 1.9100 1.7829 1.6131 1.3009 1.3658
12 1.0654 1.0624 1.1926 1.1809 1.1716 1.1507 1.3455
13 1.0000 1.0000 1.0000 1.1355 1.3769 1.3530 1.2340 1.3709
14 1.0000 1.0000 1.0000 1.0551 1.2244 1.2235 1.1687 1.3807
15 1.000 1.1446 1.1445 1.1065 1.1739 1.1725 1.1444 1.2559
16 1.2684 1.2636 1.2588 1.2539 1.1544 1.1447 1.1148
17 1.0000 1.0000 1.3982 1.3957 1.3948 1.3608 1.3440
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0015 1.0187
19 1.0000 1.0000
20 1.0000 1.0000
21 1.0000
22 1.0000
23
24 1.0000

Fig. 3. (a) Human chromosome similarities percentages. (b) Heatmap of
human cromosome similarity.

The dictionary of examers obtained by the algorithm from
seeds long 5 was here employed to cluster all human chro-
mosomes (see Figure 3). All chromosomes share very few
examers (159 are common to all, over the 1,666 extracted
words) which we exhibit as informative conserved sequences,
a sort of product by evolution selection, to be further analyzed
for their biological characterization.
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IV. CONCLUSIONS AND DISCUSSION

Given a genome, we extract a specific set of its factors
which represent the building blocks, or semantic units, of a
dictionary significant for the genome language. In this work,
we have described an information theoretical methodology to
extract relatively small genomic dictionaries, which have good
properties in terms of genome coverage.

Three methods were presented. One from the literature,
introduced in [24], which was our starting point in terms of
basic ideas, the second method is a variant of this, called V-
algorithm, more efficient and appropriate to extract genomic
dictionaries, and finally, our RDD based W-algorithm, which
originally combines a criterion of anti-randomness with a cri-
terion of elongation of seeds to select variable length factors.
The application of the state of the art methodology and the V-
algorithm to human chromosomes show that both algorithms
often fail in extending seeds, and when they success, they
more-likely extract very long words, which sparsely cover
the investigated sequences. The point of our approach is
to produce relatively small dictionaries with both sequence
and average positional coverage as close as possible to one.
The goal is reached thanks to the proposed W-algorithm.
We have shown that preferred seed lengths emerge, from an
observation of sequence and positional genome coverage that
provide a better coverage. Moreover, dictionaries of examers
were identified to reveal a clear similarity pattern for human
chromosomes.
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