
Accelerating Charged Single α-helix Detection on FPGA

Sam Khozama, Zoltán Nagy and Zoltán Gáspári

Pázmány Péter Catholic University
Faculty of Information Technology and Bionics

Budapest, Hungary
Email: {khozama.sam, nagy.zoltan, gaspari.zoltan}@itk.ppke.hu

Abstract—Novel biological sequences are determined at an ex-
treme pace producing a huge amount of data each day. Imple-
menting and speeding up the bioinformatics algorithms, which
need very fast and accurate results, is the main advantage of
reconfigurable architectures like Field-Programmable Gate Array
(FPGA), in addition to the low precision input data for these
kinds of algorithms, which can be stored in 2-5 bits. Detecting
structural motifs such as Charged Single α-Helixes (CSAH) is
a computationally intensive task which can be accelerated by
using FPGA. The goal of our research is to further improve the
processing speed of our algorithm called FT CHARGE to analyze
large databases in a reasonable time. Using the largest state-
of-the-art FPGA devices, either the number of processing units
or the parallelism inside the processing units can be increased.
In this paper, we provide details and compare the two design
approaches in terms of speed, implementation and accuracy. We
propose a new architecture that can perform search for CSAH
32 times faster compared to our previous FPGA implementation.

Keywords–FPGA; FT CHARGE; CSAH; Charged Single α-
helix; Hardware acceleration.

I. INTRODUCTION

The Charged Single Alpha-Helix (CSAH or simply SAH)
is a unique structural motif in proteins [1]. It has been exper-
imentally characterized only in a small number of proteins,
therefore, its recognition by prediction methods is of high
importance. Generally, more accurate algorithms tend to be
slow, thus, efforts are concentrated to speed up these methods
to make them applicable to large sequence sets [2]. Here,
we present the speedup of FT CHARGE, one of the earliest
methods based on Fourier transformation. We have previously
implemented an FPGA-based version of this algorithm [3]
,which is further improved here. Our novel implementation
offers higher computational speed to allow processing of very
large protein sequence sets, such as full genomes, or even
metagenomic samples, within hours.

The goal of using FPGA is to accelerate different sequence
searches and sequence matching in bioinformatics algorithms
such as the Smith-Waterman (SW) algorithm. The parallel
nature of FPGA, with its huge number of fine-grained blocks
(configurable logic blocks) provides a convenient architecture
for the additional implementation of bioinformatics algorithm;
this way, FPGA and the bioinformatics algorithms have par-
allelism at a fundamental level [4]. So, a large amount of
small and simple functional units can be implemented [5].
The Arithmetic Logic Unit (ALU), which is responsible for
performing instructions in conventional computers, which is

limited by the fact that it can only perform one instruction at
a time [6]. Our task is to implement in parallel any function
or circuit that meets the requirements of an application rather
than sequentially, to achieve optimal performance.

II. FT CHARGE ALGORITHM
Both SCAN4CSAH [1] and FT CHARGE are used to

detect CSAHs motifs and these two algorithms use com-
pletely different computational methods for analyzing protein
sequences conceptually. Because the FT CHARGE algorithm
is a very computationally intensive algorithm, it is suitable
to accelerate it on FPGA. The standard FAST-All (FASTA)
format is the input format for both algorithms. The analysis of
biopolymer sequences utilizes Fourier transformation regularly.
To implement the FT CHARGE algorithm, we downloaded
the database to the host computer and pre-processed it by
using only 2-bit encoding per sequence element. Charges are
assigned as follows: -1 for Asp (Aspartic acid) and Glu (Glu-
tamic acid) , +0.5 for His (Histidine), +1 for Arg (Arginine)
and Lys (Lysine) and zero for any other amino acid residue.[1].
This encoding is done by the host computer. The host computer
sends this encoded data to the FPGA, where it is processed,
and we receive back only the filtered results. Consequently,
only the candidate sequences expected to have α-helix will
be sent back to the host computer. As shown in Figure 1,
the four consecutive steps of the algorithm are (1) the Charge
Correlation Computation, (2) the Fast Fourier Transform (FFT)
Computation, (3) the Maximum Finder and (4) Extreme Value
Distribution Computation. The Charge Correlation function is
defined by the following function:

R(k, n) =

k+m−n∑
i=k

c(i)c(i+ n) (1)

where c(i) is the charge assigned to the ith amino acid, m is
the length of the window, 1 ≤ k ≤ l−m is the starting position
of the current window and l is the length of the sequence. In
our case, windows of 32 or 64 elements are examined during
the analysis of the full sequences.

The output of the Charge Correlation Calculation block is
connected to the FFT block. The role of the Maximum Finder
block is to find the maximum amplitude and its frequency
in the FFT spectra, which are used to fit an Extreme Value
Distribution (EVD). At last, determining the threshold for
signaling a charged single α-helix motif is done by using the
fitted distribution.

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-792-4

BIOTECHNO 2020 : The Twelfth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Figure 1. Block diagram of the system implemented on FPGA.

TABLE I. AREA REQUIREMENTS OF OUR PREVIOUSLY
IMPLEMENTED SYSTEM [3]

CLB LUTs CLB Flip-Flops BRAM DSP Slices
Complete system 44662 53122 90 157
ZCU102 274080 548160 912 2520
Estimation 6 10 10 16

III. FPGA IMPLEMENTATION

FPGA manufacturers offer very efficient signal processing
libraries to utilize in highly-intensive computation applications.
In our previous work [4], we implemented the FT CHARGE
algorithm on a small FPGA. It used the FFT IP core from
Xilinx CoreGenerator and the main goal was optimizing the
computation of the charge correlation function to feed the FFT
core efficiently. The computation time for the whole UniProt
TREMBLE database [7] took nearly 24 hours. The stages were
computed in parallel and the system was running on 100 MHz
clock-frequency. The 32 and 64 element version required a
new 2bit wide information sequence element in every 32nd

and 64th clock-cycle. The memory bandwidth requirement was
6.25 Mbit/s and 3.125 Mbit/s in the case of 32 and 64 element
windows, respectively.

The first way to improve our previous implementation is
simply to replicate the system-blocks as much as we can, to fit
into a larger ZYNQ device [8]. The FPGA resource usage of
our previously implemented system and the estimated number
of processing blocks on Xilinx ZCU102 board equipped with
a larger FPGA compared to our previous study are shown in
Table I.

In this paper, we have the opportunity to increase the
performance nearly 6 times, as the limiting factor is the number
of Lookup tables (LUTs). In light of this, we should take into
consideration what does it mean to have such a huge number
of hardware blocks on FPGA. Our previous computing unit
connected to the main memory of the board via 6 input and
3 output Advanced Extensible Interfaces (AXI) [9]. These 9
interfaces should be replicated 6 times here. We can say that
the area required by the AXI interconnect blocks to connect
all the 54 AXI interfaces of these 6 units on the ZYNQ board
to the memory interface will use a significant portion of the
device. Thus, we could accelerate the implementation, but it
would still require a lot of time because of a larger database.

A more efficient way to extend our previous solution is
to implement several units in parallel, using a larger Xilinx
ZYNQ board [10] [11]. Therefore, we went further to utilize
some of the recent advantages of the High-Level Synthesis
(HLS). Our suggested solution is to change the output of the
Charge Correlation block in order to compute and send all 32
or 64 elements to FFT in each clock-cycle and also to replace
the previous FFT module with more parallel processing units.
This will definitely help us to improve computing performance
in the system.

We proposed a new FFT implementation based on the
Cooley-Tukey algorithm [12] that accepts 32 or 64 elements
in each clock-cycle. The multiplication processes inside the
FFT butterfly diagram normally use floating-point numbers,
but this requires a very large area. In addition, we decreased
the number of bits and saved a large amount of space because
of using fixed-point numbers. The accuracy of the new solution
is almost the same with the previous one. The basic idea
is to improve the speed of computation by parallelizing the
algorithm.

The system has implemented on the ZCU102 board. There
are 2 options when preparing the input-output interfaces: (1)
either load the input sequence by sequence or (2) load many
sequences into a large buffer. Before processing each sequence,
we need to load some special parameters to the control regis-
ters of the FT CHARGE processing block. These parameters
include the address of the sequence, the buffer where the result
should be saved, and the length of the sequence. Sending these
parameters take time since they should be written through
the relatively slow AXI lite interface. According to the co-
simulation results, sending one parameter takes around 5-6
clock-cycles, so, setting all the needed parameters will require
a long time (in case of short sequences, it will be comparable
with computation time of the whole sequence).

Here, our improvement consists of working on larger
buffers, where one buffer contains several sequences concate-
nated one after each other and, instead of giving the length of
one sequence, we give an array of lengths to the FT CHARGE
algorithm. For example, if we have 4 MB buffer, we can place
several sequences in this large buffer and the cumulative length
of these sequences is in the order of 16 million. In 1 byte,
we can store 4 sequence elements because 2 bits can encode
1 element from the sequence. In this case, we have a task,
which may last for 16 million clock cycles and, when we start
the operation of this block, we need nearly 100 clock-cycles
to set up the system with the required parameters. After that
initial delay, the processing unit can work for a long time,
consequently, the utilization of the hardware will be greatly
increased.

IV. FAST FOURIER TRANSFORMATION BLOCK

For efficient computation of the spectra of the charge
correlated window, the FFT can be used. A well known
computing method of the FFT is the Cooley-Tukey Algorithm
[12]. The Discrete Fourier Transform (DFT) of a signal is
defined as follows:

Xk =

N−1∑
n=0

xne
−2πi
N nk (2)

where xn is an element of the input vector and k is an integer
ranging from 0 to N−1, where N is the size of the transform.

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-792-4

BIOTECHNO 2020 : The Twelfth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Figure 2. Cooley-Tukey algorithm: An 8 point FFT built recursively.

We can rewrite the computation of Xk as:

Xk = Ek + e
−2πi
N kOk (3)

Xk+N/2 = Ek − e
−2πi
N kOk (4)

A block used to compute these equations is called butterfly,
which is a small DFT. The Butterflies can be connected
systematically to build larger FFT blocks, as shown in Figure 2
for an 8 input FFT. The number of stages is log2N and N/2
Butterflies are required in each stage. As a result, the number
of operations during the Fourier Transformation computation
is reduced to O(n log n) from O(n2). Also, this structure
provides a convenient way to implement parallel FFT by using
N × log2N Butterflies.

Our previously implemented system used Xilinx FFT IP,
which does the transformation serially. So, 32 or 64 clock-
cycles are required to load the samples. The whole computation
is done in 32 or 64 clock-cycles. The previous system has
one processing the pipeline for 32 elements window and two
processing pipelines for the 64 elements window. Therefore,
the time required for 32 and 64 element window computations
is roughly the same, if we have a large group of sequences.

In this paper, we modified the charge correlation part to
provide these data elements in parallel, which means compu-
tation speed could be increased 32 times. So, by implementing
FFT and Charge Correlation computation in parallel 32 times,
a speedup can be expected because all the 32 or 64 outputs of
the Charge Correlation block can be computed in one clock-
cycle and shifted to the FFT. After some delay, the FFT
block will provide all the 32 or 64 transformed results in one
clock-cycle. The Maximum Finder should also compute the
maximum value of the 32 or 64 element window in one clock
cycle. The Extreme Value distribution block is not modified
because it works on the maximum value of the FFT spectra
and its position, just like in the previous implementation.

Our system’s expectations are that each pipeline will re-
quire one input stream and one output stream. Therefore, 4
AXI interfaces are required all together. If these blocks are
replicated 2 or 3 times, we still need only 8 or 12 memory
ports, which is more manageable than the 54 ports of the
previous serial implementation.

For easier testing, we use the MATLAB code and C
code from the previous implementation. In this work, create
a complete test bench in Vivado HLS [10] to load a valid
sequence data to the system, process it and check whether the
result is good or not.

TABLE II. AREA REQUIREMENTS OF THE CURRENT SYSTEM WITH
DIFFERENT NUMBER REPRESENTATIONS

CLB
LUTs

CLB
Flip-Flops CLBs Block

RAM DSPs

ZCU102 274 080 548 160 599 550 912 2 520
Fixed-point

18bit 44 043 42 344 8 155 13.5 668

Fixed-point
23bit 51 572 50 378 9 417 13.5 768

Floating-point 225 157 321 469 34 092 13.5 2 146

TABLE III. RUNTIME PROCESSING OF THE SPROT DATABASE
(SECONDS), FPGA AND SOFTWARE IMPLEMENTATIONS

with communication without communication
Previous System 275.857 -
Current System

Fixed-point 20.218 2.24159
Floating-point 23.1604 5.15008
AMD Ryzen 5 3400G 223.52 -
INTEL Core i5-4590 371.731 -

Table II shows three different representations that could be
used in the current system. The original used an 18 bit word
length inside FFT. The second one used 23 and 24 bits in
the cases of 32 and 64 element windows. These designs were
running on a 250MHz clock-frequency and were processing
one window in each clock-cycle. The last one was a single-
precision floating-point version.

By choosing the fixed-point 18 bit representation, the
limiting factor will be the number of Digital Signal Processor
(DSP) slices. In this case only, 30% of the resources are used
and we can replicate the system-blocks three times.

Using single-precision floating-point numbers requires 6
times more DSP slices, because one floating-point multiply
add (MADD) unit requires 4 DSP slices for the multiplier and
2 DSP slices for the adder, compared to a single DSP slice
in the 18 and 23 bit cases. To fit the floating-point version
into the ZCU102 board, the Initiation Interval of the FFT
block is increased to two. In this case, the FFT is computed
in two clock-cycles and the floating-point multiply-add units
are shared between two operations, effectively halving the DSP
slice requirement of the circuit. The FPGA resource utilization
in this case, is over 90%, which might cause timing issues
during implementation. Therefore, the clock-frequency of the
design is reduced to 150MHz for stable operation. With the
floating-point representation, the more accurate results, the
more DSP slices are needed. The computation speed of the
floating point solution is reduced to 75 million windows/s due
to the slower 150MHz clock frequency and the two clock cycle
processing time of the FFT. The computation times of the
different solutions for the UniProt SPROT database [7] are
summarized in Table III.

V. SYSTEM TESTING

After finished testing all the methods, which represented
the functionality of the system in a synthesizable form, we
started preparing the Xilinx environment to execute our im-
plementation on a real circuit. On the host PC, we started
preprocessing the database of amino acid sequences. The data
is downloaded from the UniProt website [7] in FASTA format
and converted to charges. We are using a ZCU102 board

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-792-4

BIOTECHNO 2020 : The Twelfth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Figure 3. Amplitude of FFT, 32 elements window computation.

from Xilinx, which, in turn, has ARM Central Processing
Unit cores. We are utilizing them for running Linux to
handle the communication between the host computer and
the ZCU102 board over gigabit Ethernet. After accepting
the data, the ARM cores are sending it to the FPGA with
Direct Memory Access (DMA). Our reference solutions for
the FT CHARGE algorithm are computed using MATLAB
and C++. The result of these two were compared to the FPGA
output. The comparison procedure included the number of hits,
which represent the candidates windows expected to contain
α-helix. Vivado Software Development Kit (SDK) was used
for developing this software. While the circuit was running, we
experienced a few cases where the sequences were detected on
the software side but not in the hardware one. Examination of
the undetected sequences showed two types of errors; in case
of the first error type, the amplitude was close to the amplitude
threshold (7.0). Some elements were not found because the
maximum amplitude computed on the FPGA was smaller than
the threshold due to the rounding error of the fixed-point
computation. The other error has been noticed after plotting
the FFT amplitudes in MATLAB. The representation of the
amplitude in case of the 32 element window is plotted in
Figure 3. A similar behaviour can be observed in the case
of some 64 element windows too.

The figure shows that the difference can not be determined
by the human eye, because the results of the software and the
FPGA computation are correct to at least three or four decimal
digits. The question raised here is: why are these sequences
recognized only in software?

After examining the numbers in greater depth, we de-
termined that we have two nearly equal peaks for half of
the sequences in the software. In the hardware, we have a
difference in the third or fourth decimal value, as mentioned
before and, because of the rounding error of this very tinny
difference, the output of the hardware is changed and no
longer in sync with the software. We can easily overcome this
problem by increasing the width of the registers storing the
partial results in the FFT block by adding more fractional bits.
Unfortunately this solution requires more resources because
the multipliers in the DSP slices are working on 25 bit and
and 18 bit signed inputs. Therefore two DSP slices required,
instead of one, when on one of the inputs of the multiplication
is in the (26− 49) bit range.

The consequences of the differences in numerical preci-
sion are to be investigated on large biological sequence sets
to determine whether they cause any negative consequences
for SAH detection. The double peaks, observed for some

sequences, likely come from regular larger repeating units in
the protein sequences. This issue and its relevance are also
under investigation.

VI. CONCLUSION

In this paper, we improved the previously proposed FPGA
based system for speeding up the α-helix detection algorithm
by replicating the main three blocks as much as possible
to fit a larger FPGA board. In addition, implementing these
processing units in parallel enables fast search on larger protein
databases and runs the whole system at a speed 30 times
higher than the previous implementation. We have finished
modifying the code of the whole system to be fitted with FPGA
specifications represented in the 2-bit representation for the
Charge Correlation Calculation module and also the transition
from floating-point to fixed-point during the FFT module. This
is required to use FPGA resources more efficiently.

On one hand, we were able to significantly reduce the
area required to implement the circuit on FPGA by using
fixed-point representation inside the FFT module. On the
other hand computing performance is increased by a factor
of three, while the accuracy of the results is similar to the
accuracy of the floating-point solution. We have also tested
this code, implemented on FPGA with real sequence data, and
we obtained the same results as with the previous version on
MATLAB. So, the error is in an acceptable range and the
hardware version is working properly.

REFERENCES
[1] D. Süveges, Z. Gáspári, G. Tóth, and L. Nyitray, “Charged single α-

helix: a versatile protein structural motif,” Proteins, vol. 74, 2009, pp.
905–916, doi: 10.1002/prot.22183.

[2] D. Simm and M. Kollmar, “A command-line tool for predicting stable
single α-helices (SAH-domains), and the SAH-domain distribution
across eukaryotes.” PLoS one, vol. 13, no. 2, 2018, p. e0191924, doi:
10.1371/journal.pone.0191924.

[3] Á. Kovács, D. Dudola, L. Nyitray, G. Tóth, Z. Nagy, and Z. Gáspári,
“Detection of single α-helices in large protein sequence sets using
hardware acceleration,” Journal of structural biology, vol. 204, no. 1,
2018, pp. 109–116, doi: 10.1016/j.jsb.2018.06.005.

[4] Z. Nagy, Z. Gáspári, and A. Kovács, “Accelerating a charged single
α-helix search algorithm in protein sequences using FPGA,” in CNNA
2016; 15th International Workshop on Cellular Nanoscale Networks and
their Applications. VDE, 2016, pp. 1–2.

[5] D. G. Bailey, Design for embedded image processing on FPGAs. John
Wiley & Sons, 2011.

[6] D. Abramson, A. de Silva, M. Randall, and A. Posutla, “Parallel special
purpose architectures for high speed optimisation,” in Proceedings of
the Second Australasian Conference on Parallel and Real Time Systems,
1995, pp. 13–20.

[7] “Uniprot,” URL: https://www.uniprot.org/.
[8] F. Albu et al., “Implementation of (Normalised) RLS lattice on Virtex,”

in International Conference on Field Programmable Logic and Appli-
cations. Springer, 2001, pp. 91–100, doi: 10.1007/3-540-44687-7 10.

[9] Xilinx, AXI4-Stream, Infrastructure IP Suite v3.0, LogiCORE IP Prod-
uct Guide, Xilinx, December 2018.

[10] ——, Introduction to FPGA Design with Vivado High-Level Synthesis,
UG998, Xilinx, Jan. 2019.

[11] ——, ZCU102 Evaluation Board User Guide UG1182 (v1.6), Xilinx,
June 2019.

[12] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. of Computation, vol. 19, 1965, pp.
297–301, doi.org/10.1090/S0025-5718-1965-0178586-1.

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-792-4

BIOTECHNO 2020 : The Twelfth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

