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Abstract—Protein classification problems can be addressed with
a wide range of machine learning methods. Top performance is
achieved with a variety of methods, and the best method depends
on the data set under study. Therefore, a minimal requirement for
a general proceeding is to consider multiple classifiers and to tune
their hyperparameters. Further highly task-specific performance
gains can be achieved through additional measures like feature
selection, which is particularly important for high-dimensional
descriptors, or with separate classifiers for different clusters. In
this paper, we design a versatile classifier with the aim to combine
all of the above options, but with robust defaults and fallback
options. We demonstrate systematic performance improvements
across a wide range of protein prediction problems.
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I. INTRODUCTION

In recent years, an increasing number of protein sequences
has been extracted through high-throughput sequencing tech-
nologies. As a consequence, identifying functions of these
sequences became one of the most interesting and chal-
lenging topics in bioinformatics [1]. Different computational
approaches to predict the functions of protein sequences in an
efficient way have been explored.

In most approaches, prediction of protein functions is
based on supervised classification algorithms, which construct
a learning model determining the relation between the protein
sequences and their functions. The trained model can help
in predicting the function of the new sequences. For many
protein sequence datasets, the predictive accuracy achievable
this way is not fully satisfactory. Classification is often easy
if the discriminative features are homogeneous for the whole
data set. For heterogeneous datasets, we should, therefore,
find homogeneous regions and address them with separate
classifiers. In particular, tuning feature vectors and hyperpa-
rameters specifically for each region can improve the overall
performance of the prediction.

Clustering can be used for obtaining homogeneous regions
inside a dataset. Clustering is a class of unsupervised learning
methods, which group similar data based on their properties
without depending on labels. Sequences within a cluster are
more similar to each other than sequences in other clusters.
In this research, clustering is applied prior to classification
to construct meaningful homogeneous sub-datasets in order to
improve the performance of the classification.

Several researchers explored combinations of classifica-
tion and clustering in different applications, such as disease

diagnosis [2], text classification [3][4], and network traffic
classification [5]. Their results show that this combination can
improve predictive performance in many cases. In the field
of protein problems, clustering has been used for many years
to group proteins into families [6]–[8]. However, the effect
of using clustering algorithms to reduce the heterogeneity of
the protein datasets in order to improve the performance of
supervised prediction of the function of proteins has not yet
been studied. In this study, we close this research gap.

Clustering can be used to improve the performance of clas-
sification either by reducing the feature representation [9][10],
or by extracting structural information form the data. In the
second case, clustering is used to discover a structure in
the training examples. Some approaches use the clustering
information by expanding the feature vectors with new at-
tributes extracted from clusters. For example, Kyriakopoulou
et al. [3] have enhanced the text classification performance
for the spam detection problem by grouping the training data
into clusters and then each cluster contributes one meta-feature
to the feature space of the training and testing data. Finally,
they used a Support Vector Machine (SVM) classifier [11] to
classify the expanded data containing the original features and
meta features. Their experimental results demonstrate that the
inclusion of meta features improves the classification accuracy.
Xiao et al. [2] constructed a clustering-based attribute selection
measure from the clustering step. This attribute called hybrid
information gain ratio takes, into consideration the class label
and the cluster of the sample. They trained a C4.5 decision
tree based on this ratio. Their results show that using the
new attribute improved the performance of classification for
healthcare and disease diagnoses problems.

The most commonly used approach to combine clustering
with classification depends on breaking down a complex
classification problem into simpler problems using clustering,
then training a single classifier on each cluster. Rajamohamed
et al. [12] applied k-means and rough k-means to group credit
card churn samples into clusters. Then, they divided each
cluster into testing and training data to apply a classifier
within each cluster. Different classifiers were tested and the
results showed that combining the rough k-means with SVMs
improved the classification performance compared to using
a single classifier. Gaddam et al. [13] combined k-means
clustering and the ID3 decision tree learning methods for
classifying anomalous and normal activities in a network, an
active electronic circuit, and a mechanical mass beam system.
In their work, the dataset is divided into k subsets based on the
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similarity, then the ID3 classifier is trained on each cluster. The
results showed that this hybrid achieved better performance
than a single global classifier. Fradkin [14] applied clustering
within classes to artificially increase the number of classes,
then a multi-class classifier was trained to distinguish between
the clusters. The results showed that clustering within classes
can improve the classification in many cases.

In this work, we aim at designing a general approach for
improving the prediction of protein sequences. To this end,
we reduce the heterogeneity of the dataset (if it exists) by
constructing meaningful homogeneous regions (sub-datasets),
and then handling each sub-dataset separately as a small
problem inside a large complex dataset. This allows us to
train different classifiers in each sub-dataset, and importantly,
to select features and tune the hyper-parameters of these clas-
sifiers separately. We also introduce an option to return back to
the classifier trained on the whole complex dataset in case of
weakness, as proposed in [14]. This is an important mechanism
that greatly stabilizes the results and that avoids over-fitting to
small clusters. We analyse the features inside each sub-datasets
and apply feature reduction to select locally significant features
to help in distinguishing sequences that belong to different
classes and improve the sub-dataset classifier, which implies
improving the overall performance. In contrast, existing hybrid
models apply reduction only before the clustering to select
globally significant features [15][16].

We tested two methods for features reduction, and different
classifiers were trained and their hyperparameters tuned. We
evaluated the effect of the proposed approach on six protein
function prediction problems. Our results show that the pro-
posed approach improves the performance of the prediction in
most cases, without degrading performance in other cases.

The remainder of this paper is organized as follows:
the next section describes the proposed approach in detail.
Section III briefly introduces the benchmarks of this study.
In section IV, we present the experimental results and discuss
our findings. In section V, we close with conclusions from our
work.

II. THE PROPOSED APPROACH

We propose a versatile approach for the classification of
protein functions consisting of the following steps:

1) encode variable-length protein sequences with a fixed-
length descriptor or feature vector,

2) cluster the dataset into sub-datasets,
3) apply feature reduction inside each sub-dataset
4) train multiple classifiers for each sub-dataset, and
5) decide for each subset which classifier to use.

The proposed approach is summarised in Figure 1, where the
number of sub-datasets is 2.

We go through these steps one by one.

A. Representing Protein Sequences
We aim to represent protein sequences in a form that can be

easily handled by machine learning algorithms. The main chal-
lenge is that sequences can have different lengths. For many
learning machines, we need to encode these sequences into
a fixed-length descriptor that extracts the relevant features. In
this study, we rely on Chou’s Pseudo Amino Acid Composition
(PseAAC) descriptors for protein sequence encoding [17]. It

has been demonstrated that PseAAC descriptors are extremely
effective features for protein problems [18]–[22]. PseAAC
represents amino acid frequencies and, in addition, it preserves
most of the sequence-order information [23][24]. A protein
sequence is represented by 20 + λ numerical features. The
first 20 features are the occurrence frequencies of the 20 amino
acids. The remaining λ descriptors encode the sequence order.
For a detailed description of PseAAC, we refer to [17][25].

PseAAC depends on Physico-Chemical Properties (PCPs)
of the amino acids to represent the sequence. A PCP is a
(scalar) physical or chemical feature of the amino acid. In
this work, we used two sets of PCPs. The first set is rather
small and it consists of three PCPs used in Chou’s work [17]:
hydrophobicity, hydrophilicity, and side chain mass. The other
set is more rich: it contains fifty non-redundant PCPs of amino
acids proposed by Georgiev [26], such as: normalized relative
frequency of double bend , pK (-COOH) , relative mutability
and flexibility parameter for two rigid neighbors .

B. Clustering the Dataset into Sub-datasets
The second step in this approach is clustering the dataset

(D) into sub-datasets (SDs). Clustering is a process of grouping
the samples into meaningful clusters, with the aim to identify
groups of homologous protein sequences. This way, we break
down a complex protein prediction problem into a set of
simpler problems. To keep the approach manageable, we
applied only one clustering algorithm, which is k-means [27].

K-means is a partition clustering algorithm, where each
sample belongs to a unique cluster. It is widely used in bioin-
formatics [28][29] because it is simple, easy to implement, and
reasonably fast. For details on k-means, we refer to [27]. To
apply k-means, we need to select the number of clusters (k),
which is a hyperparameter of the method. Optimal clustering
requires dataset-specific tuning of k [30] and, since there
is no method that is guaranteed to find the optimal value
for k (determining the right number of clusters is still an
open problem in clustering research), we apply an array of
pre-defined values for k and study its effect on the overall
performance.

C. Reducing Feature Vector Dimensionality
After clustering, we apply feature reduction inside each

sub-dataset in order to optimally separate sequences that
belong to different classes. Yang et al. [22] showed that
applying feature reduction on PseAAC features can improve
the performance of protein classification.

Feature reduction is an important step before applying
machine learning algorithms if some of these features are
irrelevant or redundant [31], and possibly add noise. These
redundant and irreverent features do not contribute to the
accuracy of a predictive model and sometimes even reduce
its performance. Then, removing these features can improve
the accuracy of the model, or decrease the size of the feature
space without affecting the prediction accuracy [31]. To study
the effect of reducing the feature vector, we have tested
two reduction techniques: the Recursive Feature Elimination
(RFE) algorithm as a feature selection technique, and Principal
Component Analysis (PCA) as a feature extraction technique.
For more details about these algorithms, please see [32] and
[33], respectively.
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Figure 1. The proposed Approach.

D. Training Classifiers on the Sub-datasets
The central step of this approach is to train a classifier.

We apply a set of standard supervised learning algorithms that
build a predictive model based on the training data. The model
is used to classify new samples (testing data).

After dividing the protein dataset into k simpler problems
(sub-datasets) in the clustering step, we train one classifier
per sub-dataset, so each classifier focuses on classifying the
proteins in a specific region. This step includes hyperparameter
tuning, where the tuning procedure employed depends on the
classifier at hand.

For some sub-datasets, we cannot train a reliable classifier
because there is not enough data. In such a case, we need
to use another classifier to process data within this region.
Therefore, we resort to the classifier trained on the whole
dataset as proposed by [14], which we refer to as the “Full
Dataset Classifier” (FDC).

From the previous steps, we have sub-datasets with the full
features, and a view on these sub-datsets with reduced features.

Therefore, for each sub-dataset, we train two classifers: one us-
ing the full feature set, called “Sub-dataset Classifier” (SDC),
and the other using the reduced feature set, called “Reduced
Sub-dataset Classifier” (RSDC).

E. Classifier Selection
For each sub-dataset, we have up to three classifiers avail-

able: FDC, SDC, and RSDC. We select one of them into our
predictive model. To this end, we estimate the performance
of all three classifiers by means of cross-validation, restricted
to the sub-dataset. We select the classifier with the highest
AUC (area under the receiver operator characteristic curve).
The classifier with the highest AUC is then responsible for
classifying all data in the corresponding cluster.

This last step proves to be crucial for achieving high
predictive accuracy. Our intuition on the classifier selection
step is as follows. Our basic hypothesis is that protein datasets
can consist of meaningful sub-datasets, where different feature
sets are discriminative in each subset. That logic leads straight
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to the construction of the RSDC classifiers. However, using
RSDC in all cases does not work well. On the one hand,
this is the case if there is no pronounced subset structure
in the dataset under study. On the other hand, some clusters
represent harder classification problems than others. In the hard
clusters, RSDCs suffer from the reduced amount of data. Then,
feature reduction and even model training can be unreliable
and subject to a high risk of over-fitting, while the global
classifier makes better use of surrounding points. Therefore, it
is important to provide the robust fallback options of reverting
to the SDC or even to the FDC.

When a new sequence is incoming, we measure its simi-
larity with the centroids of the sub-datasets and assign it to the
nearest centroid. Then, we apply the chosen classifier based on
the previous cases. We want to stress that the decisions in all
five design stages, namely how to represent sequences, how
many clusters to use, which learning machine to apply and
how to set its hyperparameters, which features to reduce, and
which classifier to pick for each cluster, are all made based
on cross-validation, so that we end up with a single hybrid
classifier.

III. BENCHMARK DATASETS

To evaluate the performance of the proposed approach,
we have used six protein datasets. Table 1 summarize all
these datasets. The first three datasets contain long sequences
and the last three contain peptide sequences. All datasets are
binary classification problems. We have split each dataset into
a training and a testing set.

IV. EXPERIMENTS AND RESULTS

The main aim of our experiments is to demonstrate the
benefit of our approach as compared to the FDC, which is
a natural baseline. We used the following parameter settings
in our experiments. The PseAAC encoding, as described in
Section II-A consists of two parts. The weight of the features
representing the sequence order was set to w = 1/2. The
length of the shortest sequence was set to λ = 7 for peptides
and to λ = 30 for long protein sequences. These settings result
in 27 and 50 PreAAC features, respectively.

Since the distribution of the sequences differs from one
dataset to another, we have to tune the number of sub-datsets
(k) for each dataset. For small datasets (Caspase-3, DNA-
binding, and Antioxidant proteins), k is selected from a range
of 2 to 7 with a step size of 1, and for the other datasets k is
selected from a range of 5 to 30 with a step size of 5.

We have tuned the hyper-parameters for the FDC, SDC,
and RSDC classifiers using 5-fold cross-validation repeated 3
times, and we have applied an inner cross-validation for RFE
to assess generalization on an independent dataset and avoid
over-fitting [40]. Cross-validation was also used for estimating
the quality of the classifiers.

To evaluate the performance of the classifiers, we depend
on sensitivity (SN), specificity (SP), and Matthew’s Correlation
Coefficient (MCC) [41]. We also use the Receiver Operating
Characteristics (ROC) curve. This curve illustrates the achiev-
able trade-offs between true positive rate and false positive
rate. The quality of the ROC curve is measured by computing
the area under the ROC curve (AUC) [42]. All values displayed
in this research are computed on independent test sets.

A. Selecting the Best Classifier for the Proposed Approach
In our experimental study, we considered the following

types of classifiers: SVM [43], Random Forest (RF) [44],
Artificial Neural Network (ANN) [45], and eXtreme Gradient
Boosting (xGBoost) [46]. We trained FDCs with all four learn-
ing machines with protein sequences represented by PseAAC
descriptors using 50 PCPs [26] and using 3 PCPs [17]. Figure 2
shows the ROC curves and AUC values of all four classifiers
on the six datasets.

For some datasets, there are significant differences in
classifier performance and, in some cases, the number of
PCPs makes a difference. It can be deduced from Figure 2
that different classifiers work well for different problems, a
fact we account for with our approach. SVMs are a solid
choice for most datasets using 50 PCPs, while RF is the best
choice when using 3 PCPs. Therefore, we restrict ourselves
to SVM and RF classifiers. In the following, we present two
sets of experiments. First, we assess the effect of splitting the
dataset into sub-datasets by comparing SDCs and FDC, then
we investigate the effect of feature learning inside each cluster
by comparing SDCs and RSDCs.

B. Impact of Training Multiple Classifiers
In order to study the effect of training separate classifiers

in some regions within the dataset, we run several experi-
ments varying k (number of sub-datasets). Table II shows a
comparison between using FDC only (baseline), and SDCs
with the option to use FDC for weak SDCs based on AUC
values, as described in Section II-B. The results in the table
represent the best cross-validation performance over k and the
machine-specific hyperparameters. We observed that, in the
most cases, applying SDCs with option to resort to the FDC
in a per-cluster manner improves the performance over using
FDC only, except for the AMP dataset, where the improvement
is very small for both SVM and RF. For three datasets, the
effect of using multiple classifiers on the overall AUC is small
(1% improvement), while for RNA-binding, Antioxidant, and
MHCII datasets, we have achieved a respectable improvement
of 3% in the AUC values. For the other metrics, we achieved
significant improvements.

The results clearly indicate that classification based on
SDCs with the fallback option to the FDC consistently im-
proves over the FDC baseline.

The best result is obtained for the RNA-binding dataset:
3% and 12% improvement for the AUC and MCC values,
respectively, by grouping the dataset into 5 sub-datsets and
using SVM-SDCs inside 3 groups, while the other 2 groups
depend on the SVM-FDC. On the other hand, the best result
obtained with an RF is 1% improvement in both AUC and
MCC where k = 5. For MHCII peptides, we obtained the
best result by grouping the dataset into 15 clusters, but using
SDCs for 3 groups only. This result indicates that, in some
cases, significant improvements are achievable by handling
only a few sensitive regions with specific SDCs. Furthermore,
it is worth noting that, for most datasets, SVM achieved better
improvement than RF inside SDs, except for the Antioxidant
dataset.

C. Impact of Reducing the Features Inside Sub-datasets
As detailed in Section II-C, the proposed approach allows

to reduce the features separately for each sub-dataset. Figure 3
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TABLE I. DATASETS USED FOR THE APPROACH EVALUATION

Dataset # of Positives # of Negatives sequences length
DNA-binding proteins [34] 523 binding proteins 543 non binding proteins 50 - 1323 amino acids
Antioxidant proteins [35] 250 antioxidant 1547 non-antioxidant 31 - 1463 amino acids
RNA-binding proteins [36] 2780 binding proteins 7077 non binding proteins 50 - 8799 amino acids
Antimicrobial peptides (AMP) [37] 869 AMPs 2405 non-AMPs 8 - 103 amino acids
Caspase 3 human substrates [38] 247 cleaved peptides 247 non-cleaved peptides 14 amino acids
Major Histocompa. Complex II (MHCII) [39] 3510 binding peptides 1656 non-binding peptides 9 - 37 amino acids
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Figure 2. ROC curves for 4 different classifiers: ANN, RF, SVM, and xGBoost (with AUC values in parentheses), using 50 PCPs (columns 1 and 2) and 3
PCPs (columns 3 and 4).

illustrates that different feature sets can be discriminative in
different sub-datasets. It shows relative feature importance for
two sub-datasets of MHCII at k = 20. The importance of the
features differs not only between the two sub-datasets, but also
from the full dataset. Therefore, applying feature reduction
on a per-cluster basis has the potential to improve overall
performance.

We ran two sets of experiments to study the effect of
reducing the features inside the sub-datasets. In the first
case, we select the best set of features that maximize the

performance of prediction using RFE and, in the second case,
we apply PCA to extract a new descriptor to represent the data
by selecting principal components that cover at least 95% of
the total variance. Like for SDCs, if the resulting RSDC turned
out to be unreliable, then we returned back to FDC or SDC
based on the cross-validated AUC scores.

Table II shows the best improvement of RSDCs with
options of reverting to SDCs or FDC, compared to SDCs
with option of reverting to FDC. The results show that RFE
outperforms PCA in reducing the features inside the sub-
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TABLE II. COMPARISON BETWEEN USING ONLY FDC, SDCs WITH OPTION TO USE FDC IN THE WEAK CLUSTERS, AND RSDCs WITH
OPTIONS TO USE FDC OR SDCs IN THE WEAK CLUSTERS FOR 6 BENCHMARKS.

Method SVM RF

k AUC SEN SPE MCC (FDC,SDC,
RSDC(algo.)) k AUC SEN SPE MCC (FDC,SDC,

RSDC(algo.))
DNA-binding proteins

- FDC only (the baseline) - 0.8033 0.7769 0.6963 0.4744 - - 0.7899 0.6692 0.7556 0.4266 -
- SDCs with reverting option to FDC 4 0.8197 0.7769 0.763 0.5398 (2,2,-) 3 0.7859 0.6923 0.7778 0.4721 (2,1,-)
- RSDC with reverting option to
FDC or SDCs (RFE, PCA) 2 0.8433 0.8154 0.7481 0.5643 (1,0,1(RFE)) 2 0.8348 0.7308 0.8074 0.5401 (0,0,2(PCA))

Antioxidiant proteins
- FDC only (the baseline) - 0.8405 0.68 0.8987 0.5193 - - 0.8493 0.7419 0.8627 0.5032 -
- SDCs with reverting option to FDC 4 0.8591 0.7333 0.8966 0.5545 (2,2,-) 4 0.8706 0.7097 0.9275 0.5991 (3,1,-)
- RSDC with reverting option to
FDC or SDCs (RFE, PCA) 4 0.8681 0.7333 0.9009 0.5625 (2,1,1(RFE)) - no improvement achieved -

RNA-binding proteins
- FDC only (the baseline) - 0.903 0.6331 0.9582 0.6548 - - 0.9053 0.636 0.9661 0.6727 -
- SDCs with reverting option to FDC 5 0.9301 0.7942 0.9588 0.7788 (2,3,-) 5 0.9136 0.659 0.9644 0.687 (4,1,-)
- RSDC with reverting option to
FDC or SDCs (RFE, PCA) 5 0.9412 0.8187 0.961 0.801 (2,0,3(RFE)) 10 0.9344 0.705 0.9638 0.721 (5,0,5(RFE))

AMP peptides
- FDC only (the baseline) - 0.9552 0.765 0.9418 0.7247 - - 0.9624 0.7926 0.9484 0.7574 -
- SDCs with reverting option to FDC 5 0.9634 0.788 0.9434 0.7451 (3,2,-) 25 0.9619 0.7926 0.9567 0.7724 (21,4,-)
- RSDC with reverting option to
FDC or SDCs (RFE, PCA) 30 0.956 0.8203 0.9401 0.7638 (23,3,4(RFE)) 5 0.9741 0.8295 0.9551 0.7967 (2,0,3(RFE))

Caspase 3 peptides
- FDC only (the baseline) - 0.7487 0.623 0.7541 0.3803 - - 0.7263 0.7377 0.5246 0.2685 -
- SDCs with reverting option to FDC 2 0.7474 0.6393 0.7705 0.4134 (1,1,-) 6 0.7417 0.7377 0.5574 0.3 (5,1,-)
- RSDC with reverting option to
FDC or SDCs (RFE, PCA) 2 0.7565 0.7541 0.7869 0.5413 (0,0,2(RFE)) - no improvement achieved -

MHCII peptides
- FDC only (the baseline) - 0.8034 0.7605 0.6981 0.4396 - - 0.7909 0.7571 0.7029 0.4401 -
- SDCs with reverting option to FDC 15 0.8371 0.7765 0.7488 0.5022 (12,3,-) 30 0.8042 0.7537 0.715 0.4472 (19,11,-)
- RSDC with reverting option to
FDC or SDCs (RFE, PCA) 15 0.843 0.7879 0.7536 0.5192 (10,2,3(RFE)) 20 0.8475 0.7697 0.7754 0.5182 (8,2,10(RFE))
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Figure 3. Comparison between the importance of features inside the full dataset and inside sub-datsets using Gini importance [44]

datasets for most of the cases except for the DNA-binding
dataset, where training an RF on PCs improves the overall
performance.

Although using the proposed approach can improve the
overall performance either using SVM or RF as classifiers
inside the sub-datasets, we have achieved the highest perfor-
mance using the SVM classifier in most cases, except for AMP
peptides.

For the DNA-binding dataset, we achieved an improvement
of 3% for both AUC and MCC by grouping the dataset into 2
sub-datasets with SVM-RFE for one subset, while the other set
uses the FDC. In effect, we enhance the performance by 4%

for AUC and 9% for MCC compared to the FDC baseline. On
the other hand, for k = 2 and using PCA and RF on these two
sub-datasets, we achieved 5% and 4% improvement for AUC
and MCC compared to the SDC without feature reduction,
which corresponds to improvements of 5% and 12% for AUC
and MCC compared to the FDC baseline.

For the RNA-binding dataset, we have improved the MCC
by 3% using SVM-RFE with a very small improvement in
AUC, while we achieved 2% and 4% improvement for AUC
and MCC using RF-RFE.

For Antioxidant, we have achieved only 1% improvement
for both AUC and MCC using SVM-RFE compared to using
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SDCs without features selection, and no improvement using
RF-RFE and RF-PCA. This indicates that, unsurprisingly,
feature reduction does not help for all problems, and we can
just depend on using RF with SDCs.

As mentioned in the previous section, SDCs barely improve
over the FDC on the AMP dataset. In contrast, splitting the
dataset into 5 clusters and applying RF-RFE inside of three
of them improved the baseline by about 4% for MCC, with a
very small improvement in AUC.

For Caspase 3, we did not improve the overall AUC of
the classifier, but we achieved a significant improvement in
the MCC value (about 13% improvement) using SVM-RFE
compared to use the SDCs with FDC option. On the other
hand, for the MHCII dataset, if we depend on the SVM as a
classifier algorithm inside the sub-datasets, feature reduction
did not pay off, since the improvement was very small (about
1%). However, in order to achieve similar results with an RF,
we need to group the dataset into 20 sub-datasets and apply
RF-RFE inside 10 of them.

Going beyond predictive performance, we also analyzed
the role of the features selected within the clusters. In most
cases, RFE shows that the frequencies of amino acids play an
important role in classifying the sequences inside the clusters,
while the sequence order has a higher impact on classifying
the full dataset. Figure 4 illustrates the rank of the optimal set
of features for 9 sub-sets of MHCII out of k = 20, compared
to the full dataset using RF-RFE. For datasets containing long
protein sequences, RFE shows that the optimal sets of features
for clusters contain only a bit more than 50% of all available
descriptors, and most of theses descriptors represent amino
acid frequencies.
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Figure 4. The importance of features based on RF-RFE

V. CONCLUSION

We have studied the effect of exploiting homogeneous
sub-datasets inside protein sequence data by training multiple
classifiers on sub-datsets. The proposed approach handles each
sub-dataset as a separate classification problem that requires

tuning the hyper-parameters and finding the best features sep-
arately. More hyperparameter choices on smaller datasets can
potentially give rise to over-fitting. Therefore, it is imperative
for robust performance to allow the classifiers to revert to
classifiers trained on all features, and even on the full dataset,
as fallback options.

In this study, we have evaluated the performance of SVM
and RF classifiers inside the sub-datsets, and RFE and PCA
are tested as a reduction feature algorithms. SVM and SVM-
RFE achieved good performance for most datasets. The per-
formance of the proposed approach depends on the number
of sub-datasets, the encoding method, and for each cluster the
classifier with its hyperparameters and the feature reduction
method applied. We find that, for different datasets, the best
performance is achieved with different approaches. Our ap-
proach is sufficiently versatile to account for this finding.

The results indicate that the proposed approach improved
the overall performance of function prediction of protein se-
quences in most cases. Hence, they indicate that many protein
sequence datasets suffer from heterogeneity.
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