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Abstract—We developed a mathematical model for predator–
prey ecosystems undergoing climate-related changes. The 
model introduces the amount of information transferred 
between the number of individuals of the predator and prey 
categories, and the regulation performance in a predator–prey 
ecosystem is measured by a reduction of Shannon entropy, 
which is achieved by predation events and decay in the 
ecosystem. We examine the model with a computer simulation 
for a well-studied bass–crayfish predator–prey ecosystem in a 
closed lake. 
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I.  INTRODUCTION 
Over the last three decades, environmental changes, such 

as global warming, desertification, and air pollution have 
worsened, and their effects on life systems is a serious 
concern [1]. Previous studies on the environmental responses 
of life systems have been conducted for specific networks, 
including genetic regulatory networks and ecological 
networks [2][3]. 

Schrödinger suggested that a life system takes orderliness 
from its environment and sustains itself at a fairly high level 
of orderliness, or at a fairly low level of thermodynamic 
entropy [4]. Kauffman investigated how the dynamic 
behavior of a Boolean network suddenly becomes orderly. 
He made the analogy that the behavior approximates cell fate 
which is characterized by expression patterns of multiple 
genes in an organism [5][6]. Barabási and Albert found that 
generic mechanisms form an ordered network structure with 
a scale-free property [7]. However, we could not find a 
mathematical model that clarifies the varying orderliness of 
biological systems undergoing environmental changes.  

In this study, we quantify the environmental stimuli and 
orderliness achieved in state variables in life systems with 
Shannon entropy based on their probability distributions. 
The state variables represent the state of the system, such as 
expression levels in a genetic network. We then hypothesize 
a relationship between environmental changes and 

orderliness in the life systems. We validate the hypothesis on 
an ecosystem using numerical experiments on a 
computational model of differential equations for the 
ecosystem with the climate-shift model [8]. In the model, a 
climate-attribute change is modeled as a shift in the 
probability distribution of the climate attribute. We evaluate 
control performance by a difference of Shannon entropy as 
ΔH≡H(X)−H(X′), where X and X′ represent the state variable 
X at t0 and at t1 (unit time after t0), respectively [9]. The 
Shannon entropy H(X) indicates the uncertainty of X [10]. 
Section II includes our results and discussion, and Section III 
states our conclusion and future work. 

II. RESULTS AND DISCUSSION 
We consider a predator–prey ecosystem in a closed lake 

(Figure 1a). The probability distribution of the number of 
viable predators, which we call “capacity”, varies according 
to the climate shift of a climate attribute against a range of 
climate attributes (survival region) in which the predator is 
viable. The predator capacity decreases with an increase in 
climate shift (Figure 1b). We derived (1), which shows that 
the Shannon entropy (H(Y)) of the number of predators 
decreases with an increase in the climate shift (Figure 1c):  

  ( ) ( )e e eH Y H Yδ+ ≤ , (1) 

where e and δe indicate the level of the climate attribute and 
its increment. Generally, I(X;Y)≤min{H(X),H(Y)}, thus  

  ( ; ) ( ; )U U
e e eI X Y I X Yδ+ ≤ , (2) 

where I(X;Y)U(≡H(Y)) denotes an upper bound of the mutual 
information between X and Y. We merged (2) with an 
information–theoretic limit for general control systems [9], 
and thus obtained (3):  

  U U
e e eH Hδ+∆ ≤ ∆ , (3) 
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where ΔH is the Shannon entropy reduction of the state 
variable X (the number of prey individuals) over the 
transition X→X´ between t0 and t1 (unit time after t0). It 
represents the control performance of the predator–prey 
ecosystem. Equations (2) and (3) suggest that the mutual 
information between the number of prey individuals (X) and 
predators (Y), as well as the control performance of the 
predator–prey ecosystem, decreases with an increase in 
climate shift. Furthermore, the control performance of the 
predator–prey ecosystem appears to degrade from the level 
of a closed-loop control system to an open-loop control 
system, based on the information–theoretic limits of control 
[9]. 

Numerical experiments on a well-studied bass–crayfish 
predator–prey ecosystem in a closed lake [11] validate the 
degradation of the control performance suggested by the 
model mentioned above.  

The derived inequalities, (1), (2) and (3), are independent 
of the dynamics of the target ecosystem. Thus, our model 
can be applied to analyses of ecosystems in which the 
dynamics are unknown. Furthermore, our model and the 
numerical experiment results suggest that the maintenance of 
predator numbers is effective for protecting predator–prey 
ecosystems against climate-related changes.   

III. CONCLUSION AND FUTURE WORK 
We developed an information–theoretic predator–prey 

ecosystem model that is independent of the dynamics of the 
ecosystem, and validated the model through numerical 
experiments. 
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Figure 1. An ecosystem model: (a) Predator–prey ecosystem in a closed lake. The arrow denotes feeding relationship. (b) Number of viable predators and 

climate shift. (c) Probability distribution of the number of predators before (upper panel) and after (lower panel) an increase in climate shift byδe. 
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