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Abstract—Alzheimer’s Disease (AD) is one of the challenges of
modern medicine since no cure has been found yet, the
scientific community still does not fully understand the
pathogenesis behind it, and any interventions found can delay
the progress for only a limited amount of time. Over the years,
research has shifted from curing the disease to understanding
the mechanisms behind it as well as finding tools that will
speed up diagnosis many years before its clinical manifestation,
when the decline begins. One of the many promising tools that
have been explored towards that direction is the
electroencephalogram (EEG), which holds many different
measures that can be used as biomarkers for early diagnosis
and differentiation from other neurodegenerative disorders by
exploiting various bio-informatics techniques. Literature has
presented a high correlation between EEG signals and
structural abnormalities in AD. However, there is no analysis
that can provide a clear result that binds the two and leads to
early diagnosis, and very few studies have explored early stages
of AD, such as Mild Cognitive Impairment. Moreover, most of
the approaches applied do not adopt a multimodal
methodology that combines different analysis methods. To that
end, the present work proposes the combination of Tsallis
Entropy and Higuchi Fractal Dimension, in a common
framework for either the entire EEG or on each frequency
separately, to examine the performance in Mild Cognitive
Impairment (MCI) and AD subjects.
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I. INTRODUCTION

As stated by the International Alzheimer’s Association
[1], Alzheimer’s Disease (AD) is the most common form of
dementia. With 60% to 80% of dementia cases being
diagnosed as AD, which practically means that one out of ten
people over 65 has AD, it is one of the most severe diseases
that affect mainly elderly people and is expected to affect
roughly 131 million people by 2050. Although medicine and
technology breakthroughs follow one after another, the
mortality of AD keeps rising. From 2000 to 2014, an
increase of 89% has been observed. To that end, an
enormous amount of resources have been employed not only
to postpone the progression of AD (which is still currently
the only successful course of action) but to understand and
thoroughly analyse the processes responsible for the brain
degradation. As depicted in Figure 1, brain degradation

originating from AD has severe effects both in terms of
quality and volume.

As research has failed so far to grasp a cure for AD and
solutions available only target symptoms and not the cause
of the disease [2], effort has shifted towards better
understating of the initial mechanisms that cause cognitive
decline that could lead to an early diagnosis, especially at
Mild Cognitive Impairment (MCI) level, which is considered
a precursor stage of AD [3]. An early diagnosis may
contribute not only to develop more effective interventions
that could delay the progress or even inhibit it entirely but
could also prevent some of the symptoms to evolve when
dealt with at an early stage.

Towards the direction of early diagnosis, a handful of
different methodologies have been proposed, some of which
are invasive (i.e., blood) and dangerous (i.e., Cerebrospinal
Fluid – CSF), others are expensive (i.e., Magnetic Resonance
Imaging – MRI, Single-Photon Emission Computed
Tomography – SPECT, or Positron Emission Tomography -
PET), and with some still eluding significant results [4]. In
contrast with these, a non-invasive, low-cost and with high
resolution in terms of brain activity tool is the
electroencephalogram (EEG).

A. EEG and AD

With research going back a few decades [5][6], many
studies have been focused on researching the use of EEG in
AD, revealing certain commonly agreed features and some
other somewhat controversial [7]. Τhe most interesting 
features that are commonly agreed upon in the literature
regarding EEG and AD can be summarized as follows [8]-
[11]: a) Overall retardation of specific rhythms, in particular,
the observations so far present an increase in delta (0.1 - 4
Hz) and theta (4 – 8 Hz) activities and decrease in alpha (8 –
13 Hz) and beta (13 – 30 Hz) activities. Earliest changes are
an increase in theta and a decrease in beta activities,
followed by a decrease in alpha, while delta increases later
during the progress of the disease. This is supported by the
fact that patients with severe dementia exhibit a decrease in
alpha and an increase in delta activity, whereas patients with
mild dementia show a decrease in beta and an increase in
theta activity, b) decreased complexity, and c) decreased
coherence in general and among different brain regions.
From a topographic perspective, observations indicate that
slow activity is prominent in the left temporal area of AD
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patients, whereas differences between pre-senile patients and
healthy controls are detected in the right posterior temporal
area. Most significant differences between senile patients and
the controls are found in the midfrontal and anterior frontal
lobes bilaterally.

When evaluating complexity, significant effort has been
focused on non-linear dynamics [12], under the assumption
that EEG signals are generated by nonlinear deterministic
processes with nonlinear coupling interactions between
neurons. Studies employing such measures have found that
AD patients have reduced values of the correlation
dimension (D2) in the occipital EEG compared with those of
healthy subjects, and with probable AD subjects [13]-[16]. In
addition, it has been highlighted that AD patients exhibit
reduced spatiotemporal brain activity in comparison with
that in healthy controls [17], and in some cases, the former
subjects are characterized by specific patterns of dysfunction
in dementia [18].

Investing in the analysis of EEG complexity, a lot of
novel biomarkers have been extracted from non-linear
approaches (e.g., entropies, fractality, lacunarity) towards
providing the necessary methods for accurate and early
diagnosis of AD. This study is focused on two of them that
hold promising potential and intends to combine them into a
single biomarker for the intended purpose.

The manuscript is structured as follows: Section I
summarizes the related work on the subjects discussed,
whereas Section II presents the methodology designed to
address the identified challenges. Section III describes in
detail the dataset selected, and finally Section IV concludes
this work with some initial findings.

II. METHODOLOGY

There are a lot of different complexity measures that
have been employed in EEG signal analysis for many
diseases including AD [19][20]. Two of them that have been
found to hold much potential when used individually [21] are
the Tsallis Entropy and the Higuchi Fractal Dimension.

A. Tsallis Entropy

The Tsallis Entropy (TE) [22] has been widely used in
the analysis of EEG signals for over two decades now [23],
with work on AD starting somewhere in between [24]. In
multiple occasions, TE has been introduced as a possible
biomarker for differentiating AD from Healthy and even
MCI subjects [21][25][26].

Given a discrete set of probabilities {pi} with the
condition ∑pi =1, and q any real number, then the Tsallis
Entropy is defined as:
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B. Higuchi Fractal Dimension

The Fractal Dimension (FD) as a nonlinear approach for
analyzing EEG signal complexity in AD was introduced
around the same time as the introduction of the TE [27]. By
using it as an index of irregularity of a time series, thus
evaluating time series with non-periodic and turbulent
behavior [28], FD becomes a very suitable tool for EEG
waveforms. Specifically in AD, FD has been found
significantly lower in AD subjects when compared with
healthy individuals [14][29][30]. As the basic FD can be
quite processing-intense, the Higuchi Fractal Dimension
(HFD) [31] has been introduced as a fast and efficient
computational method that is able to successfully and
accurately estimate the dimension also for segments shorter
than 250 ms, thus enabling the study of brief EEG events and
the identification of behavioral variations with a good
temporal resolution [32][33].

For a �-sample EEG data sequence (1), (2), . . . , �(�),
the data is first divided into a �-length sub data set as:
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where [ ] is Gauss’ notation, � is constant, and
�=1,2,…,�. The length (�) for each sub data set is then
computed as:
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The mean of Lm(k) is then computed to find the HFD for
the data as:
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In order to calculate the HFD, a least-squares linear best-
fitting procedure as the angular coefficient of the linear
regression of the log-log graph of <Lm(k)> ~ k−HFD is
applied.

C. Complexity Measures Combination

As both of these measures have been tried individually in
the analysis of EEG signals for AD diagnosis and are
presenting rather promising results (sensitivity and
specificity more than 90% when comparing only AD and
normal subjects), the purpose of this study is to present an
approach that will also focus on MCI stage, exploring not
only the effect of these complexity measures individually but
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Figure 1. Whole EEG probability density functions: (a) Normal, (b) MCI and (c) probable AD subjects.

also combine them in formulating a new biomarker that is
based on both for the indented purposes, as similarly
suggested by [34] for depression. By employing Support
Vector Machine algorithms after extracting features from
applying TE and HFD on both the entire EEG bandwidth and
each channel separately, we hypothesize that it will lead to

enhanced performance in diagnosing and differentiating
normal, MCI, and probable AD subjects.

As most of the literature suggests changes of EEG signals
on the frontal and temporal brain regions, initially only
specific channels have been examined, namely Fp1, Fp2, F3,
F4, F7, F8, T3, T4, T5, T6, C3, and T4. Since it is suggested
that both MCI and AD have a different effect on the four
main rhythms (delta, theta, alpha, and beta), these are also
evaluated separately to identify any distinguished alterations
on the proposed metrics.

The analysis of the EEG signals was performed using
Python language and various open source libraries with the
main ones being MNE (Minimum Norm Estimates) [35] and
SciPy.

III. DATASET

This study is currently performed on EEG samples
collected from a 10-20 electrode system placement [34], over
100 subjects (30 healthy, 16 probable AD, and 54 MCI) from
an EEG setup with 21 electrodes, and in particular a NIHON
KOHDEN Neurofax JE-921A, digitized and analysed with
Neurofax EEG-1200.

Based on the available signals, the study aims to explore
the potential of diagnosing and differentiating AD, starting
from the initial stages of MCI.

All of the subjects were examined and diagnosed by
experts at the Greek Association of AD and Related
Disorders. A battery of neuro-psychometric tests has also
been provided to evaluate future findings better.

The EEG signals were collected following the 10-20
placement system (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,
F7, F8, T3, T4, T5, T6, Fz, Cz, Pz, A1, A2) [36] at 500Hz.
The input impedance was set to Z < 10kΩ. The protocol used 
for the acquisition of the EEG signals refers to resting stage
and lasts for 10 minutes with 5 minutes eyes closed and 5
minutes eyes open. An one minute window was used during
eyes closed for the analysis of the EEG signals.

Low and high band pass filters have been applied to
remove any artifacts prior to analysis, including a filter on
50Hz for noise from electrical equipment, whereas specific

zone band filters were applied to retrieve the different EEG
rhythms.

Finally, for calculating Tsallis Entropy, the probability
density function was found and normalised for every
examined signal.

IV. DISCUSSION & CONCLUSION

Initial findings of a first uniform sample from all three
groups/classes (Healthy/Normal, MCI and probable AD)
indicate significant changes between Healthy Vs. (probable)
AD, and MCI Vs. AD, but only mild ones between Healthy
Vs. MCI, even from the fundamental comparison of the
Probability Density Functions (PDF), as can be observed in
Figure 1.

By calculating the TE and HFD for each electrode and
the different basic bands, for all three classes we have so far
identified that it is extremely difficult for TEq and HFD
(with the configuration parameters explored) individually to
provide valuable insight for the differentiation between
Normal/Healthy, MCI and AD subjects (Figures 2 and 3).
Nevertheless, certain characteristics are in line with the
literature, and thus more elaborated research is required.

Figure 2. EEG Tsallis Entropy

Figure 3. EEG Higuchi Fractal Dimension
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As the presented work is an ongoing research endeavour,
current and future steps involve the complete analysis of the
subjects’ pool with SVM and the extraction of the proper
features (electrodes and bands) for maximising the accuracy
of the suggested methodology.

Additional analysis of the signals is required in order to
be able to provide more clear results, as well as applying
additional machine learning algorithms towards evaluating
the fusion of TE and HFD in a common biomarker for early
diagnosis of both MCI and AD. Currently, a set of 8 subjects
from each class have been used to train the models and its
accuracy is being evaluated to the remaining subjects. To
further enhance the reach of the analysis, the presented work
will also be used for evaluating signals from a 256 electrodes
set up that has many additional capabilities [14].
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